
DOI: 10.4018/IJITSA.339003

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

BitTrace:
A Data-Driven Framework for Traceability of
Blockchain Forming in Bitcoin System
Jian Wu, Southwest University, China*

Jianhui Zhang, Southwest University, China

Li Pan, UCSI University, Malaysia

ABSTRACT

Bitcoin is a digital currency system built on the foundation of fairness. However, some malicious
miners, driven by their own interests, employ unfair tactics such as selfish mining to compete, which
disregard the legitimate miners’ investments in computational power and energy consumption. In
order to assess the efficiency of the Bitcoin system in real-time and promptly detect malicious miners
in the network, this paper proposes a data collection framework called BitTrace, which addresses the
issues of low efficiency, lack of timeliness, and data loss in traditional data collection frameworks.
BitTrace enables real-time collection and analysis of the blockchain formation process, storing it as
structured data. Furthermore, the paper discusses factors that influence the efficiency of data collection
and proposes a topological control scheme based on the DPC algorithm to enhance the integrity and
efficiency of data collection. Researchers can explore various research areas and applications, such
as selfish mining detection and legitimate mining strategy research.

Keywords
BitTrace, Blockchain Formation Process, DPC, Topological Control, Traceability

INTRODUCTION

Bitcoin, the first and most well-known application of blockchain, is a decentralized digital currency
that operates on a peer-to-peer network. The Bitcoin blockchain serves as a public ledger that records
all transactions of the cryptocurrency (Catalini & Gans, 2016).

Despite the tremendous success of Bitcoin as a digital currency, it has long been criticized for
issues such as performance and resource consumption (Chen et al., 2022). Reasonable competition
is unavoidable in the Bitcoin network. However, if a significant number of malicious miners emerge
and employ selfish mining tactics to gain higher profits (Yang et al., 2020; Wang et al., 2022), it
becomes unfair for legitimate miners. Legitimate miners invest substantial computational power
and energy into mining, yet they do not receive the deserved rewards (Franzoni et al., 2022). We
aim to address these concerns by obtaining real-time data from the Bitcoin network to evaluate its

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

2

efficiency. With this data, we can further analyze cheating behaviors within the network and make
reasonable adjustments to miners’ mining strategies to improve mining efficiency. We are committed
to developing a real-time assessment framework for the Bitcoin network, aiming to detect nodes
engaging in unfair mining practices and enhance the mining efficiency of legitimate miners within
the network. To achieve this goal, it is crucial to obtain relevant data regarding the formation process
of the blockchain in the Bitcoin network.

Traceability, known as the ability to trace the process of transactions, is the most noted
fundamental characteristic of blockchain technology. For example, a company can record
every step of the drug production process on the blockchain, allowing users to trace each
stage of drug creation (Martin et al., 2020; Xu et al., 2020). In reality, the formation process
of the blockchain in the Bitcoin network is transparent and non-traceable due to resource
and efficiency considerations. For users, it is not necessary to know the formation process of
the blockchain. But for researchers, inability or failure to trace the formation process of the
blockchain makes it difficult to address certain issues. For instance, miners cannot determine
if the received block is stale, and users cannot measure the performance of the Bitcoin system.
While some blockchain systems offer API interfaces (Harry et al., 2020) to assist researchers
in accessing data, these interfaces often fall short in efficiency, performance, and latency, and
thus are unable to meet the requirements for real-time analysis. Some existing work (Wang
et al., 2022; Zheng et al., 2022; Wong et al., 2019; Mohanta et al., 2020; Chen et al., 2020;
Grossman et al., 2017) has proposed methods and implementations to obtain more relevant data
in Bitcoin or other blockchain systems to address these issues. But these studies face various
challenges regarding data granularity, non-traceability of the blockchain formation process,
and the scalability of the framework. Currently, there is no data collection solution specifically
designed for the blockchain formation in Bitcoin system, which makes it challenging to conduct
research based on the real data from the Bitcoin network.

In this paper, we introduce BitTrace, a data collection framework for blockchain formation
in the Bitcoin network. BitTrace is designed using the principles of microservices and a layered
architecture. Each layer is responsible for specific functions, including monitoring, data collection,
sending, reception, parsing, and storage. Furthermore, each layer can be scaled according to
the data volume, ensuring optimal performance of the framework. The framework offers the
following advantages:

1. 	 Fine-grained: We have defined the states and events during the process of blockchain formation
and employed code instrumentation techniques to monitor the nodes, ensuring the capture of
all relevant data related to the formation of blockchain blocks. Fine-grained data guarantees the
accuracy of subsequent research results and enables the applicability of this data to a wider range
of studies.

2. 	 Real-time: Once a state transition or an event occurrence is triggered, the monitoring program
promptly processes the relevant data, which allows researchers to obtain real-time and authentic
data. Real-time data is crucial for security research, as security protocols can detect network
states and identify unauthorized miners in real time.

3. 	 Traceability and observability: The data collected by BitTrace is stored using standardized
data structures that can describe the process of blockchain formation. This facilitates researchers
to trace and observe the entire process.

4. 	 Scalability: BitTrace uses the principles of microservices and a layered architecture. It supports
scaling modules to efficiently handle more data and incorporating multiple plug-ins to perform
different tasks, providing strong scalability and extensibility.

This paper makes the following contributions:

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

3

1. 	 Introduction of BitTrace: The paper presents the design principles, system framework, and
design concepts for each module of BitTrace.

2. 	 Improved data collection efficiency and comprehensiveness: The paper discusses the factors
that enhance data collection efficiency and comprehensiveness. It proposes a Bitcoin node
topology control method based on the density peak clustering (DPC) algorithm, which effectively
improves the efficiency and comprehensiveness of data collection in BitTrace.

3. 	 Geolocation plug-in for identifying malicious miner nodes: The paper develops a plug-in
based on BitTrace to identify the geographical location of malicious miners.

The paper is organised as follows. In Section II, we introduce the related work and discuss their
advantages and disadvantages. Section III presents the fundamental concepts used in the article.
Section IV describes the implementation of BitTrace and topological control scheme based on the
DPC. The article is summarized in Section V, which also provides an outlook for future research.

