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ABSTRACT

Bitcoin is a digital currency system built on the foundation of fairness. However, some malicious 
miners, driven by their own interests, employ unfair tactics such as selfish mining to compete, which 
disregard the legitimate miners’ investments in computational power and energy consumption. In 
order to assess the efficiency of the Bitcoin system in real-time and promptly detect malicious miners 
in the network, this paper proposes a data collection framework called BitTrace, which addresses the 
issues of low efficiency, lack of timeliness, and data loss in traditional data collection frameworks. 
BitTrace enables real-time collection and analysis of the blockchain formation process, storing it as 
structured data. Furthermore, the paper discusses factors that influence the efficiency of data collection 
and proposes a topological control scheme based on the DPC algorithm to enhance the integrity and 
efficiency of data collection. Researchers can explore various research areas and applications, such 
as selfish mining detection and legitimate mining strategy research.
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INTRODUCTION

Bitcoin, the first and most well-known application of blockchain, is a decentralized digital currency 
that operates on a peer-to-peer network. The Bitcoin blockchain serves as a public ledger that records 
all transactions of the cryptocurrency (Catalini & Gans, 2016).

Despite the tremendous success of Bitcoin as a digital currency, it has long been criticized for 
issues such as performance and resource consumption (Chen et al., 2022). Reasonable competition 
is unavoidable in the Bitcoin network. However, if a significant number of malicious miners emerge 
and employ selfish mining tactics to gain higher profits (Yang et al., 2020; Wang et al., 2022), it 
becomes unfair for legitimate miners. Legitimate miners invest substantial computational power 
and energy into mining, yet they do not receive the deserved rewards (Franzoni et al., 2022). We 
aim to address these concerns by obtaining real-time data from the Bitcoin network to evaluate its 
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efficiency. With this data, we can further analyze cheating behaviors within the network and make 
reasonable adjustments to miners’ mining strategies to improve mining efficiency. We are committed 
to developing a real-time assessment framework for the Bitcoin network, aiming to detect nodes 
engaging in unfair mining practices and enhance the mining efficiency of legitimate miners within 
the network. To achieve this goal, it is crucial to obtain relevant data regarding the formation process 
of the blockchain in the Bitcoin network.

Traceability, known as the ability to trace the process of transactions, is the most noted 
fundamental characteristic of blockchain technology. For example, a company can record 
every step of the drug production process on the blockchain, allowing users to trace each 
stage of drug creation (Martin et al., 2020; Xu et al., 2020). In reality, the formation process 
of the blockchain in the Bitcoin network is transparent and non-traceable due to resource 
and efficiency considerations. For users, it is not necessary to know the formation process of 
the blockchain. But for researchers, inability or failure to trace the formation process of the 
blockchain makes it difficult to address certain issues. For instance, miners cannot determine 
if the received block is stale, and users cannot measure the performance of the Bitcoin system. 
While some blockchain systems offer API interfaces (Harry et al., 2020) to assist researchers 
in accessing data, these interfaces often fall short in efficiency, performance, and latency, and 
thus are unable to meet the requirements for real-time analysis. Some existing work (Wang 
et al., 2022; Zheng et al., 2022; Wong et al., 2019; Mohanta et al., 2020; Chen et al., 2020; 
Grossman et al., 2017) has proposed methods and implementations to obtain more relevant data 
in Bitcoin or other blockchain systems to address these issues. But these studies face various 
challenges regarding data granularity, non-traceability of the blockchain formation process, 
and the scalability of the framework. Currently, there is no data collection solution specifically 
designed for the blockchain formation in Bitcoin system, which makes it challenging to conduct 
research based on the real data from the Bitcoin network.

In this paper, we introduce BitTrace, a data collection framework for blockchain formation 
in the Bitcoin network. BitTrace is designed using the principles of microservices and a layered 
architecture. Each layer is responsible for specific functions, including monitoring, data collection, 
sending, reception, parsing, and storage. Furthermore, each layer can be scaled according to 
the data volume, ensuring optimal performance of the framework. The framework offers the 
following advantages:

1. 	 Fine-grained: We have defined the states and events during the process of blockchain formation 
and employed code instrumentation techniques to monitor the nodes, ensuring the capture of 
all relevant data related to the formation of blockchain blocks. Fine-grained data guarantees the 
accuracy of subsequent research results and enables the applicability of this data to a wider range 
of studies.

2. 	 Real-time: Once a state transition or an event occurrence is triggered, the monitoring program 
promptly processes the relevant data, which allows researchers to obtain real-time and authentic 
data. Real-time data is crucial for security research, as security protocols can detect network 
states and identify unauthorized miners in real time.

3. 	 Traceability and observability: The data collected by BitTrace is stored using standardized 
data structures that can describe the process of blockchain formation. This facilitates researchers 
to trace and observe the entire process.

4. 	 Scalability: BitTrace uses the principles of microservices and a layered architecture. It supports 
scaling modules to efficiently handle more data and incorporating multiple plug-ins to perform 
different tasks, providing strong scalability and extensibility.

