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ABSTRACT

The presence of structure heterogeneity in regional innovation networks reflects the complexity 
and diversity of knowledge diffusion and collaborative R& D relationships. This article introduces 
a network model based on the multiple systems generating functions mathematical algorithm to 
analyze the resilience of interacting networks under different link patterns. The percolation threshold 
is illustrated at two different levels: the subcritical and supercritical states. The algorithm is then tested 
on both simulated networks and real-world networks. The results of the simulation study highlight 
the crucial role of linking between sub-networks and emphasize the effectiveness of a moderate 
degree protection strategy.
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INTRODUCTION

Regional innovation networks, as a significant component of the national innovation systems, play a 
crucial role in promoting economic development. Classical works in the field of innovation networks, 
emphasizing satisfactory performance among innovators, underscore the importance of a dense 
network structure with small-world properties (Gay & Dousset, 2005). This topology, quantified by 
the average shortest distance, increases the probability of collaboration between groups of innovators 
(Amaral et al., 2000; Caloghirou et al., 2021). However, collaboration within these networks often 
introduces competitive issues such as income inequality, moral hazard, information asymmetry, and 
technical barriers (Uzzi & Spiro, 2005). Consequently, the links between stakeholders in partnerships 
are unstable (Bassett et al., 2014). These dynamic structural changes offer new insights for studying 
the functionality of innovation networks (Fleming et al., 2007).

Increased interest in the relationship between connection patterns and the function of innovation 
networks has led to various new developments in both empirical and analytical studies (Schilling & 
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Phelps, 2007; Phelps, 2010; Zhang et al., 2016; Bertotti et al., 2016; Casablanca et al., 2023). However, 
the literature has primarily focused on a single network-based view, limited to exploring interactions 
among various innovators, such as scientists and their teams, enterprise technicians and engineers, 
universities and research institutes, and government departments. With a growing emphasis on the 
resilience and function of networks, there is an urgent need to broaden our understanding of strong 
interfirm networks with dynamic partnerships, taking a new perspective on structural heterogeneity, 
which determines the endogenous architecture of the network (Briscoe & Rogan, 2016; Bernard et 
al., 2022). Consequently, scholars are increasingly shifting their research perspectives toward the 
diversity of connections and network functions across multiple networks, as evidenced by recent 
research (Peres, 2014; Li & Zhang, 2015; Bin & Sun, 2022).

The structural heterogeneity of regional innovation networks reflects the dynamic linking process, 
directly influenced by innovators’ behavior and innovative uncertainty (Mazzola et al., 2015). Factors 
such as knowledge spillover and research and development (R&D) collaboration may increase 
links within the innovation networks, while credit risk, technical failure, and partnership failure 
may decrease them (Gay & Dousset, 2005; Wu & Wu, 2014; Vivona et al., 2023). Drawing from 
the network embeddedness perspective, each innovator should optimize the technological distance 
between partners and secure a strategic position within the alliance network to absorb knowledge 
and information from external sources (Phelps, 2010; Han et al., 2020). Trust, influenced by changes 
in network configuration, plays a dominant role in establishing strong links (Shazi et al., 2015). 
Additionally, the absorptive capacity of external knowledge also has positive impacts on innovative 
partnerships and the overall network density (Tortoriello, 2015).

The utilization of generating functions with connected probability allows for the exploration 
of the structural heterogeneity of regional innovation networks, providing insights into the process 
of randomly choosing partners among innovators (Li & Zhang, 2015). The percolation threshold of 
the giant linked group varies significantly based on probability (Morone & Makse, 2015; Ziff et al., 
2020). This threshold holds crucial importance in setting policies aimed at achieving the highest 
performance to facilitate the spread of technology within regional innovation networks (Zhao et al., 
2023; Tabassum et al., 2022).

