
DOI: 10.4018/IJWSR.340391

International Journal of Web Services Research
Volume 21 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

A Secure and Fast Range Query Scheme
for Encrypted Multi-Dimensional Data
Zhuolin Mei, Jiujiang University, China

Huilai Zou, Zhejiang Institute of Mechanical and Electrical Engineering, China*

Jinzhou Huang, Hubei University of Arts and Science, China

Caicai Zhang, Zhejiang Institute of Mechanical and Electrical Engineering, China

Bin Wu, Jiujiang University, China

Jiaoli Shi, Jiujiang Key Laboratory of Cyberspace and Information Security, China

Zhengxiang Cheng, Jiujiang University, China

ABSTRACT

In recent years, more and more data has been stored on the cloud to provide various services. These
data often contain users’ private information, which inevitably raises concerns about data security.
Encryption before outsourcing is a direct solution to mitigate these concerns. However, traditional
encryption schemes such as block encryption make basic data services hard to support. Therefore,
this paper proposes a secure and fast range query scheme for encrypted multi-dimensional data,
called SFRQ. The scheme constructs a secure index over the ciphertexts of multi-dimensional data,
utilizing the R-tree index, Bloom filter, and 0-1 encoding techniques. This secure index enables
the cloud to provide fast range query services over the ciphertexts of multi-dimensional data. The
authors have evaluated SFRQ through extensive experiments, which demonstrate its high efficiency.
Additionally, the security analysis shows that no external entity, including the cloud, can obtain
additional information during the entire query process.

KEyWoRDS
Ciphertext Multi-Dimensional Data, Cloud Computing, Encryption, Range Search Service, Secure Index

INTRoDUCTIoN

Cloud computing has been widely adopted by individuals, organizations, and businesses (Zeng et al.,
2020; Mei et al., 2024). Many applications (Wang et al., 2022) have the capacity to leverage cloud
servers for outsourcing their data and services, thereby improving the quality of the services they
offer. Thus, the cloud often contains a substantial volume of data, which frequently encompasses
sensitive information. Therefore, data security in the cloud becomes a popular research area in both
academic and business communities (Zeng et al. 2017; Wu et al., 2020; Wu et al., 2021). To tackle
these security concerns, one of the most straightforward approaches is to employ data encryption
prior to outsourcing. Nevertheless, traditional encryption methods are difficult to support in some

International Journal of Web Services Research
Volume 21 • Issue 1

2

basic data operations, such as data retrieval. Although some new encryption schemes can be used to
address the problem of ciphertext search, there exist some constraints.

Agrawal et al. (2004) proposed the first order-preserving encryption (OPE), which aims to
incorporate order information of plaintexts into the corresponding ciphertexts. As a result, an OPE
scheme is very suitable to solve the problem of ciphertext search. However, many OPE schemes
(Agrawal et al., 2004; Peng et al., 2017; Popa et al., 2011; Quan et al., 2018) mainly consider ciphertext
search for single-dimensional data (Zhan et al., 2022). Moreover, due to the disclosure of order
information caused by OPE schemes, this can be used to accurately deduce the plaintexts (David et
al., 2004). Therefore, OPE schemes pose potential data security risks.

Bucketization schemes (Wang et al., 2013; Hore et al., 2004; Hore et al., 2012) can protect order
information of ciphertexts and enable ciphertext querying. In a bucketization scheme, all the data is
partitioned and placed into different buckets. The data in each bucket are treated as a unit and encrypted.
Thus, the order information of ciphertexts in the same bucket can be protected well. Suppose B is
a bucket and Q is a queried range. If B Q∩ ≠ ∅ , all the ciphertexts in B are as the results for Q
and finally returned to the data user. To enhance the efficiency of bucketization schemes, researchers
have proposed bucketization-based index schemes (Wang et al., 2013; Mei et al., 2018). Nevertheless,
the scheme devised by Wang et al. (2013) involves many matrix operations, resulting in low efficiency.
The scheme of Mei et al. (2018) exhibits suboptimal performance when dealing with datasets that
have non-uniform distributions.

In this paper, we propose a secure and fast range query scheme for encrypted multi-dimensional
data, namely SFRQ. In our scheme, a normal R-tree, 0-1 encoding (Gupta et al., 2001), and Bloom
filter (Bloom et al., 1970) are used to construct a secure R-tree index. 0-1 encoding and a Bloom filter
are used to process the minimum bounding rectangle (MBR) corresponding to each node in the R-tree.
This allows each processed MBR to be securely and effectively determined whether the query range
intersects with it. The data in each bucket are treated as a unit and encrypted. We conducted a large
number of simulation experiments, and the results show that the proposed scheme SFRQ exhibits a
high search efficiency. The contributions of this paper are as follows.

1. We have developed a secure R-tree index by leveraging a conventional R-tree, 0-1 encoding, and
Bloom filter.

2. We propose a secure and fast range query scheme for encrypted multi-dimensional data, namely
SFRQ, by using the proposed secure R-tree index.

3. We carry out extensive experiments to evaluate the efficiency and provide a thorough analysis
of correctness and security.

RELATED WoRK

An OPE scheme was first proposed by Agrawal et al. (2004). As the order information of plaintexts
is preserved in the corresponding ciphertexts, i.e., larger plaintexts correspond to larger ciphertexts,
OPE enables ciphertext search without decryption. A strict definition for the security of OPE was
proposed by Boldyreva et al. (2009), but unfortunately, there is no OPE that satisfies the strict
definition. Therefore, they propose a weaker definition, i.e., ciphertexts are indistinguishable from the
values calculated by a random increment function, and then construct an instance of OPE that meets
the weaker definition. Since then, many researchers have conducted extensive studies (Boldyreva et
al., 2011; Dyer et al., 2017; Krendelev et al., 2014; Teranishi et al., 2014; Xiao et al., 2012) based
on the work of Boldyreva et al. (2009). However, most of these OPE schemes only study the single-
dimensional data. In recent years, Zhan et al. (2022) proposed a scheme that organizes all the data in
a network data structure and uses prefix encoding and a Bloom filter to process the values stored in
the structure, enabling the execution of range searches on encrypted multi-dimensional data (MDD).
Unfortunately, the leakage of order information in OPE is likely inevitable.

International Journal of Web Services Research
Volume 21 • Issue 1

3

A bucketization scheme was first proposed by Hacigümüş (2002). Then, Hore et al. (2004)
discussed how bucketization is good for both search efficiency and security. Following Hacigümüş’s
and Hore’s works, many studies have been done to improve bucketization schemes in many aspects.
To improve the search efficiency, Lee (2014) set an order for all the buckets. In the aforementioned
schemes, the buckets must be stored and searched locally on the data user side. Wang et al. (2013)
adopted a matrix encryption (Wong et al., 2009) to encrypt the buckets, then organize these encrypted
buckets into an index, and finally outsource the index to the cloud. Mei et al. (2018) also built an
index to enable the execution of range searches on encrypted MMD. Unfortunately, their scheme is
not very suitable for uniformly distributed data sets.