RELATED WORK

Although the Bitcoin system has many advantages over traditional transaction systems, there are
still several problems (Guo & Yu, 2022; Mohanta et al., 2020). To address these problems, many
researchers have proposed solutions, such as the Bitcoin Lightning Payment Network (Sarode et
al., 2023), which can improve the overall transaction processing capacity, throughput, and smart
contracts that provide more efficient, secure, and reliable solutions for transactions and execution
in various fields by addressing issues such as trust, intermediaries, and security (Taherdoost,
2023). Many security problems, however, remain to be solved, such as performance monitoring
and malicious node detection. Research has shown that the mining strategy employed by miners
can affect their earnings (Wu et al., 2019; Liu et al., 2022). As the difficulty of independent mining
increases, more and more miners are changing their mining strategies, and some even resort to
dishonest mining strategies to gain more stable profits (Motlagh et al., 2021; Yang et al., 2020).
The reason for this is that most blockchain systems do not provide enough relevant data to solve
the problem in order to gain greater operational efficiency. Therefore, researchers need other data
collection methods to obtain operational data and performance metrics of blockchain systems to
address these problems.

To analyze the selfish mining behavior in the Bitcoin network, it is necessary to obtain data from
the formation process of the Bitcoin network (Wang et al., 2022). Some researchers, such as Harry et
al. (2020), have utilized the remote procedure call (RPC) interfaces of blockchain systems to retrieve
real data from the network and analyze transaction data in certain blockchain systems. However,
the method of collecting data using the RPC interface incurs high time costs and provides limited
information. Other researchers, like Zheng et al. (2022), acknowledged the limitations posed by RPC
interfaces and adopted a different approach by directly accessing the raw logs file of the blockchain
system. They used regular expressions to extract performance through data analysis. However, it is
worth noting that this method is not without its own limitations. Firstly, the volume of log data available
in blockchain systems is inherently limited, which can impact the comprehensiveness of the analysis.
Additionally, the data obtained through the application of regular expressions is context-specific and
may not fully represent general experimental data.

Some researchers have deployed probing programs within blockchain nodes to monitor the
operational data of nodes and the blockchain. Chen et al. (2020) proposed a method to collect and
analyze data related to transactions, smart contract creation and invocation, and node transaction logs
in Ethereum. By analyzing the data, they identified the presence of risks such as malicious accounts
and malicious contract invocations within the network. Grossman et al. (2017) obtained information on
internal transactions and storage operations in smart contracts by inserting code and analyzed related

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

4

security risks, such as DAO attacks. Their research focused more on Ethereum’s smart contracts.
To date, the research on code instrumentation in the Bitcoin system has remained relatively limited.

In summary, the aforementioned limitations in current research on data collection during the
formation process of the Bitcoin network make it difficult to monitor and trace the formation process
of the Bitcoin network in real time since they fail to meet the requirements for fine-grained and
comprehensive data collection. Data is crucial for experimental analysis, and obtaining real and
comprehensive data is the key to data collection. Security analysis of the Bitcoin network, such as
selfish mining, triangle attacks (Wang & Li, 2019), blockchain visualization (Tri et al., 2017), and
stale block generation, relies on data from the formation process of the Bitcoin network.

FUNDAMENTAL CONCEPTS

This section explains the blockchain in Bitcoin and the blockchain formation model of Bitcoin and
other related fundamental concepts.

Blockchain in Bitcoin
The blockchain is the key technology of the Bitcoin system (Yaga et al., 2018). Only one miner can
gain bookkeeping rights in one consensus process and mine the block. Even honest miner nodes will
inevitably generate multiple blocks of the same height due to competition for bookkeeping rights.
These blocks reach the receiving node in sequence depending on the network location of the miner
node that mined the block. Nodes will connect blocks of the same height to their parent blocks, which
results in a fork of the blockchain. Therefore, the blockchain maintained by the Bitcoin node is a tree
structure with the Genesis block as the root node and blocks of different heights as the nodes of the
tree, as shown in Figure 1. We use the optimal node (optimal block) to express the set of the deepest
leaf nodes that are the earliest to be connected to the tree. In common sense, the chain is a collection
of nodes that starts from a leaf node and traces back to the root node by the parent-child relationship.
The chain with the optimal block is usually defined as the main chain of the blockchain. Other chains
are defined as side chains of the blockchain. The node with the deepest depth on the side chain is
usually defined as the side chain optimal node (i.e., the chain optimal block).

Blockchain Formation Model
For a block of a miner to be added to the blockchain, the miner needs to broadcast it to the network, but
it is for all the full nodes to reach an agreement if this block or another block should be added to the
blockchain through the consensus protocol. This process is called block synchronization. This paper
illustrates the complete process of block synchronization in Figure 2 (Luo & Zhang, 2023). It consists
of six steps: block retrieval, block validation, block type confirmation, block chain synchronization,
orphan pool processing, and chain verification.

The blockchain-forming process from the perspective of nodes is the process of multiple block
synchronization of nodes. The time for nodes in different network locations to receive a block varies
greatly, with current research (Yahya et al., 2022) showing that it takes at least 10s for an 11M block
to propagate to 90% of the nodes in the network. As a result, different nodes synchronize blocks of
the same height at different times, which directly leads to significant differences in the blockchain-
forming process from the perspective of different nodes.

The process of blockchain formation from a multi-node perspective involves nodes reaching
a consensus on block validation through information exchange, which is essentially the process of
achieving PoW consensus in the network (Guo et al., 2021). The Bitcoin network encourages miner
nodes to participate in the consensus process of PoW to verify and record Bitcoin transactions in the
network. Miner nodes calculate and solve a hash problem in order to earn the right to add a block.
The miner who calculates the result first gains the right to add the block and includes all Bitcoin
transactions during a specific time period, sequentially linking them to the blockchain. Additionally,

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

5

the miner broadcasts the block to the Bitcoin network to assist other nodes in synchronization. Upon
receiving the new block, other nodes will synchronize either all blocks or only the block headers
based on their capabilities. Miners who have not earned the right to add the block will stop their
current computations after synchronizing the new block, and then choose the new block for the next
mining. Consensus on block validation is achieved once all nodes in the network complete block
synchronization.

