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ABSTRACT

Under the premise of ensuring data privacy, traditional network intrusion detection (NID) methods 
cannot achieve high accuracy for different types of intrusions. A NID method combining transformer 
and federated learning (FedL) is proposed for this purpose. First, a multi-party collaborative learning 
framework was built based on FedL, which achieved data exchange and sharing. Then, by introducing 
the self-attention mechanism (AttM) to improve the traditional transformer, it could quickly converge. 
Finally, an NID model integrating transformer and FedL was constructed by combining DNN, GRU, 
and an encoder module composed of improved transformer, achieving accurate detection of network 
intrusion. The proposed NID method was compared with the other three methods. The results show 
that the proposed method has the highest NID accuracy and F1 score on the NSL-KDD and UNSW-
NB15 dataset, with the highest accuracy reaching 99.65% and 89.25%, while the F1 score has the 
highest accuracy, reaching 99.45% and 88.13%, outperforming the other three comparative algorithms 
in terms of performance.
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INTRODUCTION

In recent years, the large-scale popularization and rapid development of the internet have brought 
great convenience to the development of enterprises and personal lives, followed by a series of 
network security issues and challenges (Hamad et al., 2020; Wang, et al., 2021; Fan et al., 2020). 
Bad actors often exploit network vulnerabilities, Trojan viruses, and other means to steal confidential 
information and valuable personal information. Network attacks can have wide coverage and endanger 
many areas of public production and security, causing huge burdens and losses. Research shows 
that sudden network attacks reveal that the existing basic network security protection technologies 
cannot flexibly adapt to resist complex network attacks. Therefore, there is an urgent need to propose 
network security technologies to address network security threats (Wang et al., 2020; Park et al., 
2020; Wang et al., 2022).
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At present, the complexity of network threats is increasing, and the means of attack are becoming 
increasingly diverse, making the security protection of network systems particularly important. 
Firewalls, spam filters, and antivirus software are all tools used to protect network security. But 
currently the most widely used and powerful network security technology is NID systems. It is the most 
crucial link in the attack defense chain and can be used as the first or second defense mechanism for 
threats or attacks (Liu et al., 2020; Qin et al., 2020; Sharafaldin et al., 2021). The ultimate goal of the 
NID system is to quickly and accurately detect different types of attacks that may occur in the network, 
such as denial of service, port scanning, malware, distributed denial of service, or ransomware, by 
investigating network traffic (Meidan et al., 2022; Lin et al., 2021; Sattler et al., 2022).

The goal of NID is to detect abnormal behavior that damages the host as much as possible 
without interfering with the normal use of the network. The key to implementing NID is to find 
an effective detection algorithm to analyze network traffic (Yang et al., 2022; Cheng et al., 2020; 
Cheng et al., 2021).

Traditional machine learning (ML) technology has been proven to effectively identify important 
patterns in Internet of things (IoT) traffic, thus effectively targeting attacks. At present, the public is 
becoming increasingly sensitive to data privacy, and there is a risk of privacy leakage during data 
transmission (Zhu, et al., 2023; Cui, et al., 2023; de Caldas et al., 2023). Therefore, the data collected 
and transmitted from the device will be subject to legal regulatory limitations, which may lead to 
deviations in NID’s task results. The delay generated by training based on global data and returning 
the results to edge nodes is relatively large, which is unacceptable for some delay sensitive applications 
(Ling & Hao 2022; Ling & Hao., 2022; Tembhurne, et al., 2022).

In 2016, Google proposed a distributed ML framework called FedL that can protect privacy, 
which is used to protect user privacy and information security during data exchange. FedL provides a 
collaborative and secure learning protocol that enables efficient learning among multiple participants 
while ensuring legal compliance (Srivastava, et al., 2022; Rahman, et al., 2020). Under this framework, 
each edge device can contribute to global model training while retaining the training data locally. 
In the FedL environment, edge devices typically collect sensing data from IoT nodes, typically time 
series data, and capture the behavior and operational status of IoT nodes through computational 
analysis (Mourad, et al., 2020; Abbas, et al., 2021).