Background Knowledge
We outline below several key concepts that form the basis of our scheme, including the R-tree (Guttman
et al., 1984), 0-1 encoding technique (Lin et al., 2005), and Bloom filter (Bloom et al., 1970).

An R-tree is a height-balanced tree. Each node of an R-tree contains an MBR. The MBR of an
internal node covers the union of the MBRs of its child nodes. Each leaf node is linked to a bucket,
and all the data covered by its MBR are stored in that bucket.

A Bloom filter is a probabilistic data structure utilized for membership testing of elements within
a set. A Bloom filter contains a bit array A in which all the bits are initialized 0, k hash functions
h h h

k1 2
, , ,¼ and a data set D .

(1) When adding an element d
j
 in D , the Bloom filter sets Ah d

i j
[()]= 1 (i kÎ [,]1 and j mÎ [,]1).

(2) When testing whether an element ′ ∈d D , the Bloom filter calculates Ah d
i
[()]¢ (i kÎ [,]1). If

Ah d
i
[()]′ = 1 , there is ′ ∈d D . Otherwise, there is ′ ∉d D .

It is important to note that a Bloom filter may produce false positives (an element is mistakenly
regarded as belonging to the data set). However, according to the analysis of Graf et al. (2020), optimal
parameter settings can minimize the occurrence of false positives. Specifically, a Bloom filter has a
minimum probability of false positives, which is 2-k , when k n m= (/)ln2 . Here, n refers to the
number of elements in the dataset, and m refers to the number of bits in the bit array.

0-1 encoding is a method of representing data using binary digits. Let s t t t
n n

n= … ∈−1 1
0 1, be

a binary string of length n . Its 0-encoding form is defined as a set S t t t t i n
s n n i i
0

1 1
1 0 1= … = ≤ ≤− +{ | , } .

Similarly, its 1-encoding form is defined as a set S t t t t i n
s n n i i
1

1
1 1= … = ≤ ≤−{ | , } . Suppose x

and y are two integers, S
x
0 and S

x
1 are the 0-encoding and 1-encoding forms of x respectively, S

y
0

and S
y
1 are the 0-encoding and 1-encoding forms of y respectively. If and only if S S

x y
1 0∩ ≠ ∅ ,

there is x y> . On the contrary, if and only if S S
x y
1 0∩ = ∅ , there is x y£ . Lin et al. (2005) have

proved the above conclusions clearly.
Here is an example for illustrating data comparation by 0-1 encoding forms. Given two data 11

and 6, the 4-bit binary strings are ()1011
2

 and ()0110
2

 respectively. It is easy to calculate the 0-1
encoding forms of 11 and 6, i.e., S

11
0 11= { } , S

11
1 1 101 1011= { , , } , S

6
0 1 0111= { , } and S

6
1 01 011= { , } .

As S S
11
1

6
0 1∩ = ≠ ∅{ } , there is 11 6> . On the contrary, as S S

6
1

11
0∩ = ∅ , there is 6 11£ .

For the sake of clarity, we provide a concise overview of the symbols used in this paper in Table 1.
Figure 1 shows the system model of SFRQ. First, the data owner (DO) uses a normal R-tree

(RT) to build a secure R-tree (RT) by using 0-1 encoding (01E) and a Bloom filter (BF), and
then encrypts all the MDD. Next, the DO outsources RT and the encrypted MDD to the cloud.
Finally, the DO generates and distributes a secret key to the data user (DU), who uses it to generate

International Journal of Web Services Research
Volume 21 • Issue 1

4

a search token for the queried range. The DU then sends the search token to the cloud. Upon
receiving the search token, the cloud performs a range search over RT and sends the search results
back to the DU. Finally, the DU decrypts the received ciphertexts using the same secret key as the
DO. In our system model, we assume that the cloud is semi-trusted, meaning that it follows
designated protocols and procedures but may have various reasons to be curious, including being
compromised to act on behalf of a third party.

Definition 1: Correctness. Suppose C C C C
i

* * * *{ , , , }= …
1 2

 is the search results over RT by
using a queried range Q . A bucketization-based range search scheme is correct if the plaintext d

j

of C
j
* falls within the MBR that intersects with Q .
Definition 2: Security (Zhan et al., 2022; Guo et al., 2018). Suppose F is a leakage function. If

no adversary is able to obtain information apart from F , SFRQ is considered secure. The leakage
function is F x y position x y

diff
(,) (,)= , where position x y

diff
(,) returns the position of the first

difference between x and y .

Construction of SFRQ
In this section, we first present an overview of SFRQ, then describe the secret key generation algorithm,
followed by the MBR encoding algorithm, the index construction algorithm, the search token generation

Table 1. Notations and Explanations

Notation Explanation

DO Data Owner

DU Data User

01E 0-1 Encoding

0E 0 Encoding

1E 1 Encoding

BF Bloom Filter

RT Normal R-tree

RT Secure R-tree

MDD multi-dimensional data

Figure 1. System Model

International Journal of Web Services Research
Volume 21 • Issue 1

5

algorithm and, finally, the range search algorithm in details. The scheme SFRQ begins with the DO
building RT over all the MDD. Each MBR in RT is then processed using 01E and BF. Specifically,
the DO first transforms each boundary information of an MBR to its binary string. Then, the DO pads
a random number after the binary string. Next, the DO applies 01E to process the binary string with
the random number. Finally, the DO obtains a bit array using a BF, which uses hash functions that take
a binary string and the DO’s secret key as the input to ensure the security of the bit array. Additionally,
the DO uses a secure encryption scheme to encrypt all the MDD for data security. After processing all
the MBRs and encrypting all the MDD, the DO obtains RT and all the encrypted MDD. The DO then
outsources RT and encrypted MDD to the cloud. For a queried range, the DU generates several hash
values as the search token using his or her secret key and hash functions in the BF, and sends the search
token to the cloud. After receiving the search token, the cloud executes a range search and delivers the
search results to the DU. Finally, the DU decrypts all the ciphertexts in the search results using his or
her secret key, which is the same as the DO’s secret key.

The construction of the SFRQ scheme involves the following probability polynomial time
algorithms.

Secret key generation algorithm KeyGen SK()1l ® : It takes a security parameter l as the
input and generates a secret key SK as the output, which is executed by DO.

(1). Suppose SE SEGen SE Enc SE Dec= (. , . , .) is a secure encryption scheme. KeyGen executes
sk SEGen
1

1= . ()l . sk
1

 is as the first part of SK and sk
1

 is used to encrypt all the outsourced
MDD before outsourcing.

(2). KeyGen randomly chooses sd sd sd
k1 2

, , ,¼ as the seeds for the k hash functions in BF. These
seeds sk sd sd sd

k2 1 2
= …(, , ,) is as the second part of SK . Note that, each hash function h

i

takes a value and a seed sd
i
 (i kÎ [,]1) as the inputs and outputs a hash value. Without the seeds

sk sd sd sd
k2 1 2

= …(, , ,) , h
i
 cannot output the correct hash value. Hence, this type of hash

functions in BF can ensure the security of RT . This type of hash functions in BF can also ensure
the security of the search tokens.