This paper makes the following contributions:
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1. 	 Introduction of BitTrace: The paper presents the design principles, system framework, and 
design concepts for each module of BitTrace.

2. 	 Improved data collection efficiency and comprehensiveness: The paper discusses the factors 
that enhance data collection efficiency and comprehensiveness. It proposes a Bitcoin node 
topology control method based on the density peak clustering (DPC) algorithm, which effectively 
improves the efficiency and comprehensiveness of data collection in BitTrace.

3. 	 Geolocation plug-in for identifying malicious miner nodes: The paper develops a plug-in 
based on BitTrace to identify the geographical location of malicious miners.

The paper is organised as follows. In Section II, we introduce the related work and discuss their 
advantages and disadvantages. Section III presents the fundamental concepts used in the article. 
Section IV describes the implementation of BitTrace and topological control scheme based on the 
DPC. The article is summarized in Section V, which also provides an outlook for future research.

RELATED WORK

Although the Bitcoin system has many advantages over traditional transaction systems, there are 
still several problems (Guo & Yu, 2022; Mohanta et al., 2020). To address these problems, many 
researchers have proposed solutions, such as the Bitcoin Lightning Payment Network (Sarode et 
al., 2023), which can improve the overall transaction processing capacity, throughput, and smart 
contracts that provide more efficient, secure, and reliable solutions for transactions and execution 
in various fields by addressing issues such as trust, intermediaries, and security (Taherdoost, 
2023). Many security problems, however, remain to be solved, such as performance monitoring 
and malicious node detection. Research has shown that the mining strategy employed by miners 
can affect their earnings (Wu et al., 2019; Liu et al., 2022). As the difficulty of independent mining 
increases, more and more miners are changing their mining strategies, and some even resort to 
dishonest mining strategies to gain more stable profits (Motlagh et al., 2021; Yang et al., 2020). 
The reason for this is that most blockchain systems do not provide enough relevant data to solve 
the problem in order to gain greater operational efficiency. Therefore, researchers need other data 
collection methods to obtain operational data and performance metrics of blockchain systems to 
address these problems.

To analyze the selfish mining behavior in the Bitcoin network, it is necessary to obtain data from 
the formation process of the Bitcoin network (Wang et al., 2022). Some researchers, such as Harry et 
al. (2020), have utilized the remote procedure call (RPC) interfaces of blockchain systems to retrieve 
real data from the network and analyze transaction data in certain blockchain systems. However, 
the method of collecting data using the RPC interface incurs high time costs and provides limited 
information. Other researchers, like Zheng et al. (2022), acknowledged the limitations posed by RPC 
interfaces and adopted a different approach by directly accessing the raw logs file of the blockchain 
system. They used regular expressions to extract performance through data analysis. However, it is 
worth noting that this method is not without its own limitations. Firstly, the volume of log data available 
in blockchain systems is inherently limited, which can impact the comprehensiveness of the analysis. 
Additionally, the data obtained through the application of regular expressions is context-specific and 
may not fully represent general experimental data.

Some researchers have deployed probing programs within blockchain nodes to monitor the 
operational data of nodes and the blockchain. Chen et al. (2020) proposed a method to collect and 
analyze data related to transactions, smart contract creation and invocation, and node transaction logs 
in Ethereum. By analyzing the data, they identified the presence of risks such as malicious accounts 
and malicious contract invocations within the network. Grossman et al. (2017) obtained information on 
internal transactions and storage operations in smart contracts by inserting code and analyzed related 



International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

4

security risks, such as DAO attacks. Their research focused more on Ethereum’s smart contracts. 
To date, the research on code instrumentation in the Bitcoin system has remained relatively limited.

In summary, the aforementioned limitations in current research on data collection during the 
formation process of the Bitcoin network make it difficult to monitor and trace the formation process 
of the Bitcoin network in real time since they fail to meet the requirements for fine-grained and 
comprehensive data collection. Data is crucial for experimental analysis, and obtaining real and 
comprehensive data is the key to data collection. Security analysis of the Bitcoin network, such as 
selfish mining, triangle attacks (Wang & Li, 2019), blockchain visualization (Tri et al., 2017), and 
stale block generation, relies on data from the formation process of the Bitcoin network.

FUNDAMENTAL CONCEPTS

This section explains the blockchain in Bitcoin and the blockchain formation model of Bitcoin and 
other related fundamental concepts.

Blockchain in Bitcoin
The blockchain is the key technology of the Bitcoin system (Yaga et al., 2018). Only one miner can 
gain bookkeeping rights in one consensus process and mine the block. Even honest miner nodes will 
inevitably generate multiple blocks of the same height due to competition for bookkeeping rights. 
These blocks reach the receiving node in sequence depending on the network location of the miner 
node that mined the block. Nodes will connect blocks of the same height to their parent blocks, which 
results in a fork of the blockchain. Therefore, the blockchain maintained by the Bitcoin node is a tree 
structure with the Genesis block as the root node and blocks of different heights as the nodes of the 
tree, as shown in Figure 1. We use the optimal node (optimal block) to express the set of the deepest 
leaf nodes that are the earliest to be connected to the tree. In common sense, the chain is a collection 
of nodes that starts from a leaf node and traces back to the root node by the parent-child relationship. 
The chain with the optimal block is usually defined as the main chain of the blockchain. Other chains 
are defined as side chains of the blockchain. The node with the deepest depth on the side chain is 
usually defined as the side chain optimal node (i.e., the chain optimal block).