This article solves the issues of sensitive information protection and incomplete data in training 
data by applying transformer and FedL to NID and improves the accuracy of NID. Compared with 
traditional methods, the proposed method provides the following innovations:

1. 	 It utilizes sparse stacked autoencoders for feature dimensionality reduction and extracting deep 
level features of traffic using DNN. Using GRU to extract temporal features of traffic, the two 
feature maps are combined to ensure the comprehensiveness of the extracted features.

2. 	 By introducing self AttM, the traditional transformer network has been improved to achieve fast 
convergence under massive computational data.

3. 	 A multi-party collaborative learning framework was built based on FedL, and a NID model 
was constructed by combining DNN module, GRU module, and encoder module composed of 
improved transformer.

RELATED WORK

NID
The NID system is an important component of network security research. It detects intrusion behavior 
through proactive defense technology and takes emergency measures such as alerting and terminating 
the intrusion. Therefore, with the rapid development of learning technology, people have developed 
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various methods based on ML and deep learning. Researchers and scholars from foreign research 
institutions began to work on the application of deep learning in NID more than a decade ago.

By using convolution to collect local features of network traffic and extracting features using 
deep recurrent neural networks, Qazi and Zia (2023) constructed a hybrid NID system based on 
convolutional recurrent neural network architecture (Pan, et al., 2022). A white hat worm launcher 
suitable for defense systems in large-scale IoT networks has been proposed using the basic principles 
of machine learning. This launcher can effectively launch the white hat worm and deploy it to large-
scale IoT networks using a divide and conquer algorithm to protect IoT systems from malicious 
attacks. However, due to the similarity between the communication mode of the white hat worm and 
normal devices when scanning and identifying malicious software, it may be misjudged as malicious 
software, causing unnecessary interference or damage to normal devices. In response to the attacks 
on vehicle networks, Alkhatib et al. (2022) compared and analyzed the real-time NID performance 
of different unsupervised deep learning and ML based NID algorithms on ethernet vehicle networks 
and provided their advantages and disadvantages. However, no new methods have been proposed 
that can effectively improve NID performance. By treating network traffic as vibrations, waves, or 
sounds, Aldarwbi et al. (2022) transformed network traffic features into waveforms, and based on 
this, implemented NID using deep learning technology based on audio/speech recognition, proposing 
a new NID system called “Voice of Intrusion.” In response to the problem of signature recognition, 
Chellammal et al. (2023) proposed a deep learning based NID model by combining multiple hidden 
processing layers in the network to form a multi-layer deep learning network. However, this method 
only focuses on signature recognition of complex intrusion features involved in the NID process and 
does not fundamentally provide a path for NID (Takeda, 2022). In response to the increasing burden 
of intrusion attacks on servers, the reasons for the difficulty in implementing NID were analyzed, 
and a deep neural network for NID systems was proposed. In response to the complexity problem 
caused by network interactions when network traffic encounters known or unknown intrusions in 
the network, Farooq et al. (2023) proposed a NID scheme that integrates ML technology: IDS-
FMLT, which achieves heterogeneous NID for different source network compositions. By combining 
reinforcement learning based on Q-learning with deep feedforward neural network methods, utilizing 
deep Q-learning to provide continuous automatic learning capabilities, a new NID method is proposed 
(Alavizadeh et al., 2022), which achieves intrusion detection for different types of networks through 
automatic trial and error. Although the above methods can improve the accuracy of NID to some 
extent compared to traditional ML based NID methods, they are all based on fixed or dynamic rules to 
identify attacks on the network. However, currently attackers use various techniques to disguise their 
attacks and disrupt the target’s defense system. The intrusion detection system constructed using the 
above methods is no longer able to withstand the increasingly complex and diverse network threats.