The resilience of regional or geographic innovation networks refers to the systems’ ability to 
withstand random or targeted deletions of network nodes (Callaway et al., 2002; Newman et al., 2002; 
Gao et al., 2016; Buldyrev et al., 2010). These deletions signify cooperative innovation risk, which 
can be detrimental to economic growth by disrupting R&D and technology spread (Adams, 2012). 
Percolation models based on these networks can be instrumental in identifying the best connection 
pattern, ensuring an appropriate selection and a moderate number of links between innovators. This 
helps to ensure that contacts capable of efficiently transmitting techniques are maintained at lower 
costs (Freitas, 2013). In recent years, scholars focusing on algorithms and simulations of various 
subclasses of multilayer networks have emerged. Their works reveal the expected size of the giant 
linked group with complex structure and multiple percolation phase transitions, playing a crucial 
role in the resilience or robustness of the network of networks (Leicht et al., 2009; Buldyrev et al., 
2010; Hackett et al., 2016; Casablanca et al., 2023).

In this paper, we modeled the influence of structural heterogeneity on resilience in regional 
innovation networks based on percolation theory. Our specific focus is on structural changes in multi-
networks, where one subnet is composed of enterprises and the other consists of universities and 
institutes. Rigorously applying generating functions, we calculate different connection probabilities and 
percolation thresholds. Additionally, we use this approach to generate a classical regional innovation 
network, testing the efficiency and stability of multiple coupled networks within the context of 
collaboration between universities, institutes, and enterprises. We conduct numerical simulations of 
resilience in networks, examining both random failure and intentional attacks.

The remainder of this paper is organized as follows: Section 2 provides a description of the 
construction basis and derivation process of the model. The discussion of simulation results is 
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presented in Section 3. Resilience protection strategies are outlined in Section 4. Finally, Section 5 
offers our concise conclusion and discussion.

The Model

It is an essential aspect of the study to generate different types of networks with various connected 
probabilities under investigation and test how heterogeneous architecture influences resilience in 
regional innovation networks. Utilizing classic random graph theory, we have constructed a model of 
network generating functions. The application of this model allows us to randomly generate various 
networks with any probability for a randomly chosen node (Figure 1a) and edge (Figure 1b).

Assume a regional network has λ different industries sub networks, and connection presents 
uniform characteristics, i.e., if node xi is connected to xj, meanwhile xj is linked with xi. Additionally, 
consider the connected probability ω, representing the likelihood of success in cooperative innovation 
between innovators. Figure 2 illustrates the probabilities that one node from subnet μ links to a node 
from subnet ν, nodes from separate subnets μ and ν are ωνμ, ωμ and ων, respectively. It can be inferred 
that this network is a standard random graph if all probabilities of subnets are the same.

The distribution of group sizes can be obtained by the multi-degree distribution which is 
{ p

k k k1 2& λ

µ } (λ>2) in each individual network μ in regional innovation networks, where p
k k k1 2& λ

µ  
indicates that there are k1 edges connected to the nodes of network 1 in the nodes of the network 
μ, and kλ edges are connected to the nodes of network λ. We also use ωμ, ων and ωμν to describe 
the connection threshold of nodes within and between networks, separately.

Figure 1. A network generation model based random graph

Figure 2. The generating function with connection probability
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The multi-degree distribution for network μ is given by the following expression:
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In the following formula, ν-μ edge represents the connection in a node from subnet μ and 
another node from subnet ν. This is certainly a random selection process. The remaining connectivity 
of each single subnet node to nodes in other subnets is also explained by the excessive degree. 
Thus, p

k k k1 ν λ

µν  is used to describe the probability of randomly selecting an ν-μ edge and connecting 
to a node has ν degrees excessive, while local subnet ν has kν+1 degree. The generating function 
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where ′ ( ) ≡G kµ
ν

µ
ν1  can help to calculate average degree of a node in subnet μ connected to subnet 