METHODOLOGY

This section provides a detailed account of the BitTrace architecture and the working principles
of its components. Various influencing factors are explored in order to enhance data integrity and

Figure 1. Blockchain Structure

Figure 2. Bitcoin Blockchain Synchronization Flowchart

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

6

efficiency. A method is proposed based on the DPC algorithm to identify high-quality nodes in
the Bitcoin network, and results show that this algorithm outperforms other clustering algorithms.
Additionally, a method for locating Bitcoin miners is presented to aid in detecting malicious miners
in the Bitcoin network.

Design Principles
This section introduces the basic design principles of BitTrace.

1. 	 Microkernel Architecture: The microkernel architecture is a scalable architecture that
emphasizes functional separation. It separates the core system responsible for common
functionalities from the plug-in modules responsible for business logic. This separation allows
for rapid and flexible expansion without compromising the stability of the entire system. BitTrace
follows the principles of the microkernel architecture by separating the core system from the
plug-in modules for business logic. The core system adopts a layered architecture, with different
modules implementing core functions such as data collection, analysis, and storage, while ensuring
scalability and extensibility.

2. 	 Generality: BitTrace is applicable to various types of Bitcoin nodes since it considers the
commonalities among different types of nodes. This generality ensures compatibility and
adaptability across different node configurations.

3. 	 Scalability: Each component of BitTrace is implemented with standardization, allowing for
easy expansion and contraction based on varying workload conditions. This scalability enables
researchers to adapt BitTrace to different scenarios and requirements.

4. 	 Extensibility: The layered architecture of BitTrace enables researchers to accomplish different
tasks by designing additional plug-in modules. This scalability allows for the integration of new
functionalities and the exploration of diverse research directions.

Guided by these design principles, BitTrace provides a framework that is scalable, flexible, and
adaptable to different types of Bitcoin nodes, facilitating data collection, analysis, and exploration
in various research areas.

Framework Architecture
Figure 3 illustrates the overall architecture of BitTrace. The architecture includes the Detection Nodes
(consisting of Code Instrumentation and Exporter), Agent, Storage, and Plug-in. Each component
is described as follows.

1. 	 Detection Nodes. These nodes are responsible for data collection within the Bitcoin network.
They consist of two main components:
◦◦ Code Instrumentation. This component applies code instrumentation techniques to the

Bitcoin nodes, allowing the detection and analysis of their behavior.
◦◦ Exporter. The Exporter component retrieves detailed real-time data by monitoring the

instrumented code in the Bitcoin nodes.
2. 	 Agent. Deployed outside the Bitcoin network and acting as a data receiver and processor, the

Agent communicates with the Detection Nodes and performs the following tasks:
◦◦ Receiver. The Receiver component receives the information outputted by the Exporter of

the Detection Nodes.
◦◦ Resolver. The Resolver component is a cluster of message processors that parse and process

the received data in parallel.
3. 	 Storage. The Storage component is responsible for receiving and storing the data generated by

the Agent. It maintains a structured data structure to store the collected information.

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

7

4. 	 Plug-in. The Plug-in module implements specific business logic based on a microkernel
architecture. It can be customized for different application scenarios or research purposes.
Examples include plug-ins for handling stale blocks and data visualization.

The communication between components can utilize various standard communication protocols.
Employing standardized communication interfaces proves advantageous in software design and
facilitates the scalability of components.

Code Instrumentation
Code instrumentation refers to the practice of adding additional code or instructions to a software
program in order to gather information on its behavior, performance, or execution. This technique
is commonly used in software development, debugging, profiling, and monitoring processes. In this
paper, code instrumentation is applied to create the detection nodes for BitTrace.

As previously mentioned, the block synchronization process in the Bitcoin network falls into three
steps: block validation, block type validation, and block synchronization. These three processes can
be further broken into six sub-processes, namely block detection, orphan block detection, main block
detection, block linking to the main chain, block linking to side chain, and linking actions leading
to main-side chain exchange. These behaviors correspond to specific functions in the underlying
code of Bitcoin nodes. For example, when the block detection occurs, the underlying code calls the
function checkBlockSanity. These mappings are illustrated in Figure 4. By instrumenting the code,
we send the required data to our data center when specific behaviors occur in Bitcoin, in addition to
invoking the corresponding functions.

In the perspectives of other nodes in the Bitcoin network, a detection node using code
instrumentation appears no different from regular honest Bitcoin nodes. Its behavior is not regarded
as malicious. Compared to other data collection approaches, instrumentation does not disrupt normal
communication in the network. The detection nodes are not identified as malicious nodes, allowing
them to operate stably over a long term.

Figure 3. Overall Architecture of BitTrace

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

8

Data Resolving and Storage
This section presents a detailed account of how the Resolver parses the data collected from the
detection nodes regarding the blockchain formation process in a standardized manner. First, the
following concepts are defined in this context:

1. 	 State: It refers to a certain set of attributes related to the block synchronization of a node at a
certain time that we obtain through the Exporter. For example, block state refers to a set of block
attributes, blockchain state refers to a set of blockchain attributes, etc.

2. 	 Snapshot: It refers to a copy of all the states in a client node at a particular time. This copy
allows the user to restore the state of the data in the node at the time when the copy was taken.

3. 	 Event: As the fundamental cause of various types of state changes in a node, it refers to a fine-
grained behaviour that is occurring or has occurred in a bitcoin node, such as detecting whether
a block is complete and regular.

4. 	 Revision: As the direct cause of a change in a set of various attributes in a node, it refers to a
change brought by the node to the attribute set after an event has occurred in the node.

5. 	 Timeline: As a chronology of the changes of states in nodes, which preserves the timing order
of Event and Revision, and also contains the timing order of state sets and snapshots.

Briefly, according to the block synchronization process, the Resolver parses the data the Receiver
received to generate a snapshot of the node’s data at different moments in time. To ensure that the
block synchronization process can be restored with high fidelity, the Resolver simultaneously records
the events that cause the snapshot revision in a fine granularity.

In practice, a snapshot can only describe the state of a node at a specific time and cannot capture
the temporal information or track the process of blockchain formation. The introduction of the concepts
of Event, Revision, and Timeline (Bowden et al., 2020) addresses this issue, as shown in Figure 5.
The parsing program parses and records fine-grained Events that cause state changes in a node, along
with the Revisions executed by the node due to those Events. The parsing program links these Events
and Revisions in chronological order and submits them to the Storage for storage.