Blockchain Formation Model
For a block of a miner to be added to the blockchain, the miner needs to broadcast it to the network, but 
it is for all the full nodes to reach an agreement if this block or another block should be added to the 
blockchain through the consensus protocol. This process is called block synchronization. This paper 
illustrates the complete process of block synchronization in Figure 2 (Luo & Zhang, 2023). It consists 
of six steps: block retrieval, block validation, block type confirmation, block chain synchronization, 
orphan pool processing, and chain verification.

The blockchain-forming process from the perspective of nodes is the process of multiple block 
synchronization of nodes. The time for nodes in different network locations to receive a block varies 
greatly, with current research (Yahya et al., 2022) showing that it takes at least 10s for an 11M block 
to propagate to 90% of the nodes in the network. As a result, different nodes synchronize blocks of 
the same height at different times, which directly leads to significant differences in the blockchain-
forming process from the perspective of different nodes.

The process of blockchain formation from a multi-node perspective involves nodes reaching 
a consensus on block validation through information exchange, which is essentially the process of 
achieving PoW consensus in the network (Guo et al., 2021). The Bitcoin network encourages miner 
nodes to participate in the consensus process of PoW to verify and record Bitcoin transactions in the 
network. Miner nodes calculate and solve a hash problem in order to earn the right to add a block. 
The miner who calculates the result first gains the right to add the block and includes all Bitcoin 
transactions during a specific time period, sequentially linking them to the blockchain. Additionally, 
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the miner broadcasts the block to the Bitcoin network to assist other nodes in synchronization. Upon 
receiving the new block, other nodes will synchronize either all blocks or only the block headers 
based on their capabilities. Miners who have not earned the right to add the block will stop their 
current computations after synchronizing the new block, and then choose the new block for the next 
mining. Consensus on block validation is achieved once all nodes in the network complete block 
synchronization.

METHODOLOGY

This section provides a detailed account of the BitTrace architecture and the working principles 
of its components. Various influencing factors are explored in order to enhance data integrity and 

Figure 1. Blockchain Structure

Figure 2. Bitcoin Blockchain Synchronization Flowchart
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efficiency. A method is proposed based on the DPC algorithm to identify high-quality nodes in 
the Bitcoin network, and results show that this algorithm outperforms other clustering algorithms. 
Additionally, a method for locating Bitcoin miners is presented to aid in detecting malicious miners 
in the Bitcoin network.

Design Principles
This section introduces the basic design principles of BitTrace.

1. 	 Microkernel Architecture: The microkernel architecture is a scalable architecture that 
emphasizes functional separation. It separates the core system responsible for common 
functionalities from the plug-in modules responsible for business logic. This separation allows 
for rapid and flexible expansion without compromising the stability of the entire system. BitTrace 
follows the principles of the microkernel architecture by separating the core system from the 
plug-in modules for business logic. The core system adopts a layered architecture, with different 
modules implementing core functions such as data collection, analysis, and storage, while ensuring 
scalability and extensibility.

2. 	 Generality: BitTrace is applicable to various types of Bitcoin nodes since it considers the 
commonalities among different types of nodes. This generality ensures compatibility and 
adaptability across different node configurations.

3. 	 Scalability: Each component of BitTrace is implemented with standardization, allowing for 
easy expansion and contraction based on varying workload conditions. This scalability enables 
researchers to adapt BitTrace to different scenarios and requirements.

4. 	 Extensibility: The layered architecture of BitTrace enables researchers to accomplish different 
tasks by designing additional plug-in modules. This scalability allows for the integration of new 
functionalities and the exploration of diverse research directions.

Guided by these design principles, BitTrace provides a framework that is scalable, flexible, and 
adaptable to different types of Bitcoin nodes, facilitating data collection, analysis, and exploration 
in various research areas.

Framework Architecture
Figure 3 illustrates the overall architecture of BitTrace. The architecture includes the Detection Nodes 
(consisting of Code Instrumentation and Exporter), Agent, Storage, and Plug-in. Each component 
is described as follows.