ν. As cooperative innovation begins, all the component sizes, initially limited, grow larger as a giant 
connected component, gradually appears. The function can be used to calculate the average component 
size and the probability that a randomly selected node in a supercritical state is a giant group, when 
the group size is too large to tolerate the closed loop in networks. The distribution function Hvμ can 
be applied to calculate the size of group consisting of randomly selected edges connecting nodes 
between subnet ν and subnet μ. Therefore, all the types of probabilities for the associated generating 
function are given by the following expression:
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To simplify the formula, we introduce the Kronecker delta δi used to explain all edges connected 
from subnet μ to the specified node with excessive degree i. From Eq. 3 we get:
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Thus, put Eq. 2 into Eq. 4 could be derived as H x x G H x H xµν µ µν µ µ λµ λµω ω ω( ) ( ) ( )= 



1 1

 . Only 
if consider nodes chosen at random from subnet μ, the distribution function can be written as:

H x x G H x H xµ µ µ µ µ λµ λµω ω ω( ) ( ) ( )= 
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By taking the derivative of x on both sides of Eq. 5, the mean group size for any Hμν(ωx) can be 
calculated. For instance, an average number of nodes from subnet μ in the group of a node randomly 
selected from subnet ν is:
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Within the group ¢H γφ
µ( )1  is the mean degree of nodes in subnet μ following a ν-γ edge leading 

a node from subnet γ. And ¢Gν
γ( )1  represents the expected value of the ν-γ edge incident from a node 

in the subnet ν.
The above inference accounts for the size of the component that can be maintained in a subcritical 

state where there is no giant group. When a giant group appears, Eq. 6 shows the properties of 
components that do not belong to the group. To calculate the giant group size, we need to consider 
the contribution from each subnet.

The probability that a randomly selected node belongs to the giant group is calculated as follows:

u G u uµν µν µ λµ= ( )1
, 	 (7)

The uμν refers to the probability that a randomly selected edge connects a node of the subnet μ 
from the node of subnet v, and none of them belong to the giant group. Substituting Gμν into Eq. 7, 
we get uλμ. In the same way, uμ can be obtained.
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Finally, as shown in Eq. 8, we can obtain the probability that a randomly selected node of subnet 
μ and its subgroup belong to the giant component.

SIMULATION AND RESULTS ANALYSIS

To test how structural heterogeneity influences network resilience, we apply the model introduced in 
Section 2 to generate three typical regional innovation networks. As the left part of Figure 3 shows, 
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there are ER random graph N = 9999, mean degree = 5, W-S small world graph N = 9999, scale free 
graph N = 9999, γ = 2.1. Solid lines represent the estimated values ​​of M. E. Newman’s algorithm 
and dotted lines represent our model (Newman et al., 2002).

The generating function formalism developed by Newman offers a powerful analytical framework 
for understanding the complex properties of networks, especially their component size distribution 
and resilience (Newman et al., 2002). Generating functions are particularly useful in the study of 
random graphs and their percolation properties, which are relevant for understanding phenomena such 
as the spread of knowledge innovation or the resilience of communication networks. The generating 
function offers a powerful analytical framework for understanding the complex properties of networks, 
especially their component size distribution and resilience. Generating functions is particularly useful 
in the study of random graphs and their percolation properties, which are relevant for understanding 
phenomena such as the spread of diseases in populations or the resilience of communication networks 
(Wu et al., 2023).

To validate our model’s applicability in real-world scenarios, we conducted extensive tests on data 
sets derived from actual networks. These data sets span various domains, including social networks, 
biological networks, and technological networks, providing a comprehensive cross-section of complex 
network topologies found in nature and human-made systems. For each real-world network analyzed, 
we carefully curated the data to ensure its relevance and accuracy. This process involved cleaning 
the data, removing duplicate and self-loop edges, and ensuring the network’s consistency. We then 
characterized each network by its degree distribution, clustering coefficients, average path length, 
and other relevant metrics that capture its unique structural properties. The model parameters were 
extracted using statistical methods tailored to each network’s specific characteristics. For instance, 
we used maximum likelihood estimation to fit the degree distribution of the network to the theoretical 
models. The goodness-of-fit was evaluated using statistical tests such as the Kolmogorov-Smirnov test 
to ensure that our model accurately represents the underlying distribution. By incorporating these real-
world data characteristics into our model, we were able to observe how well our theoretical approach 
predicts actual network behavior. The comparison between our model’s predictions and empirical 
observations showed a high degree of alignment, reinforcing the model’s credibility.