FedL-Based NID
In the FedL architecture, FedL servers are unable to access data and control the behavior of edge 
devices. Therefore, edge devices may intentionally or unintentionally deviate from the prescribed joint 
training process. Scholars have conducted relevant research on the application of FedL in NID. Bai et 
al. (2022) proposed a NID mechanism based on FedL and NID models, and improved the effectiveness 
of the model through functional programming, requirement analysis, and design. In response to the 
problem of insufficient samples and probability adaptation, Wang et al. (2022) established a transfer 
limit learning machine model FLTrELM and implemented data aggregation using FedL. Combined 
with the transfer learning mechanism, a NID algorithm based on federated transfer learning was 
proposed (Novikova et al., 2022). A method for developing a NID system for vertically partitioned 
data based on the principle of joint learning was developed, and on this basis, the safe water treatment 
dataset SWaT was used to model the vertically partitioned data. In response to the security needs 
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of edge assisted IoT, Rahman et al. (2022) proposed an intelligent intrusion detection mechanism 
FedACNN that can effectively complete NID tasks by utilizing the FedL mechanism to assist CNN 
models and integrating AttM (Zhang, L & Zhang, J. H., 2022). A new detection model for artificial 
immune detection problems based on multi operator co- evolution theory has been proposed. By 
effectively simplifying and classifying high-dimensional features, and combining vaccination strategies 
and multi operator co- evolution, accurate detection has been achieved. However, the applicability 
of this method in other fields still needs further verification (Sarhan et al., 2022). A hierarchical 
blockchain based joint learning framework was proposed by running transaction processes on a 
secure blockchain. Based on this, a hierarchical joint learning architecture was utilized to ensure the 
privacy of the learning process and organizational data, achieving a secure and privacy collaborative 
IoT NID. While these research methods all have superior performance in certain aspects, further 
improvement is still needed to meet the urgent needs of network security (Mishra et al., 2022). A 
new set of classifiers has been proposed to address the issue of significant network bandwidth and 
server losses caused by DDoS attacks. The theoretical basis of this aggregator is the majority voting 
principle, which can reduce related losses while improving the accuracy of DDoS attack detection. 
However, this method has only been studied for DDoS attacks, and its effectiveness against different 
types of network attacks still needs to be verified.

Solution Strategies
Traditional network intrusion detection methods face various challenges, especially in terms of data 
privacy and accuracy in detecting various intrusions, as follows:

1. 	 Data privacy issues: Traditional network intrusion detection methods typically require deep 
analysis of network traffic in order to detect malicious behavior. However, this method requires 
the collection and processing of a large amount of network traffic data, which may lead to 
the leakage of sensitive information, thereby causing data privacy issues. With the increasing 
strictness of network security and data protection regulations, effective intrusion detection has 
become an urgent problem to be solved while protecting user privacy.

2. 	 Accuracy issue in detection: Traditional network intrusion detection methods often use rule-
based or feature-based methods for detection. However, with the continuous upgrading and 
complexity of attacker methods, these methods may not be able to accurately identify new or 
unknown intrusion behaviors. In addition, false positives and false negatives are also serious 
issues faced by traditional methods, which may lead to inefficient security teams in dealing with 
real threats.

3. 	 The processing capability of large-scale networks: With the continuous expansion of network 
scale, traditional network intrusion detection methods may not be able to maintain high detection 
accuracy while processing large amounts of network traffic data in real-time. This may lead to 
a decrease in the performance of the detection system, and even fail to detect potential intrusion 
behaviors in a timely manner.

4. 	 Complex network environment and diversified attack means: Modern network environments 
have become more and more complex, including the wide application of new technologies such as 
cloud computing, IoT and edge computing. At the same time, attackers are constantly innovating 
and evolving their attack methods, such as using encrypted communication, polymorphic code, 
and social engineering. These new trends have brought greater challenges to traditional network 
intrusion detection methods.

5. 	 Response to advanced persistent threats (APT): APT is a long-term, highly covert 
network attack aimed at stealing sensitive information or damaging target systems. 
Traditional network intrusion detection methods may be difficult to effectively respond 
to APT attacks, as they can often bypass conventional security defense measures and lurk 
in the target network for a long time.
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FedL is a distributed ML with privacy protection function. Under the coordination of a central 
server, multiple users collaborate to solve ML problems, and each user’s original private dataset is 
stored locally. This effectively solves the problem of current NID technology being unable to effectively 
protect data privacy and having high communication costs. Therefore, by applying transformer and 
FedL to NID, the issues of sensitive information protection and incomplete data in training data are 
solved, and the accuracy of NID is improved.