(3). KeyGen outputs SK sk sk= (,)
1 2

.

MBR encoding algorithm MBREncoding MBR C
MBR

()® : It takes an MBR MBR as the
input and generates the encoded from of MBR (denoted by C

MBR
) as the output, which is recalled

by IndexGen (see the following paragraphs).
For illustration purposes, we suppose MBR a b a b a b

d d
= × ×…×[,] [,] [,]

1 1 2 2
, where [,]a b

i i
 is the

range on the i -th dimension, d is the dimensionality, a
i
 and b

i
 are the minimum value and maximum

value of [,]a b
i i

.

(1). MBREncoding creates two bit arrays A
ai

 and A
bi

, where each bit in A
ai

 and A
bi

 is initialized
to 0 (i dÎ [,]1).

(2). MBREncoding encodes a
i
 to its binary string form, denoted by c

ai
, and encodes b

i
 to its

binary string form, denoted by c
bi

. The length of a
i
 and b

i
 is set to l . The high positions of c

ai

or c
bi

 should be padded with 0s if the length of c
ai

 or c
bi

 is less than l .

(3). For the security concern, MBREncoding randomizes the binary string forms of c
ai

 and c
bi

.

Namely, MBREncoding pads a l -length random binary string r
ai

 after c
ai

, i.e., c r
a ai i
|| . By

International Journal of Web Services Research
Volume 21 • Issue 1

6

executing the same processes, MBREncoding also pads another l -length random binary string
r
bi

 after c
bi

, i.e., c r
b bi i
|| . As r

ai
 and r

bi
 are both l -length random binary strings, and a b

i i
< ,

the value of c r
a ai i
|| is smaller than the value of c r

b bi i
|| .

(4). For data comparison purposes, MBREncoding calculates S
c rai ai
||

1 , which is the 1E form of

c r
a ai i
|| , and then uses h h h

k1 2
, , ,¼ and sk sd sd sd

k2 1 2
= …(, , ,) to process each element in

S
c rai ai
||

1 . I n p a r t i c u l a r , MBREncoding c a l c u l a t e s a s e t o f h a s h v a l u e s

V h s sd h s sd h s sd s S
a k k c ri ai ai

= … ∈{ (,), (,), , (,) | }
||1 1 2 2

1 , and then sets the bit at the v (v V
ai

Î)

position of A
ai

 to 1. By executing the similar processes, MBREncoding calculates S
c rbi bi
||
0 ,

which is the 0E form of c r
b bi i
|| . Then, MBREncoding calculates a set of hash values

V h s sd h s sd h s sd s S
b k k c ri bi bi

= … ∈{ (,), (,), , (,) | }
||1 1 2 2
0 , and finally sets the bit at the v (v V

bi
Î)

position of A
bi

 to 1.
(5) . MBREncoding c a l c u l a t e s t h e e n c o d e d f o r m o f MBR , a n d o u t p u t s
C A A i d
MBR a bi i
= < > ∈{ , | [,]}1 .

Example 1. As shown in Figure 2, first, MBREncoding extracts the boundary information of
the MBR in the planar coordinate system, which is R a b a b= ×[,] [,]

1 1 2 2
. Second, MBREncoding

calculates the binary strings of a
1
, a

2
, b

1
 and b

2
 respectively, chooses four random binary strings,

and pads these binary strings after a
1
, a

2
, b

1
 and b

2
 respectively. Then, MBREncoding calculates

the 1E form for the minimum value a
1
 and a

2
, and calculates the 0E form for the maximum value

b
1

 and b
2
. Next, MBREncoding processes the 0E and 1E by using BF. Finally, MBREncoding

calculates the encoded form of R a b a b= ×[,] [,]
1 1 2 2

, which is C A A A A
R a b a b
= < > < >{ , , , }

1 1 2 2
.

Index construction algorithm IndexGen RT RT()® : It takes RT as the input and constructs
RT as the output, which is executed by DO.

First, IndexGen recalls MBREncoding to process all the MBRs of nodes in RT . Then,
IndexGen recalls SE Enc. to encrypt all the MDD in groups which are under the leaf nodes of T .

Figure 2. MBR Encoding

International Journal of Web Services Research
Volume 21 • Issue 1

7

Finally, IndexGen outputs RT . Hence, in RT , each node contains a processed MBR and each
leaf node points to a group of encrypted MDD which are covered by the MBR of the leaf node.

The following Example 2 shows the generation of a secure R-tree index (RT).
Example 2. As shown in Figure 3 (1), all the outsourced data are two-dimensional and distributed

in the planar coordinate system, which are represented by hollow circles. First, as shown in Fig. 3
(2), DO builds RT over these 2-dimensional data. In RT , each node contains an MBR. Each leaf
node points to a group of 2-dimensional data. Specifically, the node N

1
 contains the MBR R

1
, the

leaf node N
2

 contains the MBR R
2
 and points to a group of 2-dimensional data D

2
, and the leaf

node N
3

 contains the MBR R
3
 and points to a group of 2-dimensional data D

3
. Then, DO runs

IndexGen . IndexGen recalls MBREncoding to process the MBRs R
1

, R
2
 and R

3
, and recalls

SE Enc. to encrypt all the 2-dimensional data in D
2

 and D
3

 respectively. As shown in Fig. 3 (3),
the processed MBRs are denoted by R

1
* , R

2
* and R

3
* , the group of encrypted 2-dimensional data in

D
2

 is denoted by D
2
* , and the group of encrypted 2-dimensional data in D

3
 is denoted by D

3
* .

Finally, IndexGen outputs RT .
Search token generation algorithm TokenGen SK Q token

Q
(,)® : It takes the secret key SK

and a queried range Q as the inputs and generates the search token token
Q

 of Q as the output,
which is executed by DU. Then, DU sends token

Q
 to the cloud.

For illustration purposes, we suppose Q p q p q p q
d d

= × ×…×[,] [,] [,]
1 1 2 2

, where d is the
dimensionality, [,]p q

i i
 is the range on the i -th dimension, d is the dimensionality and i dÎ [,]1 .