Based on the aforementioned principles and techniques, this paper adopts a complete data
collection solution for tracking and observing the blockchain formation process in the Bitcoin network.
The data collected using this framework enables the observation of various states of the blockchain
at specific times. Additionally, the data allows the identification of the reasons and processes behind
the state changes between Snapshots through Events, Revisions, and the Timeline. By analyzing the

Figure 4. Code Instrumentation

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

9

data within the framework, one can gain insights into the dynamics and evolution of the blockchain,
facilitating a deeper understanding of its behavior and development over time (Shahsavari et al., 2020).

In summary, our framework offers the following advantages:

•	 Fine-grained data: The framework can collect fine-grained data from various Bitcoin nodes’
operations.

•	 Scalability: The framework allows for efficient processing of more data by increasing modules.
•	 Extensibility: The framework supports the insertion of multiple plug-ins for different tasks.

By leveraging these advantages, our framework enables comprehensive analysis and understanding
of the blockchain formation process in the Bitcoin network, facilitating further research and
applications in the field.

Data Collection and Stale Blocks Detection
To validate the feasibility of the framework, this paper selects three different types of Bitcoin
nodes, namely Bitcoin Core nodes, Bitcoin full nodes, and SPV nodes, to serve as detection nodes.
Additionally, the Agent and Storage modules were deployed outside the Bitcoin network to receive,
parse, and collect data. Finally, the developed stale block detection plug-in was utilized to analyze
the structured data stored in the Storage.

The criteria for identifying stale blocks were as follows:

1. 	 The block is not part of the main chain.
2. 	 The total accumulated work of the chain connected by the block is less than the work of the main

chain.
3. 	 The best block height of the chain connected by these blocks is six blocks lower than the best

block height.

We collected real data from the Bitcoin network and preserved detailed data on the synchronization

process of these blocks, with specific details shown in Table 1. On average, for each block

Figure 5. Events and Revisions in Timeline

Table 1. Types and Quantity of Data Collection

Snapshot State Event Revision

Quantity 134,220 536,899 802,757 825,791

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

10

synchronization, the framework collected 112 relevant data points, totaling approximately 3.2 KB
of data.

Optimization for Data Collection
Data analysis generated a total of 20,817 blocks, including 426 stale blocks, 2,327 orphan blocks,
and 18,064 normal blocks.

In the previous section, a methodology was proposed to collect real data on the process of
blockchain formation from the Bitcoin network. We deployed a single Bitcoin node as a detection
node in the experiment to verify the effectiveness of the methodology. However, the results show
that deploying only one detection node in a large-scale Bitcoin network resulted in low timeliness
of the collected data, as well as compromised data integrity and trustworthiness. In this section, we
will investigate how to improve the efficiency of data collection.

Quantity of Linked Nodes
The real data of the Bitcoin network comes from two sources: the data generated by the detection
nodes and the nodes directly linked to detection nodes. Theoretically, obtaining more data on
blockchain formation facilitates a comprehensive analysis of security vulnerabilities in the network.
It is necessary to establish connections with as many nodes as possible, with each node capable of
linking up to 150 nodes.

In the experiment, we randomly selected 150 Bitcoin nodes located in the same continent from
the global Bitcoin network, and deployed 10 detection nodes respectively linked to 10, 30, 50, ...,
150 nodes. We instructed these 10 detection nodes to collect blockchain data during a specific time
period. The experimental results are presented in Table 2.

The experimental results show that the increase in the number of linked nodes is accompanied by
the increase in the number of collected blocks. This is because some nodes experience high system
load and poor network conditions, which can affect the efficiency of block synchronization. Linking
to as many nodes as possible helps mitigate the impact of these factors and contributes to improving
the comprehensiveness of data collection.

Quantity of Detection Nodes
Besides the number of linked nodes, the quantity of detection nodes also has a significant impact
on data collection. We conducted an experiment that deployed five detection nodes in different
geographical locations, each linked to 150 nodes. The variations in data volume turned out to be
noticeable among detection nodes located in different geographical locations. This demonstrates the
limitations of deploying only one detection node, as comprehensively collecting blockchain formation
data from the entire Bitcoin network poses a great challenge. Moreover, the collected data is susceptible
to network fluctuations, making it difficult to utilize block delays for identifying malicious nodes.

Topology Structure
In the field of communications, the technique of adjusting the communication ranges and connectivity
of network nodes in a wireless sensor network to enhance overall network performance and quality
is known as topology control. Topology control can effectively improve energy efficiency, reduce
communication energy consumption, and enhance network fault tolerance.

Table 2. Data Collected for Different Numbers of Linked Nodes

Linked Nodes 10 30 50 70 90 110 130 150

Block 11,890 11,820 11,940 12,030 12,149 12,120 12,747 12,854

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

11

Bitcoin is known to have no central node. In reality, some nodes have better network conditions
and faster interaction speeds, resulting in them being connected to a larger number of nodes than
others. Compared to nodes with unstable network environments, these nodes are more sensitive to
changes in the Bitcoin network and are more likely to collect comprehensive data. As shown in Figure
6, Node 1 can obtain information about blockchain changes from other nodes with a maximum of
two steps. Node 1 is, therefore, more suitable as a detection node compared to Node 2.

In order to find out these nodes in Bitcoin network, we propose a topology control method
for Bitcoin nodes based on the DPC algorithm. The density peak clustering (DPC) algorithm was
initially proposed by Rodriguez and Laio (2014). It is a clustering algorithm used to group data
points into clusters with high density. The DPC algorithm is intended to achieve effective clustering
by computing the local density and distance of data points to identify density and cluster centers. In
contrast to some traditional clustering algorithms, the DPC algorithm requires no prior knowledge
of the number of clusters and is capable of effectively clustering clusters of arbitrary shapes and
densities. In comparative experiments with clustering algorithms like DBSCAN and K-means (Wu
et al., 2021), the DPC algorithm demonstrates superior performance and effectiveness.