Furthermore, the solid-circle, solid-square, and solid-diamond lines are the average of 100 
repeated simulations of direct values ​​on the same network. Initially, we elaborate on the network 
model construction, detailing the rules for node and edge generation, as well as the selection of 
network topologies. Subsequently, we describe the various parameters used in the simulation 
experiments, such as the initial connection probability of the network, the node failure rate, and the 
mechanisms for network recovery post-failure. Moreover, we explain the rationale behind choosing 
these parameter values based on theoretical models and empirical cases and provide a sensitivity 
analysis of the impact of parameter variations on simulation outcomes. Where H’ is the abbreviated 
form of ′ ( )H

0
1  for illustration, the giant group fraction was simulated here and compared with the 

numerical values of the classic model and our model in good agreement. These estimates are almost 
identical with simulation results on the ER random graph. Moreover, the right part describes the 
average size value of all components under phase change. On these three typical networks, the results 
of the estimates correspond to the results of numerical simulation when ω values are beyond the 
percolation threshold interval. As those ω values gradually approach the threshold, by contrast, the 
results show that the simulated data do not agree well with the estimated data of the classic algorithm. 
However, on the ER random graph, data fitting is still perfect. Although the model was discussed in 
dissimilar network structures, this work is rarely used to generate regional innovation systems or 
networks with the multilayer perspective. This is exactly what we aim to explore.

We apply this procedure to generate a small but closer to a certain industry innovation network 
in some region. The structure parameter of the network is described in Figure 4. Where the network 
structure of the regional innovation network (N = 131) has a mean degree of 3.41, a W-S clustering 
coefficient of 0.49, a betweenness centralization of 0.32, and an average distance of 3.59. Figure 4a 
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shows the connecting heterogeneity of the network when ω = 1 and ω1 = ω2 = 1, and there are two 
subnets (diamonds represent enterprises, and triangles represent universities) whose proportion is 
approximately equal to 0.2. This proportion of dual network is the same as in Li and Zhang (2015).

As shown in Figure 4a, most of the nodes are linked with each other and, obviously, a giant 
component exists in this network. But it is, nonetheless, an ideal state for collaborative innovation 

Figure 3. Percolation results for three typical networks

Figure 4. An example of a regional innovation network connectivity generated



International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

8

and achieving sustainable growth through friendship. Generally speaking, in regional innovation, 
technology R&D is challenging to succeed, and innovators often change partners for a variety of 
reasons. So, we should study the resilience with different probabilities. Figure 4b presents the function 
of dissimilar type innovators. Within the network, universities act as intermediaries between the 
enterprises. A number of patents were created due to teamwork between enterprises and universities. 
We also use our model to research the effect of two types of innovators on structural heterogeneity 
and resilience in the whole network.

We apply the model to calculate if the network has a giant component. Based on Eq. 2, we can 
get G

11
1 1 1' ( , )=0.789, G

11
2 1 1' ( , )=0.684, G

12
1 1 1' ( , )=0.559, G

12
2 1 1' ( , )=0.925, G

21
1 1 1' ( , )=17.312, G

21
2 1 1' ( , )

=2.978, G
22
1 1 1' ( , )=5.13 and G

22
2 1 1' ( , )=3.741. And we also can derive the percolation threshold by 

solving a set of partial differential equations based on Eq. 4. When the results satisfy the following 
conditions such as:

0 1 1 1 1 1 1 1 1 1 1
1 11

1
1 22

2
2
2

12
2

21
1∧ ⋅ < ∧ ⋅ < ∧ ⋅ ⋅w w wG G G G' ' ' '( , ) ( , ) ( , ) ( , ))< 1 	 (9)

or:

0 1 1 1 1 1 1 1 1 1 1
1 11

2
1 22

1
2
2

12
1

21
2∧ ⋅ < ∧ ⋅ < ∧ ⋅ ⋅w w wG G G G' ' ' '( , ) ( , ) ( , ) ( , ))< 1 	 (10)

Thus, we work out G G
12
1

21
21 1 1 1 1' '( , ) ( , )⋅ = >1.665  and G G

12
2

21
11 1 1 1 1' '( , ) ( , )⋅ = >16.009 , so a 

giant component appears in this network, and the thresholds are ω1 ≥ 0.2 and ω2 ≥ 0.25.
Then, we implement the simulation to test how structural heterogeneity with different connected 

probabilities influences the network resilience. For each probability of the nodes linked within the 
network, we calculate 50 times and take an average.

To estimate the impact of structural heterogeneity on network resilience, we examine how the 
numerical variation of connected probabilities in dual subnet impacts the network resilience. Figure 
5 (In this figure, a dashed-circle line describes the giant component fraction of enterprises subnet, 
and a dashed-square shows the proportion of universities subnet.) presents the percolation station of a 
regional innovation network, where the proportion of enterprises and universities belonging to a giant 
component occupies all the innovators, respectively. The giant component fraction in the university 
subnet descends more slowly, and that fraction rapidly declines in the enterprise subnet. We observe 
in Figure 5 that the descending curve describes the number of universities belonging to the giant 
component and, as the connected probability decreases, it fits the logistic curve.

Figure 6 comprises two graphs, illustrating, respectively, the giant component fraction within 
enterprises and universities. The results show under the threshold that ω2 = 0.25, the size of the giant 
component in university subnet, suffers a much larger drop than enterprise subnet, and it rapidly 
descends when the numerical decrease of ω1. In addition, under the threshold that ω1= 0.2, the giant 
component fraction in dual subnet comes down fast when ω2 is in the high level and slowly when ω2 
becomes lower. Thus, the mediate effect of university to regional innovation network is more important.

There are many factors that break the connections within the regional innovation network. Some 
of them come from outside impacts, and others result from sabotage. Typically, scholars study the 
resilience of the network under random failure or intentional failure. We use the giant group size as 
a measure of system damage in the network (Newman et al., 2002).

Under different failures, we test the influence of structural heterogeneity by simulation. And 
100 times the resilience experiment is run to take the mean value of results. According to Figure 7a, 
random failure describes random removal of fractions of nodes with probability q. We assume that 
all stochastic processes are defined on a complete probability space (0, 1). The simulation results 
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demonstrate the giant component exists until 70% of connections are broken in the network. And Figure 
7b illustrates the targeted destruction of certain nodes, which most likely have many partnerships. When 
20% of such nodes with the higher degree are removed, the giant component disappears. Therefore, 
the regional innovation network resists random failure better than intentional failure.

THE RESILIENCE PROTECTION STRATEGIES

We studied the resilience influenced by different connected probability, and the higher degree nodes 
are significant in terms of maintaining resilience of the network. Hence the protection strategies for 
network resilience need to be discussed.

To test which strategy is actually having the greatest effect, we simulate the giant component 
fraction in three protection policies. The first policy protects the nodes that have the highest degree 

Figure 5. Network resilience influenced by structure heterogeneity

Figure 6. Sub-Network resilience with structural heterogeneity variation
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in the network. The second one keeps the nodes with the moderate higher degree out of removal. The 
third one prevents lower degree nodes from being removed.

As shown in Figure 8a, the protection of highest degree nodes is most effective within minor 
connected probabilities, but it is not better than the moderately higher degree nodes’ policy. The lower 
degree nodes’ protection has poor efficiency in structural heterogeneity. Therefore, if less than 40% 
of nodes are removed, we should protect the highest degree nodes, because they have more partners 
in the network. Otherwise, the second strategy is the best choice. The mediation of these nodes with 
large betweenness is responsible for strong resilience when keeping moderately higher degree nodes 
out of removal.