1. 	 Detection Nodes. These nodes are responsible for data collection within the Bitcoin network. 
They consist of two main components:
◦◦ Code Instrumentation. This component applies code instrumentation techniques to the 

Bitcoin nodes, allowing the detection and analysis of their behavior.
◦◦ Exporter. The Exporter component retrieves detailed real-time data by monitoring the 

instrumented code in the Bitcoin nodes.
2. 	 Agent. Deployed outside the Bitcoin network and acting as a data receiver and processor, the 

Agent communicates with the Detection Nodes and performs the following tasks:
◦◦ Receiver. The Receiver component receives the information outputted by the Exporter of 

the Detection Nodes.
◦◦ Resolver. The Resolver component is a cluster of message processors that parse and process 

the received data in parallel.
3. 	 Storage. The Storage component is responsible for receiving and storing the data generated by 

the Agent. It maintains a structured data structure to store the collected information.
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4. 	 Plug-in. The Plug-in module implements specific business logic based on a microkernel 
architecture. It can be customized for different application scenarios or research purposes. 
Examples include plug-ins for handling stale blocks and data visualization.

The communication between components can utilize various standard communication protocols. 
Employing standardized communication interfaces proves advantageous in software design and 
facilitates the scalability of components.

Code Instrumentation
Code instrumentation refers to the practice of adding additional code or instructions to a software 
program in order to gather information on its behavior, performance, or execution. This technique 
is commonly used in software development, debugging, profiling, and monitoring processes. In this 
paper, code instrumentation is applied to create the detection nodes for BitTrace.

As previously mentioned, the block synchronization process in the Bitcoin network falls into three 
steps: block validation, block type validation, and block synchronization. These three processes can 
be further broken into six sub-processes, namely block detection, orphan block detection, main block 
detection, block linking to the main chain, block linking to side chain, and linking actions leading 
to main-side chain exchange. These behaviors correspond to specific functions in the underlying 
code of Bitcoin nodes. For example, when the block detection occurs, the underlying code calls the 
function checkBlockSanity. These mappings are illustrated in Figure 4. By instrumenting the code, 
we send the required data to our data center when specific behaviors occur in Bitcoin, in addition to 
invoking the corresponding functions.

In the perspectives of other nodes in the Bitcoin network, a detection node using code 
instrumentation appears no different from regular honest Bitcoin nodes. Its behavior is not regarded 
as malicious. Compared to other data collection approaches, instrumentation does not disrupt normal 
communication in the network. The detection nodes are not identified as malicious nodes, allowing 
them to operate stably over a long term.

Figure 3. Overall Architecture of BitTrace
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Data Resolving and Storage
This section presents a detailed account of how the Resolver parses the data collected from the 
detection nodes regarding the blockchain formation process in a standardized manner. First, the 
following concepts are defined in this context:

1. 	 State: It refers to a certain set of attributes related to the block synchronization of a node at a 
certain time that we obtain through the Exporter. For example, block state refers to a set of block 
attributes, blockchain state refers to a set of blockchain attributes, etc.

2. 	 Snapshot: It refers to a copy of all the states in a client node at a particular time. This copy 
allows the user to restore the state of the data in the node at the time when the copy was taken.

3. 	 Event: As the fundamental cause of various types of state changes in a node, it refers to a fine-
grained behaviour that is occurring or has occurred in a bitcoin node, such as detecting whether 
a block is complete and regular.

4. 	 Revision: As the direct cause of a change in a set of various attributes in a node, it refers to a 
change brought by the node to the attribute set after an event has occurred in the node.

5. 	 Timeline: As a chronology of the changes of states in nodes, which preserves the timing order 
of Event and Revision, and also contains the timing order of state sets and snapshots.

Briefly, according to the block synchronization process, the Resolver parses the data the Receiver 
received to generate a snapshot of the node’s data at different moments in time. To ensure that the 
block synchronization process can be restored with high fidelity, the Resolver simultaneously records 
the events that cause the snapshot revision in a fine granularity.

In practice, a snapshot can only describe the state of a node at a specific time and cannot capture 
the temporal information or track the process of blockchain formation. The introduction of the concepts 
of Event, Revision, and Timeline (Bowden et al., 2020) addresses this issue, as shown in Figure 5. 
The parsing program parses and records fine-grained Events that cause state changes in a node, along 
with the Revisions executed by the node due to those Events. The parsing program links these Events 
and Revisions in chronological order and submits them to the Storage for storage.

Based on the aforementioned principles and techniques, this paper adopts a complete data 
collection solution for tracking and observing the blockchain formation process in the Bitcoin network. 
The data collected using this framework enables the observation of various states of the blockchain 
at specific times. Additionally, the data allows the identification of the reasons and processes behind 
the state changes between Snapshots through Events, Revisions, and the Timeline. By analyzing the 

Figure 4. Code Instrumentation
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data within the framework, one can gain insights into the dynamics and evolution of the blockchain, 
facilitating a deeper understanding of its behavior and development over time (Shahsavari et al., 2020).

In summary, our framework offers the following advantages:

•	 Fine-grained data: The framework can collect fine-grained data from various Bitcoin nodes’ 
operations.

•	 Scalability: The framework allows for efficient processing of more data by increasing modules.
•	 Extensibility: The framework supports the insertion of multiple plug-ins for different tasks.

By leveraging these advantages, our framework enables comprehensive analysis and understanding 
of the blockchain formation process in the Bitcoin network, facilitating further research and 
applications in the field.