In the subsequent work, we will employ the DPC algorithm to analyze the clustering centers
of all nodes in the Bitcoin network, considering the network’s topology and clustering results to
generate a certain number of clusters. The detection nodes will then be linked to the cluster center
nodes, allowing for the collection of a more comprehensive blockchain-formed data from the Bitcoin
network while minimizing the impact of resource consumption and network fluctuations.

The first step is to calculate the local density of each data point in the given dataset, which
corresponds to the number of data points in its surrounding neighborhood. Here, we employ the
distance measurement of routing distance between nodes in the Bitcoin network. Due to the non-
uniqueness of paths between nodes in the Bitcoin network, we need to first calculate the shortest routing
distance between any two nodes. Assuming the set of all nodes is represented as X={X1, X2, ...}, we
use Dijkstra’s algorithm to compute the shortest routing distance between any two nodes, Xi and Xj.

d Dijkstra X Xij i j= (), 	 (1)

Figure 6. Example of the Topology in Bitcoin Network

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

12

Once the distances between nodes are determined, the local density of each node, denoted as Á,
is calculated. Typically, the local density is determined by counting the number of data points within
a neighborhood radius. Considering the characteristics of the Bitcoin network, we define a truncation
distance, denoted as dc, as the neighborhood radius. Assuming the set of seed nodes in the Bitcoin
network is represented as S={S1, S2, ...}, they are a set of consistently online and publicly accessible
nodes voluntarily provided by network participants, aimed at maintaining the stability of the Bitcoin
network. The truncation distance dc is defined as half of the shortest distance between the seed nodes
Sn and Sm, which are the two closest seed nodes to node Xi. If node Xi itself is a seed node, dc is defined
as half of the distance to the nearest seed node from Xi.

ρ ϕi
j

ij cd d= −()∑ 	 (2)

d
d

c
nm=
2

	 (3)

ϕ d
d
d() =
<
≥








1 0

0 0

,

,
	 (4)

The magnitude of the local density reflects the data distribution at the location of a data point.
In clustering algorithms, data points with higher local density are typically considered as the core
or central points of a cluster since they are surrounded by data points of a denser concentration. On
the other hand, data points with lower local density may be regarded as outliers or noise points since
they have fewer data points in their proximity.

The second step is to calculate the relative distance. The relative distance, denoted as ´ , refers
to the minimum distance between a data point and other points of a higher relative density. Its value
is the minimum distance between node i and all nodes with a higher density than it. If node i is the
node with the highest density, the value is calculated as the maximum distance between node i and
other nodes.

δ
ρ ρ

ρ ρ
ρ ρ

i

ij i max

j C ij i max

i j

d

d
=

≠

=








<

∈

�
���� �

���

min ,

max ,


	 (5)

According to the DPC algorithm, the node with the highest local density is considered a density
peak, and it is a cluster center. We define its relative distance as the maximum value. We need to find
cluster centers among the remaining nodes that satisfy two conditions: a high local density and a
large relative distance. We use a decision value ³ to identify these cluster centers.

³ Á ´
i i i
= × 	 (6)

Provided that a node has both a high local density and a relative distance, it is likely to be a
cluster center. The non-central nodes are then assigned to the cluster with the highest density that is
closest to them. Finally, the detection nodes are linked to the cluster centers.

Experiments and Analysis
BitcoinNode provided the API for developers to obtain the information of all reachable nodes in the
current Bitcoin network. The results indicate that 16,534 nodes are reachable with IP addresses in
the current Bitcoin network, with approximately 57% of them labeled as N/A. The owners of these

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

13

nodes have concealed their locations with onion IP or private IP addresses, a measure to protect their
privacy and security. Consequently, we are unable to trace the geographical locations of these nodes
based on their IP addresses. The geographical location of all reachable nodes is depicted in Figure 7.

Using BitcoinNode API to request the routing information of all reachable nodes is the first
step to calculate the routing distance between nodes. The results reveal that we received responses
from 75.84% of the nodes. The remaining 24.16% of nodes rejected our requests to prevent potential
network attacks. Ultimately, we obtained the routing tables from 12,538 nodes. Using the routing
information, we calculated the routing distance dij between all nodes and used the improved DPC
algorithm proposed in this paper to calculate the local density and relative distances for all nodes.
The calculation results are shown in Figure 8. The x-axis represents the local density of the nodes,
while the y-axis represents the relative distance.

The DPC algorithm determines that nodes of a high local density and a relative distance are
more likely to be cluster centers. The results in Figure 8 indicate that nodes in the upper-right corner
are more likely to become cluster centers. To further confirm this, we calculate the decision values
as shown in Figure 9, where the x-axis represents the number of nodes, and the y-axis represents the
decision values.

In order to minimize modifications to the topology structure while maximizing the amount of
collected data, we conducted experiments to test the data collection under different decision values.
The experimental results indicate that the number of nodes with higher decision value was too small,
resulting in incomplete data collection by the detection nodes. On the other hand, connecting the
detection nodes to cluster centers with too-low decision values increases modifications to the topology
structure instead of contributing to the data volume. We ultimately used a decision value of 75 and
selected 20 cluster centers.

Finally, by modifying the routing tables of the detection nodes, we establish individual links
between the detection nodes and the cluster centers of their respective continents to observe the
amount of data collected during the blockchain formation process. Figure 10 shows the distribution
of detection nodes deployed. Additionally, this experiment compares the scenarios of not linking to

Figure 7. The Geographical Location of Bitcoin Nodes

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

14

cluster centers, using the DBSCAN algorithm, and using the K-means algorithm for cluster analysis.
The experimental results demonstrate that linking the detection nodes to the cluster centers enables the
collection of more comprehensive blockchain formation data. Compared to the other two clustering
algorithms, the DPC algorithm identifies more orphan blocks and stale blocks, and dramatically
reduces the time for detection nodes to receive block data, thus improving data collection performance.