FedL
FedL is a multi-party collaborative learning framework that can essentially be seen as an ML 
framework. Participants can be various enterprises, individuals, or devices, each with independent 
and equal status and possessing their own local data and models. FedL brings various enterprises or 
users together to establish models and improve model performance, but data is not shared, and data 
privacy is protected to a certain extent. Compared to distributed ML, FedL is a better technology. 
Distributed ML only trains data on multiple machines together, with data exchange and sharing, and 
cannot guarantee privacy.

FedL is defined from the perspective of model training performance. If there are M  users 
U U U

M1 2
, ,..., , each user has their own network data D D D

M1 2
, ,..., . FedL users can jointly train a 

model M
F

, represented by P
F

. When the following eq (1) is satisfied, it indicates that the accuracy 
loss of the FedL algorithm is h :

P P
F S
− < h 	 (1)

Due to privacy protection reasons, accuracy loss is allowed. FedL is a framework based on 
distributed ML. The main idea of FedL is to enable edge devices (referred to as clients) that can store 
a large amount of local data for various calculations and applications to collaborate on training global 
ML models on the device side using the generated data, without the need to share their original data 
to obtain the training model. The typical architecture of FedL is shown in Figure 1.

Figure 1. Typical architecture of FedL
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In Fig. 1, the coordination server (usually referred to as the parameter server) will summarize 
the model parameters of customers, derive and update the global model, and share the model with 
participating customers. The edge nodes of the updated global model will continue to utilize local 
data for model updates in subsequent iterations, and the subsequent server nodes will also benefit 
from the learning experience of the client nodes. The basic process of FedL is as follows:

1. 	 In the initial stage, the central server confirms the task and objectives of model training, initializes 
global model parameters, and broadcasts them to all participating nodes.

2. 	 The client updates the local model based on locally generated IoT data. Edge devices typically 
have a certain level of computing resources (such as laptops equipped with reasonable CPUs, 
photography devices with moderate computing power), and the FedL protocol allows clients to 
securely store their data in local storage.

3. 	 The client uploads the trained model parameters to the server.
4. 	 Multiple client local models are selected based on the node selection algorithm for global updates 

to further improve the model.
5. 	 On the server side, the parameters of the client node are selected and the global model parameters 

are updated using the global model aggregation algorithm.
6. 	 The updated global model parameters are transferred to the client node and the iteration process 

is continued until global convergence is achieved.

The training process of FedL is shown in Figure 2.

1. 	 Model initialization: The server determines the hyperparameters of the global model structure 
and training process, such as the number of participants, initial weights, etc. Then, the server 
broadcasts the initialized global model and tasks to each participant.

Figure 2. Training process of FedL



International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

7

2. 	 Local model training and updating: According to the global model after the t-th iteration, each 
participant uses their local data and computer to update the local model parameters separately. 
The goal of the participants is to find the optimal parameters of the local model to minimize the 
loss function. The updated local model parameters are then sent to the server.

3. 	 Global model aggregation and updates: The server aggregates the local model of the participants 
and sends the updated global model parameters back to the data owner. Steps (2) to (3) are 
repeated until the global loss function converges or reaches the required training accuracy (i.e., 
the loss function) reaches the minimum.

From the above analysis, it can be seen that building a network intrusion detection model based 
on federated learning can effectively solve the problems of weak data privacy protection and high 
communication costs.

Federated learning does not transmit data but uses data for local training and submits model 
parameters for local training. This means there is no risk of data privacy leakage, and since the 
transmission cost of model parameters is much lower than the data transmission cost, its communication 
overhead will also be greatly reduced.

PROPOSED FEDL-BASED NID METHOD

NID Model
The NID model mainly consists of a DNN module, GRU module, and encoder module composed of 
an improved transformer. Next is the multi-layer perceptron (MLP) module, and finally the softmax 
layer. The model structure is shown in Figure 3.

The DNN module mainly consists of three hidden layers, each consisting of a convolutional layer, 
a batch normalization layer, and a max pooling layer. The GRU module consists of two identical 
GRU layers. Given a feature vector (a one-dimensional vector representing network traffic data) as 
input to the model, the GRU module and DNN module process feature vector separately. The GRU 
module treats feature vectors as multivariate time series with a single time step. Before transferring 
the feature vector to the GRU module, the time dimension of the feature vector needs to be transposed. 
The DNN module treats the feature vector as a univariate time series with multiple time steps, passes 
through three hidden layers in sequence, and finally flattens the output feature map. After the DNN 
module and GRU module, the feature maps output by each module are concatenated and sent to the 
encoder module. The MLP module includes two fully connected layers and one dropout layer. The 
dropout layer is used to prevent overfitting of the model. Afterwards, the output is limited to 0-1 
through the softmax layer.