TokenGen encodes the minimum value p
i
 to its binary string form c

pi
, and then pads a l -length

random binary string r
pi

 after c
pi

. Specifically, TokenGen converts p
i
 to c r

p pi i
|| . By using the

same method, TokenGen converts the maximum value q
i
 to c r

q qi i
|| , where c

qi
 is the binary string

form of q
i
 and r

qi
 is a l -length random binary string. As r

pi
 and r

qi
 are both l -length random

binary strings, and p q
i i
< , the value of c r

p pi i
|| is smaller than the value of c r

q qi i
|| . Next, TokenGen

calculates the 01E forms of c r
p pi i
|| , denoted by S

c rpi pi
||

0 and S
c rpi pi
||

1 respectively. By using the hash

Figure 3. Secure R-Tree Index Construction

International Journal of Web Services Research
Volume 21 • Issue 1

8

functions h h h
k1 2

, , ,¼ in BF and the second part secret key sk sd sd sd
k2 1 2

= …(, , ,) , TokenGen
c a l c u l a t e s token h s sd h s sd h s sd s S i

p k k c rpi pi

0
1 1 2 2

0= < … > ∈ ∈{ (,), (,), , (,) | ,
||

[[,]}1 d a n d

token h s sd h s sd h s sd s S i
p k k c rpi pi

1
1 1 2 2

1= < … > ∈ ∈{ (,), (,), , (,) | ,
||

[[,]}1 d . By using the same method,

TokenGen calculates token h s sd h s sd h s sd s S i
q k k c rqi qi

0
1 1 2 2

0= < … > ∈ ∈{ (,), (,), , (,) | ,
||

[[,]}1 d and

token h s sd h s sd h s sd s S i
q k k c rqi qi

1
1 1 2 2

1= < … > ∈ ∈{ (,), (,), , (,) | ,
||

[[,]}1 d . Finally, TokenGen outputs

token token token token token
Q p p q q
=< >0 1 0 1, , , as the search token token

Q
 of the queried range Q .

Range search algorithm RangeSearch token IRT(,) *® : It takes a search token token and
RT as the inputs and obtain the search results I * as the output, which is executed by the cloud
server. Then, the cloud server sends I * to DU as response.

First, we introduce how to judge whether a queried range Q intersects with an MBR MBR .
Then, we introduce how to perform range search over RT .

For illustration purposes, we suppose Q p q p q p q
d d

= × ×…×[,] [,] [,]
1 1 2 2

 is a queried range and

MBR a b a b a b
d d

= × ×…×[,] [,] [,]
1 1 2 2

 is an MBR in RT , where [,]p q
i i

 and [,]a b
i i

 are the ranges
on the i -th dimension respectively, d is the dimensionality, and i dÎ [,]1 . To support range search
by using RT , RangeSearch should judge whether Q MBR∩ ≠ ∅ . Specifically, if ∃ ∈i d[,]1 that
q a
i i
< or b p

i i
< , there is [,] [,]p q a b

i i i i
∩ = ∅ , i.e., there is MBR Q∩ = ∅ . On the contrary, there

is Q MBR∩ ≠ ∅ . As 01E is adopted, if ∃ ∈i d[,]1 that S S
q ai i

0 1∩ ≠ ∅ or S S
b pi i

0 1∩ ≠ ∅ , there is

q a
i i
< or b p

i i
< , i.e., there is MBR Q∩ = ∅ . On the contrary, there is Q MBR∩ ≠ ∅ .

Additionally, RangeSearch also judges a special intersection, i.e., MBR QÍ . Specifically, if
∀ ∈i d[,]1 that p a

i i
< and b q

i i
< , there is [,] [,]a b p q

i i i i
⊆ ≠ ∅ , i.e., there is MBR QÍ . On the

contrary, there is MBR Q/⊂ . As 01E is adopted, if ∀ ∈i d[,]1 that S S
p ai i

0 1< and S S
b qi i

0 1< , there

is p a
i i
< and b q

i i
< , i.e., there is MBR QÍ . On the contrary there is MBR Q/⊂ .

As shown in Figure 4, the queried range is Q p q p q= ×[,] [,]
1 1 2 2

 and the MBR is R a b a b= ×[,] [,]
1 1 2 2

.
When R is at the position 1, as q a

1 1
< (according to 01E, q a

1 1
< indicates S S

c r c rq q a a1 1 1 1

0 1
|| ||
∩ ≠ ∅),

there is [,] [,]p q a b
1 1 1 1
∩ = ∅ , i.e., Q R∩ = ∅ . Thus, if S S

c r c rq q a a1 1 1 1

0 1
|| ||
∩ ≠ ∅ , there is Q R∩ = ∅ .

Similarly, when R is at the position 2, position 3 and position 4, as b p
1 1
< (i.e., [,] [,]p q a b

1 1 1 1
∩ = ∅

and S S
c r c rp p b b1 1 1 1

1 0
|| ||
∩ ≠ ∅), b p

2 2
< (i.e., [,] [,]p q a b

2 2 2 2
∩ = ∅ and S S

c r c rp p b b2 2 2 2

1 0
|| ||
∩ ≠ ∅) and q a

2 2
<

(i.e., [,] [,]p q a b
2 2 2 2

∩ = ∅ and S S
c r c rq q a a2 2 2 2

0 1
|| ||
∩ ≠ ∅), there is . Except for the above four situations,

there is Q R∩ ≠ ∅ . Additionally, there is a special intersection between Q and R , i.e., R QÍ .
When R is at the position 5, there is R QÍ because p a

1 1
< , b q

1 1
< , p a

2 2
< and b q

2 2
< (according

to 01E, these four inequalities indicate that S S
c r c rp p a a1 1 1 1

0 1
|| ||
∩ ≠ ∅ , S S

c r c rq q b b1 1 1 1

1 0
|| ||
∩ ≠ ∅ ,

S S
c r c rp p a a2 2 2 2

0 1
|| ||
∩ ≠ ∅ and S S

c r c rq q b b2 2 2 2

1 0
|| ||
∩ ≠ ∅). Thus, if S S

c r c rp p a a1 1 1 1

0 1
|| ||
∩ ≠ ∅ , S S

c r c rq q b b1 1 1 1

1 0
|| ||
∩ ≠ ∅ ,

S S
c r c rp p a a2 2 2 2

0 1
|| ||
∩ ≠ ∅ and S S

c r c rq q b b2 2 2 2

1 0
|| ||
∩ ≠ ∅ , there is R QÍ . Thus, by using the above method,

RangeSearch can judge whether Q R∩ ≠ ∅ and R QÍ .
Note that, to ensure the security of 01E, BF with special hash functions is adopted. As all the

MBRs in RT and the queried range Q have been processed by 01E, and then processed by BF,

International Journal of Web Services Research
Volume 21 • Issue 1

9

RangeSearch can determine whether an MBR intersects with or covered by a queried range by
using the corresponding binary arrays and hash values. The details are as follows.