Data Collection and Stale Blocks Detection
To validate the feasibility of the framework, this paper selects three different types of Bitcoin 
nodes, namely Bitcoin Core nodes, Bitcoin full nodes, and SPV nodes, to serve as detection nodes. 
Additionally, the Agent and Storage modules were deployed outside the Bitcoin network to receive, 
parse, and collect data. Finally, the developed stale block detection plug-in was utilized to analyze 
the structured data stored in the Storage.

The criteria for identifying stale blocks were as follows:

1. 	 The block is not part of the main chain.
2. 	 The total accumulated work of the chain connected by the block is less than the work of the main 

chain.
3. 	 The best block height of the chain connected by these blocks is six blocks lower than the best 

block height.

We collected real data from the Bitcoin network and preserved detailed data on the synchronization 

process of these blocks, with specific details shown in Table 1. On average, for each block 

Figure 5. Events and Revisions in Timeline

Table 1. Types and Quantity of Data Collection

Snapshot State Event Revision

Quantity 134,220 536,899 802,757 825,791
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synchronization, the framework collected 112 relevant data points, totaling approximately 3.2 KB 
of data.

Optimization for Data Collection
Data analysis generated a total of 20,817 blocks, including 426 stale blocks, 2,327 orphan blocks, 
and 18,064 normal blocks.

In the previous section, a methodology was proposed to collect real data on the process of 
blockchain formation from the Bitcoin network. We deployed a single Bitcoin node as a detection 
node in the experiment to verify the effectiveness of the methodology. However, the results show 
that deploying only one detection node in a large-scale Bitcoin network resulted in low timeliness 
of the collected data, as well as compromised data integrity and trustworthiness. In this section, we 
will investigate how to improve the efficiency of data collection.

Quantity of Linked Nodes
The real data of the Bitcoin network comes from two sources: the data generated by the detection 
nodes and the nodes directly linked to detection nodes. Theoretically, obtaining more data on 
blockchain formation facilitates a comprehensive analysis of security vulnerabilities in the network. 
It is necessary to establish connections with as many nodes as possible, with each node capable of 
linking up to 150 nodes.

In the experiment, we randomly selected 150 Bitcoin nodes located in the same continent from 
the global Bitcoin network, and deployed 10 detection nodes respectively linked to 10, 30, 50, ..., 
150 nodes. We instructed these 10 detection nodes to collect blockchain data during a specific time 
period. The experimental results are presented in Table 2.

The experimental results show that the increase in the number of linked nodes is accompanied by 
the increase in the number of collected blocks. This is because some nodes experience high system 
load and poor network conditions, which can affect the efficiency of block synchronization. Linking 
to as many nodes as possible helps mitigate the impact of these factors and contributes to improving 
the comprehensiveness of data collection.

Quantity of Detection Nodes
Besides the number of linked nodes, the quantity of detection nodes also has a significant impact 
on data collection. We conducted an experiment that deployed five detection nodes in different 
geographical locations, each linked to 150 nodes. The variations in data volume turned out to be 
noticeable among detection nodes located in different geographical locations. This demonstrates the 
limitations of deploying only one detection node, as comprehensively collecting blockchain formation 
data from the entire Bitcoin network poses a great challenge. Moreover, the collected data is susceptible 
to network fluctuations, making it difficult to utilize block delays for identifying malicious nodes.

Topology Structure
In the field of communications, the technique of adjusting the communication ranges and connectivity 
of network nodes in a wireless sensor network to enhance overall network performance and quality 
is known as topology control. Topology control can effectively improve energy efficiency, reduce 
communication energy consumption, and enhance network fault tolerance.

Table 2. Data Collected for Different Numbers of Linked Nodes

Linked Nodes 10 30 50 70 90 110 130 150

Block 11,890 11,820 11,940 12,030 12,149 12,120 12,747 12,854
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Bitcoin is known to have no central node. In reality, some nodes have better network conditions 
and faster interaction speeds, resulting in them being connected to a larger number of nodes than 
others. Compared to nodes with unstable network environments, these nodes are more sensitive to 
changes in the Bitcoin network and are more likely to collect comprehensive data. As shown in Figure 
6, Node 1 can obtain information about blockchain changes from other nodes with a maximum of 
two steps. Node 1 is, therefore, more suitable as a detection node compared to Node 2.

In order to find out these nodes in Bitcoin network, we propose a topology control method 
for Bitcoin nodes based on the DPC algorithm. The density peak clustering (DPC) algorithm was 
initially proposed by Rodriguez and Laio (2014). It is a clustering algorithm used to group data 
points into clusters with high density. The DPC algorithm is intended to achieve effective clustering 
by computing the local density and distance of data points to identify density and cluster centers. In 
contrast to some traditional clustering algorithms, the DPC algorithm requires no prior knowledge 
of the number of clusters and is capable of effectively clustering clusters of arbitrary shapes and 
densities. In comparative experiments with clustering algorithms like DBSCAN and K-means (Wu 
et al., 2021), the DPC algorithm demonstrates superior performance and effectiveness.