We collected real data from the Bitcoin network between October 1, 2022, and December 31,
2022, encompassing a total of 13,348 blocks ranging from height 756,390 to 769,738. To standardize
the data collection process, this study categorizes the data collected by detection nodes into four
types: Snapshot, representing the snapshots of the blockchain’s state at different time points during
synchronization; Revision, representing a collection of events that cause state changes; State,
representing a collection of blockchain states; and Event, representing a collection of blockchain
events. Combining these four types of data, we can describe the blockchain evolution process from
the perspective of each detection node. It is important to note that the data collected by different

Figure 9. Decision Value and Number of Nodes

Figure 8. Local Density and Relative Distances

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

15

detection nodes may vary due to their respective network environments. The data collected in our
experimental environment are presented in Table 3.

By analyzing the data from different detection nodes, it becomes evident that the quantities of
normal blocks, orphan blocks, and stale blocks differ from the perspective of each detection node. The
results are shown in Table 4. Further processing of the data is required for it to be used in data analysis.

Figure 10. The Distribution of Detection Nodes

Table 3. Types and Quantities of Data Collected

Event Snapshot Revision State

Detector 1 27 13,551 66,408 27,003

Detector 2 38 13,659 66,394 26,987

Detector 3 46 13,530 66,702 27,014

Detector 4 62 13,546 66,512 27,028

Detector 5 43 13,524 66,687 27,011

Table 4. Types and Quantities of Data Collected

Normal Block Orphan Block Stale Block

Detector 1 13,348 726 131

Detector 2 13,348 754 142

Detector 3 13,348 731 138

Detector 4 13,348 718 140

Detector 5 13,348 734 135

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

16

Data cleaning serves as the initial step in multi-node data fusion. The process includes addressing
missing data, addressing anomalies, and handling outliers:

1. 	 Addressing Missing Data: In the case of non-temporal missing data, completion is performed to
address non-temporal missing data using identical data collected from various detection nodes.
On the other hand, temporal data is treated as an anomaly during the data cleaning process.

2. 	 Addressing Anomalies: Regarding temporal anomalies in the data, this study employs the
method proposed by Bowden et al. (2020) for their treatment, and involves uniformly resampling
the data between adjacent reliable timestamps.

3. 	 Handling Outliers: To mitigate the potential influence of noise, this study employs a method
that calculates Cook’s distance for the block-related data. Outliers, defined as those exceeding
four times the average Cook’s distance, are excluded from the analysis. This process aids in
identifying and flagging data points that exhibit significant errors, such as erroneous timestamps.

After going through the data cleaning process, the resulting data is subjected to multi-node data
fusion, yielding the final data on blockchain formation. Figure 11 illustrates an example of the data
fusion process. The specific process of multi-node data fusion is outlined as follows:

1. 	 Individual Node Blockchain Formation: Each detection node’s blockchain formation process
is reconstructed by considering the data collected and recorded by that specific node. The
specific approach entailed constructing a comprehensive block synchronization process for an
individual detection node by assembling the collected data in chronological order, following the
synchronization procedure of the blockchain (Chen et al., 2020).

2. 	 Multi-Node Blockchain Formation: The blockchain formation processes from multiple nodes
are combined and integrated. This step involves harmonizing the data and information obtained
from different nodes, aligning the block height of the blockchain and ensuring consistency across
the multiple blockchain formations.

Figure 11. An Example of Multi-Node Data Fusion

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

17

Finally, we validated the feasibility of our method through a controlled experiment. The “Default”
represents the results obtained from the probing node without any modifications to the network
topology. The DPC algorithm utilized the method proposed in this study. Additionally, we conducted
experiments under the same conditions with two other clustering algorithms, DBSCAN and K-means.
Detailed data are shown in Table 5.

The experimental results demonstrate the advantages of our method. Our method yielded an
additional 8.3% of data collected compared to the Default method, generating a more comprehensive
construction of the blockchain formation process. Furthermore, due to the linkage with cluster centers,
the time difference in data collection for DPC was 37% less than that of the Default method.

In comparison to DBSCAN and K-means, DPC achieved the ability to collect more data and reduce
the time difference using fewer cluster centers. This implies that we can minimize modifications to
the network topology and achieve better performance. Our analysis shows the K-means algorithm is
better suited for handling spherical clusters, while the DBSCAN algorithm assumes clusters as dense
regions. However, the real Bitcoin network is a decentralized network, and the shape and density
of clusters formed in the network cannot be determined. Moreover, the K-means algorithm requires
prior specification of the number of cluster centers (in this experiment, k=30), while the DBSCAN
algorithm requires specifying density thresholds and neighborhood radius (in this experiment,
MinPt=20, eps=2). These preset parameters are difficult to determine in the Bitcoin network and
can also affect the quality of clustering.

Geolocating Bitcoin Nodes
Based on the data obtained by traversing the Bitcoin network topology using BitcoinNode, the
approximate location map of all nodes in the Bitcoin network is shown in Figure 12. In the map, a
circle represents a set of neighboring mining nodes in terms of geographical location. Additionally,
57% of the nodes use either onion IP addresses or private IP addresses, which we refer to as N/A
nodes. All N/A nodes are marked in the bottom left corner of the map. It is worth noting that N/A
nodes engage in active communication within the Bitcoin network although their addresses cannot
be determined.

A detection node was deployed in each of the three continents that showed the highest number
of nodes in the Bitcoin network, namely, the Americas, Europe, and Asia. This deployment allows
for data collection from the densely populated nodes in the Bitcoin network, reducing the impact of
network fluctuations. Furthermore, it enables the analysis of block propagation delays among the three
nodes, which helps determine the location of malicious nodes. The results from Boscovic et al. (2018)
demonstrate a positive correlation between block size and propagation delay, with similar propagation
times for the same block among different nodes. In the current Bitcoin network environment, the
median time for a block to propagate throughout the entire network is as follows.

T S= + ×2 0 08. 	 (7)

Table 5. Comparison With Default, DBSCAN, and K-means

Cluster Centers Normal Block Orphan Block Stale Block Time Difference

Default 0 12,320 702 110 27s

DPC 20 13,348 754 143 10s

DBSCAN 30 13,348 731 140 13s

K-means 35 13,348 719 129 20s

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

18

Given the similar propagation time of the same block among different nodes in the Bitcoin
network, we denote the propagation time as TB. The time at which the detection node receives a block
as TD can be expressed as the sum of the time at which the previous node releases the block as TM
and the propagation time of the block in the network.