F o r t h e q u e r i e d r a n g e Q p q p q p q
d d

= × ×…×[,] [,] [,]
1 1 2 2

 a n d t h e M B R
MBR a b a b a b

d d
= × ×…×[,] [,] [,]

1 1 2 2
, i f ∃ ∈i d[,]1 , t h e r e e x i s t s a t u p l e i n

token h s sd h s sd h s sd s S
q k k c rqi qi

0
1 1 2 2

0= < … > ∈{ (,), (,), , (,) | }
||

, such that all the bits at h s sd
1 1
(,) ,

h s sd
2 2
(,) , …, h s sd

k k
(,) positions of the binary array A

ai
 are 1, it means that q a

i i
< . If ∃ ∈i d[,]1 ,

there exists a tuple in token h s sd h s sd h s sd s S
p k k c rpi pi

1
1 1 2 2

1= < … > ∈{ (,), (,), , (,) | }
||

, such that all the

bits at h s sd
1 1
(,) , h s sd

2 2
(,) , …, h s sd

k k
(,) positions of the binary array A

bi
 are 1, it means that

p b
i i
> . If RangeSearch determines q a

i i
< or p b

i i
> , there is [,] [,]p q a b

i i i i
∩ = ∅ , i.e.,

MBR Q∩ = ∅ . On the contrary, there is MBR Q∩ ≠ ∅ . If ∀ ∈i d[,]1 , there exists a tuple in
token h s sd h s sd h s sd s S

p k k c rpi pi

0
1 1 2 2

0= < … > ∈{ (,), (,), , (,) | }
||

, such that all the bits at h s sd
1 1
(,) ,

h s sd
2 2
(,) , …, h s sd

k k
(,) positions of the binary array A

ai
 are 1, it means that p a

i i
< . If ∀ ∈i d[,]1 ,

there exists a tuple in token h s sd h s sd h s sd s S
q k k c rqi qi

1
1 1 2 2

1= < … > ∈{ (,), (,), , (,) | }
||

, such that all the

bits at h s sd
1 1
(,) , h s sd

2 2
(,) , …, h s sd

k k
(,) positions of the binary array A

bi
 are 1, it means that

q b
i i
> . If RangeSearch determines p a

i i
< and q b

i i
> , there is [,] [,]a b p q

i i i i
Í , i.e., MBR QÍ .

On the contrary, there is MBR Q/⊂ .
According to the above method, by determining whether all the bits at the hash value positions

in the corresponding BF array are 1, RangeSearch can determine whether MBR Q∩ ≠ ∅ and
MBR QÍ .

Figure 4. The Judgment of Queried Range and MBR

International Journal of Web Services Research
Volume 21 • Issue 1

10

For ease of explanation, we suppose N is a node in RT and N is associated with the MBR
MBR . If RangeSearch determines MBR QÍ , all the encrypted MDD in MBR is added to
the result set. If RangeSearch determines MBR Q/⊂ and Q MBR∩ ≠ ∅ , the MBRs of
descendant nodes of N are iteratively judged. When Q intersects with or covers the MBR of
a leaf node, all the encrypted MDD in MBR of the leaf node is added to the result set. By using
the search token token token token token token

Q p p q q
=< >0 1 0 1, , , , RangeSearch performs range

search in RT in a top-down manner. Finally, RangeSearch returns the search results I * (i.e.,
result set) to DU as response.

Decryption algorithm Dec SK I I(,)* ® : It takes the search results I * as the inputs and outputs
the plaintext I through decrypting the ciphertexts with the first part secret key sk

1
, i.e.

I SE Dec I sk= . (,)*
1

, which is executed by DU.

EXPERIMENTS

In the experiments, we compare the R̂ -tree scheme (Wang et al., 2013), the MDOPE scheme (Zhan
et al., 2022) and our SFRQ scheme. These implementations were carried out on a personal computer
equipped with an AMD Ryzen 5 2500U CPU and 8GB RAM, utilizing the Java programming language.
For the -tree scheme, we adopt the asymmetric scalar-product preserving encryption (ASPE) of Wong
et al. (2009), which is implemented using the Jama Library version 1.0.3 (Hicklin et al., 2022). In
our experiments, we choose some uniformly random two-dimensional data to test the efficiency of
the above schemes. In the R̂ -tree scheme and the SFRQ scheme, the fan-out of the indexes is set to
six. It means that each two-dimensional range is divided into at most six smaller two-dimensional
ranges. In order to achieve fairness in experimental comparisons, in the MDOPE scheme, each node
on the first dimension contains only one split data, and each node on the second dimension contains
two split data. This is because the range on the first dimension is divided into two smaller ranges by
using one split data, and the range on the second dimension is divided into three smaller ranges by
using two split data. According to the Cartesian product, in the MDOPE scheme, a two-dimensional
range is divided into six smaller two-dimensional ranges. Additionally, MDOPE supports accurate
range search. In order to compare the MDOPE scheme, the R̂ -tree scheme and the SFRQ scheme
fairly, we set the MBR of each leaf node in the R̂ -tree scheme and the SFRQ scheme only contains
one datum.

Index Construction
As shown on the left side of Figure 5, when the height of index increases, the times of index
construction in the R̂ -tree scheme, the MDOPE scheme and the SFRQ scheme increase exponentially.
As shown on the right side of Figure 5, when the number of data increases, the times of index
construction in the R̂ -tree scheme, the MDOPE scheme and the SFRQ scheme increase linearly.
Compared with the R̂ -tree scheme and the MDOPE scheme, the index construction in the SFRQ
scheme is more efficient.

The indexes in the R̂ -tree scheme, the MDOPE scheme, and the SFRQ scheme are tree structure.
As the number of index nodes exponentially increases with the growth of index height, the construction
time of the index also increases exponentially. When the number of data increases, it needs more
index nodes to index these data. In the MDOPE scheme, the index should handle each datum.
According to our experimental setting, in the R̂ -tree scheme and the SFRQ scheme, the index should
handle each MBR that only contains a datum. Thus, the time of index construction in the R̂ -tree
scheme, the MDOPE scheme, and the SFRQ scheme increases linearly. Additionally, the index

International Journal of Web Services Research
Volume 21 • Issue 1

11

construction in the SFRQ scheme is the most efficient because the calculation of 01E in the SFRQ
scheme is more efficient than that of ASPE in the R̂ -tree scheme. Although prefix encoding in
MDOPE is also very efficient, there are many additional split data that should be handled. Thus, the
SFRQ scheme is more efficient than the MDOPE scheme.

Search Token Generation
As shown in Figure 6, when the length of bit string increases, the time of search token generation in the
MDOPE scheme increases exponentially, but the time of search token generation in the R̂ -tree scheme
and the SFRQ scheme is very slowly. The search token generation in the SFRQ scheme is the most efficient.

Figure 5. Index Construction

Figure 6. Search Token Generation

International Journal of Web Services Research
Volume 21 • Issue 1

12

In the MDOPE scheme, a queried range is first transformed into a bit string. We suppose the
length of the bit string is l . The MDOPE scheme then pads additional bit string after the original bit
string. The length of the new bit string is 2 2l + . Next, the MDOPE scheme calculates the prefix
encoding of the new bit string. Finally, the MDOPE scheme obtains the search token of the queried
range by using BF to handle the prefix encoding of the new bit string. In the above procedure, the
slowest step is that the MDOPE scheme calculates the prefix encoding of the new bit string whose
length is 2 2l + . In this step, one should compare each different bit string and merge all the 22 2l+
different bit strings to several bit strings. Thus, the time of search token generation in the MDOPE
scheme increases exponentially with the length of bit string. In the R̂ -tree scheme, a queried range
is encrypted by using ASPE. The encrypted form of the queried range is as its search token. As the
efficiency of ASPE is not related with the length of bit string, the time of search token generation is
a constant. In the SFRQ scheme, a queried range is first transformed into a bit string. Then, the SFRQ
scheme pads additional bit string after the original bit string. The length of the new bit string is 2l .
Next, the SFRQ scheme calculates 01E of the new bit string. The total number of 01E does not exceed
2l . As the total number of bit strings is very few, the efficiency of generating the search token is
remarkably high in the SFRQ scheme.