In the subsequent work, we will employ the DPC algorithm to analyze the clustering centers 
of all nodes in the Bitcoin network, considering the network’s topology and clustering results to 
generate a certain number of clusters. The detection nodes will then be linked to the cluster center 
nodes, allowing for the collection of a more comprehensive blockchain-formed data from the Bitcoin 
network while minimizing the impact of resource consumption and network fluctuations.

The first step is to calculate the local density of each data point in the given dataset, which 
corresponds to the number of data points in its surrounding neighborhood. Here, we employ the 
distance measurement of routing distance between nodes in the Bitcoin network. Due to the non-
uniqueness of paths between nodes in the Bitcoin network, we need to first calculate the shortest routing 
distance between any two nodes. Assuming the set of all nodes is represented as X={X1, X2, ...}, we 
use Dijkstra’s algorithm to compute the shortest routing distance between any two nodes, Xi and Xj.

d Dijkstra X Xij i j= ( ), 	 (1)

Figure 6. Example of the Topology in Bitcoin Network
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Once the distances between nodes are determined, the local density of each node, denoted as Á, 
is calculated. Typically, the local density is determined by counting the number of data points within 
a neighborhood radius. Considering the characteristics of the Bitcoin network, we define a truncation 
distance, denoted as dc, as the neighborhood radius. Assuming the set of seed nodes in the Bitcoin 
network is represented as S={S1, S2, ...}, they are a set of consistently online and publicly accessible 
nodes voluntarily provided by network participants, aimed at maintaining the stability of the Bitcoin 
network. The truncation distance dc is defined as half of the shortest distance between the seed nodes 
Sn and Sm, which are the two closest seed nodes to node Xi. If node Xi itself is a seed node, dc is defined 
as half of the distance to the nearest seed node from Xi.
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The magnitude of the local density reflects the data distribution at the location of a data point. 
In clustering algorithms, data points with higher local density are typically considered as the core 
or central points of a cluster since they are surrounded by data points of a denser concentration. On 
the other hand, data points with lower local density may be regarded as outliers or noise points since 
they have fewer data points in their proximity.

The second step is to calculate the relative distance. The relative distance, denoted as ´ , refers 
to the minimum distance between a data point and other points of a higher relative density. Its value 
is the minimum distance between node i and all nodes with a higher density than it. If node i is the 
node with the highest density, the value is calculated as the maximum distance between node i and 
other nodes.
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According to the DPC algorithm, the node with the highest local density is considered a density 
peak, and it is a cluster center. We define its relative distance as the maximum value. We need to find 
cluster centers among the remaining nodes that satisfy two conditions: a high local density and a 
large relative distance. We use a decision value ³  to identify these cluster centers.

³ Á ´
i i i
= × 	 (6)

Provided that a node has both a high local density and a relative distance, it is likely to be a 
cluster center. The non-central nodes are then assigned to the cluster with the highest density that is 
closest to them. Finally, the detection nodes are linked to the cluster centers.

Experiments and Analysis
BitcoinNode provided the API for developers to obtain the information of all reachable nodes in the 
current Bitcoin network. The results indicate that 16,534 nodes are reachable with IP addresses in 
the current Bitcoin network, with approximately 57% of them labeled as N/A. The owners of these 
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nodes have concealed their locations with onion IP or private IP addresses, a measure to protect their 
privacy and security. Consequently, we are unable to trace the geographical locations of these nodes 
based on their IP addresses. The geographical location of all reachable nodes is depicted in Figure 7.

Using BitcoinNode API to request the routing information of all reachable nodes is the first 
step to calculate the routing distance between nodes. The results reveal that we received responses 
from 75.84% of the nodes. The remaining 24.16% of nodes rejected our requests to prevent potential 
network attacks. Ultimately, we obtained the routing tables from 12,538 nodes. Using the routing 
information, we calculated the routing distance dij between all nodes and used the improved DPC 
algorithm proposed in this paper to calculate the local density and relative distances for all nodes. 
The calculation results are shown in Figure 8. The x-axis represents the local density of the nodes, 
while the y-axis represents the relative distance.

The DPC algorithm determines that nodes of a high local density and a relative distance are 
more likely to be cluster centers. The results in Figure 8 indicate that nodes in the upper-right corner 
are more likely to become cluster centers. To further confirm this, we calculate the decision values 
as shown in Figure 9, where the x-axis represents the number of nodes, and the y-axis represents the 
decision values.

In order to minimize modifications to the topology structure while maximizing the amount of 
collected data, we conducted experiments to test the data collection under different decision values. 
The experimental results indicate that the number of nodes with higher decision value was too small, 
resulting in incomplete data collection by the detection nodes. On the other hand, connecting the 
detection nodes to cluster centers with too-low decision values increases modifications to the topology 
structure instead of contributing to the data volume. We ultimately used a decision value of 75 and 
selected 20 cluster centers.