From Figure 3, it can be seen that this method can be used to reduce the likelihood of data leakage 
and other types of network attacks. This is mainly reflected in the following two aspects:

1. 	 The NID method provided utilizes federated learning to unite various enterprises or users to 
jointly establish models and improve model performance. However, during the data transmission 
process, the data is not shared. Instead, local training is conducted on the local model, and the 
trained model parameters are ultimately uploaded. Therefore, data privacy can be greatly protected, 
reducing the risk of data leakage.

2. 	 The network intrusion detection model includes a DNN module, a gated recurrent unit (GRU) 
module, and an encoder module composed of an improved transformer. Given the feature vector x 
as the input of the model, it will be processed by the GRU module and DNN module respectively, 
which will greatly reduce the possibility of other types of network attacks.
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Data Pre-Processing
Because data can only be trained and tested using numerical values when using DNN for classification, 
and the dataset contains many different data types, it is necessary to pre-process the initial data. The 
pre-processing process is mainly divided into the following two steps:

1. 	 Symbol data preprocessing: Converts non numerical data into numerical data. Non- numerical 
data typically exists in datasets, and assigning specific values to each variable can convert these 
features from the training and testing datasets into numerical types. During pre-processing, the 
attack class and normal class of the dataset are converted into digital classes, such as assigning 
1, 2, 3, and 4 to DoS, Probe, R2L, U2R, and 5 to normal.

2. 	 Data normalization: The features of a dataset are generally discrete or continuous values, and 
if the range of feature values is different, they cannot be directly compared. By using minimum 
maximum normalization to process these features, all different values of each feature are mapped 
to the range of [0,1].

DNN for Deep Feature Extraction
The universal model is the core module of the FedL based NID framework, where DNN is selected 
as the universal model for the framework, as shown in Figure 4.

In the DNN model shown in Fig. 4, the input layer uses data features from the dataset as neurons. 
The first hidden layer is an automatic encoder containing 20 neurons, which selects 20 features from 
the input data features; the second hidden layer is an automatic encoder containing 10 neurons; the 

Figure 3. Model of NID
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third hidden layer is the softmax layer, through which data can be divided into normal classes and 
other different attack classes.

GRU for Temporal Feature Extraction
GRU has been proven to be an effective LSTM variant in various application fields, with its structure 
being a simplified and enhanced version of LSTM. The input gate, forgetting gate, and output gate in 
LSTM structure are replaced with the reset gate and update gate. The gate is reset to calculate whether 
to forget the previous calculation state, and the gate is updated to determine how much information 
will be iterated from the previous step to the current step. The GRU structure is shown in Figure 5.

Figure 4. DNN

Figure 5. GRU unit structure
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The main calculation formula for GRU structure is as follows:

r h x
t r t t
= ⋅ 


( )−β ω

1
, 	 (1)

z h x
t z t t
= ⋅ 


( )−β ω

1
, 	 (2)

h z h z h
t t t t t
= −( )⋅ +−1

1
 	 (3)

h r h x
t t t t
= ⋅ ⋅


( )−tanh ,w

1
	 (4)

where, w  represents the weight matrix. r
t
and z

t
 represent the output of reset gate and update gate 

at time t. h
t
 and h

t
 represent the state information and candidate state information at time t. The 

expanded view of GRU is shown in Figure 6.

Improved Transformer
The transformer network model mainly consists of two parts: encoder and decoder. The encoder and 
decoder are composed of stacked layers of AttM modules, which are composed of multiple AttM layers 
and feedforward layers. Transformer abandons the traditional ideas of recurrent neural networks and 
convolutional neural networks, avoiding the model structure of loops. Therefore, the entire network 
structure is completely dependent on the global dependency of AttM on input and output, breaking 
through the limitation that recurrent neural network models cannot perform parallel calculations.