T T h TD M B= + × 	 (8)

The symbol h represents the number of steps for block propagation, with each step signifying a
block synchronization between every two nodes. By analyzing the time at which the three detection
nodes received a block, we can calculate the steps h1, h2, and h3 between the mining node that released
the block and each of the three detection nodes.

h
T T
T

h
T T
T

h
T T
T

D M

B

D M

B

D M

B

1

2

3

≤
−

≤
−

≤
−











'

''

	 (9)

Based on the topology structure of the Bitcoin network, we finally obtain sets of nodes N1, N2,
and N3, with steps h1, h2, and h3 between the nodes and each of the three detection nodes respectively.
From the intersection of these three sets, we derive the target node set NT, which consists of the
mining nodes we are seeking.

N N N NT = { }

1 2 3
, , 	 (10)

Figure 12. Location Map

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

19

CONCLUSION

This paper introduces BitTrace, a framework for collecting blockchain formation data in the Bitcoin
network. BitTrace enables the collection of fine-grained and real-time data for research areas such
as evaluating the state and performance of the Bitcoin network, detecting malicious miner nodes,
and adjusting mining strategies. The paper provides a detailed description of the design principles,
system architecture, and underlying principles of BitTrace. To improve data completeness and
efficiency, we propose a high-quality node identification method based on the DPC algorithm,
which outperforms other clustering algorithms. The research findings demonstrate that increasing the
number of monitoring nodes and connecting them to higher-quality nodes can enhance data collection
efficiency. Finally, a geolocation plug-in for identifying malicious miner nodes is proposed based
on the design of BitTrace.

BitTrace, serving as a data collection framework for Bitcoin system, effectively addresses the
existing research gap in this domain. The comprehensive framework design and detailed description
of the blockchain formation process offer valuable insights and serve as a reference for future
researchers in this field. Furthermore, the versatile BitTrace allows for application across domains
and scenarios, further enhancing its potential impact and practicality. Significant progress has been
made in optimizing Bitcoin mining strategies (Luo & Zhang, 2023) and detecting selfish miners with
BitTrace. However, it is worth noting that BitTrace still has some limitations. For example, BitTrace’s
scalability advantages are weakened by the limited availability of plug-ins. In the future, our work
can be extended in several ways:

•	 Development of more plug-in modules. Our microkernel-based framework is highly scalable and
enables more functional plug-ins that implement other business logic. For example, plug-ins that
analyse the running status of different clients in the Bitcoin network, and plug-ins that visually
analyse the blockchain formation process.

•	 Framework performance optimization. The framework may become more efficient and less
consuming after collecting a large amount of real-time data. In future work, we will optimise
data storage in the framework so as to speed up the plug-in data calls.

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

20

REFERENCES

Boscovic, D., Chawla, N., & Tapp, D. (2018). Block propagation applied to Nakamoto networks. Academic Press.

Bowden, R., Keeler, H. P., Krzesinski, A. E., & Taylor, P. G. (2020). Modeling and analysis of block arrival times
in the bitcoin blockchain. Stochastic Models, 36(4), 602–637. doi:10.1080/15326349.2020.1786404

Catalini, C., & Gans, J. S. (2016). Some simple economics of the blockchain. Communications of the ACM,
63(7), 80–90. doi:10.1145/3359552

Chen, T., Li, Z., Zhu, Y., Chen, J., Luo, X., Lui, J. C.-S., Lin, X., & Zhang, X. (2020a). Understanding Ethereum
via graph analysis. ACM Transactions on Internet Technology, 20(2), 18, 1-18.

Chen, T., Zhu, Y., Li, Z., Chen, J., Li, X., Luo, X., Lin, X., & Zhang, X. (2020b). Understanding Ethereum via
graph analysis. ACM Transactions on Internet Technology, 20(2), 1–32. doi:10.1145/3381036

Chen, Y., Chen, H., Zhang, Y., Han, M., Siddula, M., & Cai, Z. (2022). A survey on blockchain systems: Attacks,
defenses, and privacy preservation. High-Confidence Computing, 2(2), 100048. doi:10.1016/j.hcc.2021.100048

Franzoni, F., Salleras, X., & Daza, V. (2022). AToM: Active topology monitoring for the bitcoin peer-to-peer
network. Peer-to-Peer Networking and Applications, 15(1), 408–425. doi:10.1007/s12083-021-01201-7

Grossman, S., Abraham, I., Golan-Gueta, G., Michalevsky, Y., Rinetzky, N., Sagiv, S., & Zohar, Y. (2017).
Online detection of effectively callback free objects with applications to smart contracts. Proceedings of the
ACM on Programming Languages, 2(POPL), 1–28. doi:10.1145/3158136

Guo, H., & Yu, X. (2022). A survey on blockchain technology and its security. Blockchain: Research and
Applications, 3(2), 100067.

Guo, S. T., Wang, R. J., & Zhang, F. L. (2021). Survey on the principles and applications of blockchain technology.
Computer Software and Computer Application, 48(2).

Harry, K., Malte, M., Kevin, L., Steven, G., Martin, P., Alishah, C., & Arvind, N. (2020). BlockSci: Design
and applications of a blockchain analysis platform. 29th USENIX Security Symposium (USENIX Security 20),
2721–2738.

Liu, Y., Liu, J., Salles, M. A. V., Zhang, Z., Li, T., Hu, B., & Lu, R. et al. (2022). Building blocks of sharding
blockchain systems: Concepts, approaches, and open problems. Computer Science Review, 46, 100513.
doi:10.1016/j.cosrev.2022.100513

Luo, Y., & Zhang, J. (2023). An optimised bitcoin mining strategy: Stale block determination based on real-time
data mining and XGboost. International Journal of Information Technologies and Systems Approach, 16(2),
1–19. doi:10.4018/IJITSA.318655

Martin, W., Friedhelm, V., & Axel, K. (2020). Tracing manufacturing processes using blockchain-based token
compositions. Digital Communications and Networks, 6(2), 167–176. doi:10.1016/j.dcan.2019.01.007

Mohanta, B. K., Jena, D., Ramasubbareddy, S., Daneshmand, M., & Gandomi, A. H. (2020). Addressing
security and privacy issues of IoT using blockchain technology. IEEE Internet of Things Journal, 8(2), 881–888.
doi:10.1109/JIOT.2020.3008906

Motlagh, S. G., Misic, J. V., & Mišić, V. B. (2021). The impact of selfish mining on bitcoin network performance.
IEEE Transactions on Network Science and Engineering, 8(1), 724–735. doi:10.1109/TNSE.2021.3050034

Rodriguez, A., & Laio, A. (2014). Clustering by fast search and find of density peaks. Science, 344(6191),
1492–1496. doi:10.1126/science.1242072 PMID:24970081

Sarode, R. P., Singh, D. G., Watanobe, Y., & Bhalla, S. (2023). High-volume transaction processing in bitcoin
lightning network on blockchains. International Journal on Computer Science and Engineering, 26(4), 445–458.