Range Search
As shown on the left side of Figure 7, when the number of data is fixed at 10000 and the length of
bit string increases, the search time remains almost unchanged. As shown on the right side of Figure
7, when the number of data increases, the search times of the SFRQ scheme, the R̂ -tree scheme, and
the MDOPE scheme increase. Compared with the R̂ -tree scheme and the MDOPE scheme, the SFRQ
scheme is the most efficient.

As shown on the left side of Figure 7, the search time of the R̂ -tree scheme is almost unchanged
because the length of bit string does not relate to the underlying encryption method ASPE. In the
SFRQ scheme and the MDOPE scheme, when the length of bit string increases, the additional
calculation overhead is very low, with the result that the search times almost do not increase. As
shown on the right side of Figure 7, when the number of data increases, the heights of the indexes
increase, with the result that the R̂ -tree scheme, the MDOPE scheme, and the SFRQ scheme
should do more range search works over these indexes. Thus, the search times of these schemes
increase with the volume of data. In the MDOPE scheme, many split data are inserted into the
internal nodes of the index to support range search. Many comparisons work over split data result

Figure 7. Range Search

International Journal of Web Services Research
Volume 21 • Issue 1

13

in low efficiency of range search. Additionally, the range search should be performed alone for
each dimension, respectively. Thus, the range search in the MDOPE scheme is not very efficient.
As the underling hash value comparison in the SFRQ scheme demonstrates superior efficiency
compared to the ASPE in the R̂ -tree scheme, the SFRQ scheme demonstrates superior efficiency
compared to the R̂ -tree scheme.

Analysis of Correctness and Security
Theorem 1
The SFRQ scheme complies with the correctness of Definition 1.

P r o o f . S u p p o s e t h a t MBR a b a b a b
d d

= × ×…×[,] [,] [,]
1 1 2 2

 i s a M D R a n d
Q p q p q p q

d d
= × ×…×[,] [,] [,]

1 1 2 2
 is a queried range. If [,] [,]a b p q

1 1 1 1
∩ ≠ ∅ , [,] [,]a b p q

2 2 2 2
∩ ≠ ∅ ,

…, [,] [,]a b p q
d d d d

∩ ≠ ∅ hold, we have ¬ > ∨ < =()a q b p true
1 1 1 1

, ¬ > ∨ < =()a q b p true
2 2 2 2

,
… , ¬ > ∨ < =()a q b p true

d d d d
. F u r t h e r m o r e , t h e fo l l ow i n g e q u a t i o n h o l d s .

¬ ∩ ≠ ∅∨ ∩ ≠ ∅ =()
|| || || ||

S S S S true
c r c r c r c ra a q q b b p p1 1 1 1 1 1 1 1

1 0 0 1 , ¬ ∩ ≠ ∅∨ ∩ ≠ ∅ =()
|| || || ||

S S S S true
c r c r c r c ra a q q b b p p2 2 2 2 2 2 2 2

1 0 0 1 ,

…, ¬ ∩ ≠ ∅∨ ∩ ≠ ∅ =()
|| || || ||

S S S S true
c r c r c r c rad ad qd qd bd bd pd pd

1 0 0 1 . Therefore, if the queried range Q intersects

with the MBR MBR , there exists ciphertexts in MBR that satisfies Q . By using the algorithm
RangeSearch in SFRQ, all the ciphertexts in the MBRs of the leaf nodes in the secure index will be
retrieved. Thus, the SFRQ scheme complies with the correctness defined in Definition 1.

Theorem 2
The SFRQ scheme adheres to the security in Definition 2.

Proof. Since the data are encrypted using a secure encryption method, the security of the data
can be ensured by the encryption method. In the SFRQ scheme, the data are encrypted by using a
secure encryption scheme SE . The security of the data can be guaranteed by the security of the
secure encryption scheme SE . Suppose that (i) x x x x

n
= …

1 2
 represents the boundary information

of an MBR after being padded with a random value (as described in Section 5), and (ii) y y y y
n

= …
1 2

represents the boundary information of a queried range after being padded with a random value (as
described in Section 5). If the member in the intersection of S

c rx x||
0 and S

c ry y||
1 is t , where the length

of t is m , it can deduce that x y
1 1
= , x y

2 2
= , …, x y

m m− −=
1 1

, x y
m m
¹ . Consequently, the cloud

server possesses knowledge solely of the leakage function F x y position x y
diff

(,) (,)= . Hence, the
SFRQ scheme adheres to the security in Definition 2.

CoNCLUSIoN

In this paper, we propose a range search scheme, SFRQ. In the SFRQ scheme, we build a secure
index RT over encrypted MDD by using a normal R-tree index RT , BF, and 01E technologies.
Each node of the secure index is associated with an MBR. The boundary information of MBRs is
processed by 01E. By utilizing the property of 01E, one can determine whether a queried range
intersects with the MBR of a node in RT . The hash functions in BF are used to ensure the security
of the queried range and the MBRs of the nodes in RT . Thus, the proposed SFRQ scheme can
support efficient range search over ciphertexts.

International Journal of Web Services Research
Volume 21 • Issue 1

14

ACKNoWLEDGMENT

This research was supported by the National Natural Science Foundation of China (No.
61962029, 62062045, 62262033), the Jiangxi Provincial Natural Science Foundation of China
(No.20202BAB212006), the project of Zhejiang Institute of Mechanical and Electrical Engineering
(No. A-0271-22-201), the Hubei Natural Science Foundation Innovation and Development Joint Fund
Project (No. 2022CFD101, 2022CFD103), the Xiangyang High-tech Key Science and Technology
Plan Project (No. 2022ABH006848), and the Hubei Superior and Distinctive Discipline Group of
“New Energy Vehicle and Smart Transportation”.