Finally, we should explore how structural heterogeneity influences network resilience in the 
best protection strategy. The simulation analysis results represent the resilience of a network with 
different connected probabilities under the moderately higher degree nodes’ protection. As Figure 
8b illustrates, the network has strong resilience when the probability is more than 0.65.

The safeguarding of nodes with a moderate degree of distribution is pivotal for ensuring effective 
knowledge dissemination, promoting technological iteration, and maintaining the overall vibrancy of 
the network’s innovation. Although these nodes are not the most connected hubs within the network, 
they play an essential role in linking different innovators, disseminating new knowledge and technology, 

Figure 7. Simulation on the network resilience with linking failure

Figure 8. The resilience protection strategies
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and facilitating cross-disciplinary collaboration. Protecting these nodes ensures that the flow of 
knowledge is not interrupted due to issues with specific nodes, thereby maintaining the dynamism 
and adaptive capacity of the innovation network. For instance, in a scientific research cooperation 
network, these nodes might represent a particular research team or a medium-sized laboratory, 
transferring knowledge between various research fields and fostering interdisciplinary cooperation 
and development. If these nodes are protected, the continuity of innovation and the overall health of 
the network can be safeguarded, even in the face of resource constraints or external shocks. Moreover, 
these nodes often serve as testing and feedback points for emerging technologies or products, with 
their security directly linked to the iteration speed of innovative outcomes and market response.

CONCLUSION

Our study delved into the role of connection probability within the overall system and its subnetworks 
on the resilience of regional innovation networks. By employing a multi-network stochastic probability 
algorithm grounded in classical generating functions, we simulated the emergence of a dual network 
that reflects the complexities of an actual innovation network. Our numerical simulations were geared 
toward evaluating the network’s resilience, with a particular focus on the influence of global network 
properties and the structural heterogeneity present within its subnetworks.

We found that the resilience of regional innovation networks is significantly influenced by 
structural heterogeneity, particularly within university subnetworks, as compared to the architectural 
changes in enterprise subnetworks. A notable discovery was that a reduction in connection probability 
beyond the critical percolation threshold exerts a substantial negative influence on resilience. The 
strategic removal of nodes with moderately high connectivity incurs a profound impact on network 
robustness. Therefore, preserving a connection probability above the 65% mark emerges as a pivotal 
factor for maintaining robust resilience.

These insights contribute to two critical debates within network studies. First, our findings 
highlight the value of utilizing generating functions for determining percolation thresholds and the 
sizes of large coherent clusters in various real-world networks. Our probabilistic model is particularly 
effective in estimating the dynamic consequences of disrupted partnerships on technology diffusion 
within the innovation network. Second, the vital influence of nodes with moderate degrees of 
connectivity on network resilience is affirmed. This is particularly salient given that highly connected 
nodes are susceptible to targeted disruptions, while nodes with fewer connections contribute to 
network decentralization. This understanding is instrumental for the strategic governance of regional 
innovation networks.

Given the key findings, it is imperative to consider the practical policy implications of our study. 
Policymakers and network administrators can leverage our insights by developing targeted strategies 
to strengthen the resilience of regional innovation networks, particularly by focusing on the critical 
role of university subnetworks and ensuring the connection probability remains above the identified 
threshold. By applying our research outcomes, different regions can tailor their innovation policies 
to enhance network robustness, effectively mitigating the risks of disconnection and fostering a more 
sustainable innovation ecosystem.

Moving forward, further research can explore the resilience of innovation networks in the face 
of varied disruption scenarios, such as targeted attacks on nodes of different degrees or sequential 
failures. Additionally, extending our model to incorporate a broader range of network topologies 
and connection strategies can unveil new nuances in network resilience dynamics. The challenges 
for future research lie in understanding the interplay between network structure and the behavior of 
actors within these networks, especially under different conditions of stress and adaptation.
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