A highly interpretable model facilitates the calculation of the correlation between two 
positions, due to the high computational complexity, long training time, and difficulty in model 
convergence of traditional serialized temporal neural networks. To address this issue, self AttM 
was introduced. In order to adapt the transformer to NID data one-dimensional signal data and 
achieve multi-layer stacking, modifications have been made to the transformer. The model 
structure is shown in Figure 7.

Figure 6. GRU unit expanded view
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The encoder structure was selected and adjusted in Figure 7. First, the one-dimensional input 
data is processed through a fully connected layer, and its output is converted into a two-dimensional 
matrix of 14×14. A convolution with a scale of 2×2, a step size of 2, and a channel number of 32 
is used to extract features from the input data. This convolution is equivalent to dividing a two-
dimensional matrix into independent small slices of 7×7, each with a feature dimension of 32, and 
then flattening and spreading them out. A category encoding is randomly initialized as the category 
encoding information for a certain data, and then channel concatenation is performed with slice 
information. Through the above processing, the data can be input into the transformer module. After 
passing through the encoder module of the Transformer, the data dimension is 50×32. Among them, 
1×32 is the category information predicted by the network, and 49×32 is the information for each 
small slice. Subsequently, as long as the dimension of category information is extracted separately, the 
network prediction results can be obtained through the fully connected layer (1×32 converted to 1×2).

The improvement of traditional transformers through AttM contributes to the performance of 
the model as follows:

1. 	 Contextual information is captured through AttM. AttM allows the model to consider the 
interrelationships between all elements in the input sequence, thereby capturing richer contextual 
information. By parallel computing multiple self-attention heads, the model’s ability to capture 
different types of contextual information can be enhanced.

2. 	 The introduction of AttM makes the transformer model more flexible and adaptable. It can handle 
variable length input sequences and better handle contextual information of different lengths.

3. 	 The weight of AttM can be interpreted as the correlation between different elements in the 
input sequence, which helps to improve the interpretability of the model. By visualizing self-
attention weights, it is possible to better understand how the model processes input sequences 
at different levels.

Figure 7. Transformer based on AttM
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4. 	 The introduction of AttM optimizes the training process of the transformer model. Through 
parallel computing and distributed training, the training speed and efficiency of models can be 
improved, thereby accelerating the development and application of deep learning models.

NID That Integrates Transformer and FedL
The integration of transformer and federated learning has great practical significance for 
network intrusion:

1. 	 Implementing more effective data privacy protection: Federated learning is a distributed 
machine learning method that can train models without sharing data. By combining transformer 
with federated learning, more accurate and effective model training can be achieved while 
maintaining data privacy.

2. 	 Improving the robustness of the model: The transformer model is susceptible to adversarial 
attacks. Federated learning can provide an integrated solution, which can increase the robustness 
of the model and reduce the risk of adversarial attacks by training on distributed datasets.

3. 	 Expanding application scope: Transformer and federated learning each have different application 
scenarios. Integrating them can expand their respective application scope and achieve more 
complex and extensive application scenarios. For example, transformer models can be used to 
process text data, while federated learning can be used for model training on distributed datasets.

4. 	 Enhance model performance: By integrating transformer and federated learning, the advantages 
of both can be combined to enhance model performance. For example, transformer models can 
provide powerful modeling capabilities, while federated learning can provide more flexible and 
effective data processing methods. Combining the two can achieve more accurate and efficient 
model training and inference.

The NID architecture that integrates transformer and FedL is shown in Figure 8.
In Figure 8, the system is a combination of centralized and distributed operating systems. The 

training of the model is divided into two stages, with the first stage completed in the base station 
and the second stage completed in each node. The specific steps for model training are as follows:

Step 1: In the base station, preliminary training on the model using a known labeled source dataset 
is performed, which is the first stage of federated transfer learning.

Figure 8. NID architecture integrating transformer and FedL
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Step 2: The preliminarily trained model is distributed to various nodes with certain 
computational power.

Step 3: Nodes collect real-time data from nodes in their area and share 10% of it globally.
Step 4: The node utilizes real-time data obtained by itself and data shared by other nodes to train and 

tune local models at that node, which is the second stage of federated transfer learning.
Step 5: The trained model for NID is used.