International Journal of Web Services Research
Volume 21 • Issue 1

15

REFERENCES

Agrawal, R., Kiernan, J., Srikant, R., & Xu, Y. (2004, June). Order preserving encryption for numeric data.
In Proceedings of the 2004 ACM SIGMOD international conference on management of data (pp. 563-574).
doi:10.1145/1007568.1007632

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin,
A., Stoica, I., & Zaharia, M. (2010). A view of cloud computing. Communications of the ACM, 53(4), 50–58.
doi:10.1145/1721654.1721672

Bloom, B. H. (1970). Space/time trade-offs in hash coding with allowable errors. Communications of the ACM,
13(7), 422–426. doi:10.1145/362686.362692

Boldyreva, A., Chenette, N., Lee, Y., & O’Neill, A. (2009). Order-preserving symmetric encryption. Advances in
cryptology-Eurocrypt 2009: 28th annual international conference on the theory and applications of cryptographic
techniques, Cologne, Germany, April 26-30, 2009. Proceedings, 28, 224–241. doi:10.1007/978-3-642-01001-9_35

Boldyreva, A., Chenette, N., & O’Neill, A. (2011). Order-preserving encryption revisited: Improved security
analysis and alternative solutions. Advances in cryptology–CRYPTO 2011: 31st annual cryptology conference,
Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, 31, 578–595. doi:10.1007/978-3-642-22792-9_33

Boneh, D., & Waters, B. (2007). Conjunctive, subset, and range queries on encrypted data. Theory of cryptography:
4th theory of cryptography conference, TCC 2007, Amsterdam, The Netherlands, February 21-24, 2007.
Proceedings, 4, 535–554. doi:10.1007/978-3-540-70936-7_29

Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M. C., & Steiner, M. (2013). Highly-scalable searchable
symmetric encryption with support for boolean queries. In Advances in cryptology–crypto 2013: 33rd annual
cryptology conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I (pp. 353-373).
doi:10.1007/978-3-642-40041-4_20

David, H. A., & Nagaraja, H. N. (2004). Order statistics. John Wiley & Sons. doi:10.1002/0471722162

Demertzis, I., Papadopoulos, S., Papapetrou, O., Deligiannakis, A., & Garofalakis, M. (2016, June). Practical
private range search revisited. In Proceedings of the 2016 international conference on management of data (pp.
185-198). doi:10.1145/2882903.2882911

Dyer, J., Dyer, M., & Xu, J. (2017). Order-preserving encryption using approximate integer common divisors.
In Data privacy management, cryptocurrencies and blockchain technology: ESORICS 2017 international
workshops, DPM 2017 and CBT 2017, Oslo, Norway, September 14-15, 2017, Proceedings (pp. 257-274).
doi:10.1007/978-3-319-67816-0_15

Graf, T. M., & Lemire, D. (2020). Xor filters: Faster and smaller than bloom and cuckoo filters. ACM Journal
of Experimental Algorithmics, 25, 1–16. doi:10.1145/3376122

Guo, J., Wang, J., Zhang, Z., & Chen, X. (2018, September). An almost non-interactive order preserving
encryption scheme. In International conference on information security practice and experience (pp. 87-100).
doi:10.1007/978-3-319-99807-7_6

Gupta, P., & McKeown, N. (2001). Algorithms for packet classification. IEEE Network, 15(2), 24–32.
doi:10.1109/65.912717

Guttman, A. (1984, June). R-trees: A dynamic index structure for spatial searching. In Proceedings of the 1984
ACM SIGMOD international conference on management of data (pp. 47-57). doi:10.1145/602259.602266

Hacigümüş, H., Iyer, B., Li, C., & Mehrotra, S. (2002, June). Executing SQL over encrypted data in the database-
service-provider model. In Proceedings of the 2002 ACM SIGMOD international conference on management
of data (pp. 216-227). doi:10.1145/564691.564717

Hicklin, J., Moler, C., Webb, P., Boisvert, R. F., Miller, B., Pozo, R., & Remington, K. (2000). Jama: A Java
matrix package. http://math. nist. gov/javanumerics/jama

Hore, B., Mehrotra, S., Canim, M., & Kantarcioglu, M. (2012). Secure multidimensional range queries over
outsourced data. The VLDB Journal, 21(3), 333–358. doi:10.1007/s00778-011-0245-7

http://dx.doi.org/10.1145/1007568.1007632
http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.1145/362686.362692
http://dx.doi.org/10.1007/978-3-642-01001-9_35
http://dx.doi.org/10.1007/978-3-642-22792-9_33
http://dx.doi.org/10.1007/978-3-540-70936-7_29
http://dx.doi.org/10.1007/978-3-642-40041-4_20
http://dx.doi.org/10.1002/0471722162
http://dx.doi.org/10.1145/2882903.2882911
http://dx.doi.org/10.1007/978-3-319-67816-0_15
http://dx.doi.org/10.1145/3376122
http://dx.doi.org/10.1007/978-3-319-99807-7_6
http://dx.doi.org/10.1109/65.912717
http://dx.doi.org/10.1145/602259.602266
http://dx.doi.org/10.1145/564691.564717
http://math.nist.gov/javanumerics/jama
http://dx.doi.org/10.1007/s00778-011-0245-7

International Journal of Web Services Research
Volume 21 • Issue 1

16

Hore, B., Mehrotra, S., & Tsudik, G. (2004, August). A privacy-preserving index for range queries. In Proceedings
of the thirtieth international conference on very large data bases. (Vol. 30, pp. 720-731). Academic Press.

Joan, D., & Vincent, R. (2002). The design of Rijndael: AES-the advanced encryption standard. Information
Security and Cryptography. doi:10.1007/978-3-662-04722-4

Karras, P., Nikitin, A., Saad, M., Bhatt, R., Antyukhov, D., & Idreos, S. (2016, June). Adaptive indexing over
encrypted numeric data. In Proceedings of the 2016 international conference on management of data (pp. 171-
183). doi:10.1145/2882903.2882932

Katz, J., & Lindell, Y. (2020). Introduction to modern cryptography. CRC Press. https://dl.acm.org/
doi/10.5555/2700550

Krendelev, S. F., Yakovlev, M., & Usoltseva, M. (2014, September). Order-preserving encryption schemes
based on arithmetic coding and matrices. In 2014 federated conference on computer science and information
systems. IEEE. doi:10.15439/2014F186

Lee, Y. (2014). Secure ordered bucketization. IEEE Transactions on Dependable and Secure Computing, 11(3),
292–303. doi:10.1109/TDSC.2014.2313863

Li, R., Liu, A. X., Wang, A. L., & Bruhadeshwar, B. (2015). Fast and scalable range query processing with
strong privacy protection for cloud computing. IEEE/ACM Transactions on Networking, 24(4), 2305–2318.
doi:10.1109/TNET.2015.2457493

Lin, H. Y., & Tzeng, W. G. (2005). An efficient solution to the millionaires’ problem based on homomorphic
encryption. Applied cryptography and network security: Third international conference, ACNS 2005, New York,
NY, USA, June 7-10, 2005. Proceedings, 3, 456–466. doi:10.1007/11496137_31

Mei, Z., Wu, B., Tian, S., Ruan, Y., & Cui, Z. (2017). Fuzzy keyword search method over ciphertexts supporting
access control. KSII Transactions on Internet and Information Systems, 11(11), 5671–5693. doi:10.3837/
tiis.2017.11.027