Finally, by modifying the routing tables of the detection nodes, we establish individual links 
between the detection nodes and the cluster centers of their respective continents to observe the 
amount of data collected during the blockchain formation process. Figure 10 shows the distribution 
of detection nodes deployed. Additionally, this experiment compares the scenarios of not linking to 

Figure 7. The Geographical Location of Bitcoin Nodes
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cluster centers, using the DBSCAN algorithm, and using the K-means algorithm for cluster analysis. 
The experimental results demonstrate that linking the detection nodes to the cluster centers enables the 
collection of more comprehensive blockchain formation data. Compared to the other two clustering 
algorithms, the DPC algorithm identifies more orphan blocks and stale blocks, and dramatically 
reduces the time for detection nodes to receive block data, thus improving data collection performance.

We collected real data from the Bitcoin network between October 1, 2022, and December 31, 
2022, encompassing a total of 13,348 blocks ranging from height 756,390 to 769,738. To standardize 
the data collection process, this study categorizes the data collected by detection nodes into four 
types: Snapshot, representing the snapshots of the blockchain’s state at different time points during 
synchronization; Revision, representing a collection of events that cause state changes; State, 
representing a collection of blockchain states; and Event, representing a collection of blockchain 
events. Combining these four types of data, we can describe the blockchain evolution process from 
the perspective of each detection node. It is important to note that the data collected by different 

Figure 9. Decision Value and Number of Nodes

Figure 8. Local Density and Relative Distances



International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

15

detection nodes may vary due to their respective network environments. The data collected in our 
experimental environment are presented in Table 3.

By analyzing the data from different detection nodes, it becomes evident that the quantities of 
normal blocks, orphan blocks, and stale blocks differ from the perspective of each detection node. The 
results are shown in Table 4. Further processing of the data is required for it to be used in data analysis.

Figure 10. The Distribution of Detection Nodes

Table 3. Types and Quantities of Data Collected

Event Snapshot Revision State

Detector 1 27 13,551 66,408 27,003

Detector 2 38 13,659 66,394 26,987

Detector 3 46 13,530 66,702 27,014

Detector 4 62 13,546 66,512 27,028

Detector 5 43 13,524 66,687 27,011

Table 4. Types and Quantities of Data Collected

Normal Block Orphan Block Stale Block

Detector 1 13,348 726 131

Detector 2 13,348 754 142

Detector 3 13,348 731 138

Detector 4 13,348 718 140

Detector 5 13,348 734 135
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Data cleaning serves as the initial step in multi-node data fusion. The process includes addressing 
missing data, addressing anomalies, and handling outliers:

1. 	 Addressing Missing Data: In the case of non-temporal missing data, completion is performed to 
address non-temporal missing data using identical data collected from various detection nodes. 
On the other hand, temporal data is treated as an anomaly during the data cleaning process.

2. 	 Addressing Anomalies: Regarding temporal anomalies in the data, this study employs the 
method proposed by Bowden et al. (2020) for their treatment, and involves uniformly resampling 
the data between adjacent reliable timestamps.

3. 	 Handling Outliers: To mitigate the potential influence of noise, this study employs a method 
that calculates Cook’s distance for the block-related data. Outliers, defined as those exceeding 
four times the average Cook’s distance, are excluded from the analysis. This process aids in 
identifying and flagging data points that exhibit significant errors, such as erroneous timestamps.

After going through the data cleaning process, the resulting data is subjected to multi-node data 
fusion, yielding the final data on blockchain formation. Figure 11 illustrates an example of the data 
fusion process. The specific process of multi-node data fusion is outlined as follows:

1. 	 Individual Node Blockchain Formation: Each detection node’s blockchain formation process 
is reconstructed by considering the data collected and recorded by that specific node. The 
specific approach entailed constructing a comprehensive block synchronization process for an 
individual detection node by assembling the collected data in chronological order, following the 
synchronization procedure of the blockchain (Chen et al., 2020).

2. 	 Multi-Node Blockchain Formation: The blockchain formation processes from multiple nodes 
are combined and integrated. This step involves harmonizing the data and information obtained 
from different nodes, aligning the block height of the blockchain and ensuring consistency across 
the multiple blockchain formations.

Figure 11. An Example of Multi-Node Data Fusion
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Finally, we validated the feasibility of our method through a controlled experiment. The “Default” 
represents the results obtained from the probing node without any modifications to the network 
topology. The DPC algorithm utilized the method proposed in this study. Additionally, we conducted 
experiments under the same conditions with two other clustering algorithms, DBSCAN and K-means. 
Detailed data are shown in Table 5.

The experimental results demonstrate the advantages of our method. Our method yielded an 
additional 8.3% of data collected compared to the Default method, generating a more comprehensive 
construction of the blockchain formation process. Furthermore, due to the linkage with cluster centers, 
the time difference in data collection for DPC was 37% less than that of the Default method.