Shahsavari, Y., Zhang, K., & Talhi, C. (2020). A theoretical model for block propagation analysis in bitcoin
network. IEEE Transactions on Engineering Management, 69(4), 1459–1476. doi:10.1109/TEM.2020.2989170

Taherdoost, H. (2023). Smart contracts in blockchain technology: A critical review. Information (Basel), 14(2),
117. doi:10.3390/info14020117

http://dx.doi.org/10.1080/15326349.2020.1786404
http://dx.doi.org/10.1145/3359552
http://dx.doi.org/10.1145/3381036
http://dx.doi.org/10.1016/j.hcc.2021.100048
http://dx.doi.org/10.1007/s12083-021-01201-7
http://dx.doi.org/10.1145/3158136
http://dx.doi.org/10.1016/j.cosrev.2022.100513
http://dx.doi.org/10.4018/IJITSA.318655
http://dx.doi.org/10.1016/j.dcan.2019.01.007
http://dx.doi.org/10.1109/JIOT.2020.3008906
http://dx.doi.org/10.1109/TNSE.2021.3050034
http://dx.doi.org/10.1126/science.1242072
http://www.ncbi.nlm.nih.gov/pubmed/24970081
http://dx.doi.org/10.1109/TEM.2020.2989170
http://dx.doi.org/10.3390/info14020117

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

21

Jian Wu, Master’s Degree, graduated from South China Normal University in 2017. His research interests include
Blockchain System Development.

Jianhui Zhang, Software Engineer, Master’s Degree, graduated from Southwest University in 2022. Worked in
Beijing ByteDance Co., Ltd. His research interests include Blockchain System Development.

Tri, S., Ideva, G., & Siska, A. (2017). Study on blockchain visualization. JOIV: International Journal on
Informatics Visualization, 1(3), 76–82. doi:10.30630/joiv.1.3.23

Wang, Y., Wang, Z., Zhao, M., Han, X., Zhou, H., Wang, X., & Koe, A. S. V. (2022). BSM-ether: Bribery selfish
mining in blockchain-based healthcare systems. Information Sciences, 601, 1–17. doi:10.1016/j.ins.2022.04.008

Wang, Y. Y., & Li, G. Q. (2019). Detect triangle attack on blockchain by trace analysis. 2019 IEEE 19th
International Conference on Software Quality, Reliability and Security Companion (QRS-C), 316–321.
doi:10.1109/QRS-C.2019.00066

Wong, D. R., Bhattacharya, S., & Butte, A. J. (2019). Prototype of running clinical trials in an untrustworthy
environment using blockchain. Nature Communications, 10(1), 1–8. doi:10.1038/s41467-019-08874-y
PMID:30796226

Wu, C., Yan, B., Yu, R., Huang, Z., Yu, B., Yu, Y., Chen, N., & Zhou, X. (2021). Improvement of K-Means
algorithm for accelerated big data clustering. International Journal of Information Technologies and Systems
Approach, 14(2), 99–119. doi:10.4018/IJITSA.2021070107

Wu, D., Liu, X., Yan, X., Peng, R., & Li, G. (2019). Equilibrium analysis of bitcoin block withholding attack:
A generalized model. Reliability Engineering & System Safety, 185, 318–328. doi:10.1016/j.ress.2018.12.026

Xu, H., Zhang, L., Onireti, O., Fang, Y., Buchanan, W. J., & Imran, M. A. (2020). BeepTrace: Blockchain-enabled
privacy-preserving contact tracing for COVID-19 pandemic and beyond. IEEE Internet of Things Journal, 8(5),
3915–3929. doi:10.1109/JIOT.2020.3025953 PMID:37974935

Yaga, D., Mell, P., Roby, N., & Scarfone, K. (2018). Blockchain technology overview. ArXiv, abs/1906.11078.

Yahya, S., Kaiwen, Z., & Chamseddine, T. (2022). A theoretical model for block propagation analysis in bitcoin
network. IEEE Transactions on Engineering Management, 69(4), 1459–1476. doi:10.1109/TEM.2020.2989170

Yang, G., Wang, Y., Wang, Z., Tian, Y., Yu, X., & Li, S. (2020). IPBSM: An optimal bribery selfish mining in
the presence of intelligent and pure attackers. International Journal of Intelligent Systems, 35(11), 1735–1748.
doi:10.1002/int.22270

Zheng, P., Xu, Q., Luo, X., Zheng, Z., Zheng, W., Chen, X., Zhou, Z., Yan, Y., & Zhang, H. (2022). Aeolus:
Distributed execution of permissioned blockchain transactions via state sharding. IEEE Transactions on Industrial
Informatics, 18(12), 9227–9238. doi:10.1109/TII.2022.3164433

http://dx.doi.org/10.30630/joiv.1.3.23
http://dx.doi.org/10.1016/j.ins.2022.04.008
http://dx.doi.org/10.1109/QRS-C.2019.00066
http://dx.doi.org/10.1038/s41467-019-08874-y
http://www.ncbi.nlm.nih.gov/pubmed/30796226
http://dx.doi.org/10.4018/IJITSA.2021070107
http://dx.doi.org/10.1016/j.ress.2018.12.026
http://dx.doi.org/10.1109/JIOT.2020.3025953
http://www.ncbi.nlm.nih.gov/pubmed/37974935
http://dx.doi.org/10.1109/TEM.2020.2989170
http://dx.doi.org/10.1002/int.22270
http://dx.doi.org/10.1109/TII.2022.3164433