Mei, Z., Yu, J., Huang, J., Wu, B., Zhao, Z., Zhang, C., & Wu, Z. (2024). Secure multi-dimensional data retrieval
with access control and range query in the cloud. Information Systems, 102343, 102343. Advance online
publication. doi:10.1016/j.is.2024.102343

Mei, Z., Zhu, H., Cui, Z., Wu, Z., Peng, G., Wu, B., & Zhang, C. (2018). Executing multi-dimensional range
query efficiently and flexibly over outsourced ciphertexts in the cloud. Information Sciences, 432, 79–96.
doi:10.1016/j.ins.2017.11.065

Peng, Y., Li, H., Cui, J., Zhang, J., Ma, J., & Peng, C. (2017). hOPE: Improved order preserving encryption
with the power to homomorphic operations of ciphertexts. Science China. Information Sciences, 60(6), 1–17.
doi:10.1007/s11432-016-0242-7

Popa, R. A., Redfield, C. M., Zeldovich, N., & Balakrishnan, H. (2011, October). CryptDB: Protecting
confidentiality with encrypted query processing. In Proceedings of the twenty-third ACM symposium on operating
systems principles (pp. 85-100). doi:10.1145/2043556.2043566

Quan, H., Wang, B., Zhang, Y., & Wu, G. (2018). Efficient and secure top-k queries with top order-
preserving encryption. IEEE Access : Practical Innovations, Open Solutions, 6, 31525–31540. doi:10.1109/
ACCESS.2018.2847307

Reviriego, P., Sánchez-Macian, A., Walzer, S., Merino-Gómez, E., Liu, S., & Lombardi, F. (2022). On the
privacy of counting Bloom filters. IEEE Transactions on Dependable and Secure Computing, 20(2), 1488–1499.
doi:10.1109/TDSC.2022.3158469

Shi, E., Bethencourt, J., Chan, T. H., Song, D., & Perrig, A. (2007, May). Multi-dimensional range query over
encrypted data. In 2007 IEEE symposium on security and privacy. IEEE. doi:10.1109/SP.2007.29

Teranishi, I., Yung, M., & Malkin, T. (2014). Order-preserving encryption secure beyond one-wayness. In
in cryptology–ASIACRYPT 2014: 20th international conference on the theory and application of cryptology
and information security, Kaoshiung, Taiwan, ROC, December 7-11, 2014. Proceedings, 20(Part II), 42–61.
doi:10.1007/978-3-662-45608-8_3

http://dx.doi.org/10.1007/978-3-662-04722-4
http://dx.doi.org/10.1145/2882903.2882932
https://dl.acm.org/doi/10.5555/2700550
https://dl.acm.org/doi/10.5555/2700550
http://dx.doi.org/10.15439/2014F186
http://dx.doi.org/10.1109/TDSC.2014.2313863
http://dx.doi.org/10.1109/TNET.2015.2457493
http://dx.doi.org/10.1007/11496137_31
http://dx.doi.org/10.3837/tiis.2017.11.027
http://dx.doi.org/10.3837/tiis.2017.11.027
http://dx.doi.org/10.1016/j.is.2024.102343
http://dx.doi.org/10.1016/j.ins.2017.11.065
http://dx.doi.org/10.1007/s11432-016-0242-7
http://dx.doi.org/10.1145/2043556.2043566
http://dx.doi.org/10.1109/ACCESS.2018.2847307
http://dx.doi.org/10.1109/ACCESS.2018.2847307
http://dx.doi.org/10.1109/TDSC.2022.3158469
http://dx.doi.org/10.1109/SP.2007.29
http://dx.doi.org/10.1007/978-3-662-45608-8_3

International Journal of Web Services Research
Volume 21 • Issue 1

17

Wang, P., & Ravishankar, C. V. (2013, April). Secure and efficient range queries on outsourced databases using
Rp-trees. In 2013 IEEE 29th international conference on data engineering (pp. 314-325). IEEE. doi:10.1109/
ICDE.2013.6544835

Wang, X., Hong, H., Zeng, J., Sun, Y., & Liu, G. (2022, December). EIMDC: A new model for designing digital
twin applications. In International conference on internet of things (pp. 19-32). doi:10.1007/978-3-031-23582-5_2

Wong, W. K., Cheung, D. W. L., Kao, B., & Mamoulis, N. (2009, June). Secure kNN computation on encrypted
databases. In Proceedings of the 2009 ACM SIGMOD international conference on management of data (pp.
139-152). doi:10.1145/1559845.1559862

Wu, Z., Li, G., Shen, S., Lian, X., Chen, E., & Xu, G. (2021). Constructing dummy query sequences to protect
location privacy and query privacy in location-based services. World Wide Web (Bussum), 24(1), 25–49.
doi:10.1007/s11280-020-00830-x

Wu, Z., Li, R., Zhou, Z., Guo, J., Jiang, J., & Su, X. (2020). A user sensitive subject protection approach for
book search service. Journal of the Association for Information Science and Technology, 71(2), 183–195.
doi:10.1002/asi.24227

Xiao, L., & Yen, I. L. (2012, March). Security analysis for order preserving encryption schemes. In 2012 46th
annual conference on information sciences and systems (pp. 1-6). IEEE. doi:10.1109/CISS.2012.6310814

Zeng, J., Yang, L. T., Lin, M., Ning, H., & Ma, J. (2020). A survey: Cyber-physical-social systems and their
system-level design methodology. Future Generation Computer Systems, 105, 1028–1042. doi:10.1016/j.
future.2016.06.034

Zeng, J., Yang, L. T., Lin, M., Shao, Z., & Zhu, D. (2017). System-level design optimization for security-
critical cyber-physical-social systems. ACM Transactions on Embedded Computing Systems, 16(2), 1–21.
doi:10.1145/2925991

Zhan, Y., Shen, D., Duan, P., Zhang, B., Hong, Z., & Wang, B. (2022). MDOPE: Efficient multi-dimensional
data order preserving encryption scheme. Information Sciences, 595, 334–343. doi:10.1016/j.ins.2022.03.001

Jinzhou Huang received the PhD degree in computer system architecture from Huazhong University of Science
and Technology (HUST), in 2015. He is currently an associate professor in the School of Computer Engineering,
Hubei University of Arts and Science, China. His research interests include online social networking, intelligent
transportation, internet of things, computer networking and information security.

http://dx.doi.org/10.1109/ICDE.2013.6544835
http://dx.doi.org/10.1109/ICDE.2013.6544835
http://dx.doi.org/10.1007/978-3-031-23582-5_2
http://dx.doi.org/10.1145/1559845.1559862
http://dx.doi.org/10.1007/s11280-020-00830-x
http://dx.doi.org/10.1002/asi.24227
http://dx.doi.org/10.1109/CISS.2012.6310814
http://dx.doi.org/10.1016/j.future.2016.06.034
http://dx.doi.org/10.1016/j.future.2016.06.034
http://dx.doi.org/10.1145/2925991
http://dx.doi.org/10.1016/j.ins.2022.03.001