In comparison to DBSCAN and K-means, DPC achieved the ability to collect more data and reduce 
the time difference using fewer cluster centers. This implies that we can minimize modifications to 
the network topology and achieve better performance. Our analysis shows the K-means algorithm is 
better suited for handling spherical clusters, while the DBSCAN algorithm assumes clusters as dense 
regions. However, the real Bitcoin network is a decentralized network, and the shape and density 
of clusters formed in the network cannot be determined. Moreover, the K-means algorithm requires 
prior specification of the number of cluster centers (in this experiment, k=30), while the DBSCAN 
algorithm requires specifying density thresholds and neighborhood radius (in this experiment, 
MinPt=20, eps=2). These preset parameters are difficult to determine in the Bitcoin network and 
can also affect the quality of clustering.

Geolocating Bitcoin Nodes
Based on the data obtained by traversing the Bitcoin network topology using BitcoinNode, the 
approximate location map of all nodes in the Bitcoin network is shown in Figure 12. In the map, a 
circle represents a set of neighboring mining nodes in terms of geographical location. Additionally, 
57% of the nodes use either onion IP addresses or private IP addresses, which we refer to as N/A 
nodes. All N/A nodes are marked in the bottom left corner of the map. It is worth noting that N/A 
nodes engage in active communication within the Bitcoin network although their addresses cannot 
be determined.

A detection node was deployed in each of the three continents that showed the highest number 
of nodes in the Bitcoin network, namely, the Americas, Europe, and Asia. This deployment allows 
for data collection from the densely populated nodes in the Bitcoin network, reducing the impact of 
network fluctuations. Furthermore, it enables the analysis of block propagation delays among the three 
nodes, which helps determine the location of malicious nodes. The results from Boscovic et al. (2018) 
demonstrate a positive correlation between block size and propagation delay, with similar propagation 
times for the same block among different nodes. In the current Bitcoin network environment, the 
median time for a block to propagate throughout the entire network is as follows.

T S= + ×2 0 08. 	 (7)

Table 5. Comparison With Default, DBSCAN, and K-means

Cluster Centers Normal Block Orphan Block Stale Block Time Difference

Default 0 12,320 702 110 27s

DPC 20 13,348 754 143 10s

DBSCAN 30 13,348 731 140 13s

K-means 35 13,348 719 129 20s
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Given the similar propagation time of the same block among different nodes in the Bitcoin 
network, we denote the propagation time as TB. The time at which the detection node receives a block 
as TD can be expressed as the sum of the time at which the previous node releases the block as TM 
and the propagation time of the block in the network.

T T h TD M B= + × 	 (8)

The symbol h represents the number of steps for block propagation, with each step signifying a 
block synchronization between every two nodes. By analyzing the time at which the three detection 
nodes received a block, we can calculate the steps h1, h2, and h3 between the mining node that released 
the block and each of the three detection nodes.
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Based on the topology structure of the Bitcoin network, we finally obtain sets of nodes N1, N2, 
and N3, with steps h1, h2, and h3 between the nodes and each of the three detection nodes respectively. 
From the intersection of these three sets, we derive the target node set NT, which consists of the 
mining nodes we are seeking.

N N N NT = { }

1 2 3
, , 	 (10)

Figure 12. Location Map
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CONCLUSION

This paper introduces BitTrace, a framework for collecting blockchain formation data in the Bitcoin 
network. BitTrace enables the collection of fine-grained and real-time data for research areas such 
as evaluating the state and performance of the Bitcoin network, detecting malicious miner nodes, 
and adjusting mining strategies. The paper provides a detailed description of the design principles, 
system architecture, and underlying principles of BitTrace. To improve data completeness and 
efficiency, we propose a high-quality node identification method based on the DPC algorithm, 
which outperforms other clustering algorithms. The research findings demonstrate that increasing the 
number of monitoring nodes and connecting them to higher-quality nodes can enhance data collection 
efficiency. Finally, a geolocation plug-in for identifying malicious miner nodes is proposed based 
on the design of BitTrace.

BitTrace, serving as a data collection framework for Bitcoin system, effectively addresses the 
existing research gap in this domain. The comprehensive framework design and detailed description 
of the blockchain formation process offer valuable insights and serve as a reference for future 
researchers in this field. Furthermore, the versatile BitTrace allows for application across domains 
and scenarios, further enhancing its potential impact and practicality. Significant progress has been 
made in optimizing Bitcoin mining strategies (Luo & Zhang, 2023) and detecting selfish miners with 
BitTrace. However, it is worth noting that BitTrace still has some limitations. For example, BitTrace’s 
scalability advantages are weakened by the limited availability of plug-ins. In the future, our work 
can be extended in several ways:

•	 Development of more plug-in modules. Our microkernel-based framework is highly scalable and 
enables more functional plug-ins that implement other business logic. For example, plug-ins that 
analyse the running status of different clients in the Bitcoin network, and plug-ins that visually 
analyse the blockchain formation process.

•	 Framework performance optimization. The framework may become more efficient and less 
consuming after collecting a large amount of real-time data. In future work, we will optimise 
data storage in the framework so as to speed up the plug-in data calls.
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