In the first training stage, the algorithm fully utilizes the available dataset and trains the base station 
through source domain data related to the target domain, laying the foundation for the parameters 
in the deep learning network and determining the general direction of training. However, because 
the source domain is not completely the same as the target domain, directly using the target domain 
data as detection data will definitely produce poor results. By distributing the preliminarily trained 
network parameters to each node, the algorithm enters the second training stage. In the second training 
stage, in order to fully utilize the computing power of each node, FedL is made the main task of this 
stage. At the same time, in order to reduce the overall accuracy of the model caused by biased data 
acquisition by different nodes, 5% of the data received by each node is used as global shared data, 
ensuring that at least 5% of the same data is present in the training data of each node. In this way, 
the training parameters of each node in the model are not significantly different, ensuring accuracy. 
The training process of the model is shown in Figure 9.

Figure 9. The training process of NID
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This model does not require centralized training of all raw data to obtain the final model, but 
instead selects a local objective function as a substitute for the global objective function based on 
the corresponding data subset of each device. A local solver is used to optimize the local objective 
functions of these devices, and after each iteration process, the local model parameters are transferred 
to the central server, which aggregates them to obtain the final global model.

In the first training stage of the proposed model, the available dataset was fully utilized, but we 
should clearly recognize that there is no need to transmit user data before or during the model training 
process, which means that user data will not be intercepted during the transmission process, which 
is the biggest security risk. Therefore, the security of user data can be guaranteed.

EXPERIMENTAL ANALYSIS

Dataset and Evaluation Indicators
The proposed model was evaluated on the NSL-KDD and UNSW-NB15 datasets. The NSL-KDD 
dataset has improved the KDD99 dataset by removing redundant and duplicate data from the training 
and testing sets, making the settings of the training and testing sets more reasonable and enabling 
more accurate detection rates. In the NSL-KDD dataset, there are five types of attacks: normal traffic, 
denial of service attacks, port attacks, privilege escalation attacks, and remote user attacks.

The selection of NSL-KDD as training and testing data for the NID system is mainly based on 
the following criteria:

1. 	 Widely used: The NSL-KDD is one of the most widely used datasets in the NID domain, with 
high popularity and recognition. This dataset is widely used in academic research and industrial 
applications, providing a benchmark testing platform for evaluating the performance of NID.

2. 	 Contains multiple types of attacks: NSL-KDD includes various types of attacks, including 
remote login, probing, web, and more. These types of attacks cover various aspects of network 
intrusion and help to comprehensively evaluate the performance of NID.

3. 	 Contains normal traffic data: In addition to attack data, NSL-KDD also contains a certain 
amount of normal traffic data, which helps to better distinguish between normal traffic and attack 
traffic when training and testing NID systems and improve system accuracy.

4. 	 Data standardization: The data in NSL-KDD has been standardized to eliminate the influence 
of dimensionality and value ranges between different features, making them comparable. This 
helps to improve the performance and accuracy of NID.

Because NSL-KDD generates datasets by simulating network traffic in real scenarios, it has high 
practical significance and practicality. The attack techniques and features in this dataset are simulated 
and generated based on actual network attack cases, enabling them to represent real-world intrusion 
scenarios to a certain extent.

The UNSW-NB15 dataset was collected in a real network environment at the Australian security 
laboratory in 2015. The network traffic records contained therein are authentic modern normal 
activities and modern comprehensive attack behaviors. Compared to the NID dataset KDD99 dataset, 
it better reflects the characteristics of modern network traffic. Therefore, this article’s experiment 
also focuses on the NID dataset UNSW-NB15. The network record vector of this dataset contains 
10 types of abnormal intrusion attack behaviors.

The selection of UNSW-NB15 as training and testing data for the NID system is mainly based 
on the following criteria:

1. 	 Includes modern attack types: Compared to early NID datasets, UNSW-NB15 includes more 
modern types of attacks, such as attacks against web applications and botnet attacks. These types 
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of attacks are currently popular topics in the field of network security and selecting this dataset 
can help evaluate the detection capability of NID systems against modern attacks.

2. 	 High quality labels: Each traffic sample in UNSW-NB15 has undergone detailed labeling and 
classification, including normal traffic, attack traffic, and specific types of attacks. The high 
quality of these labels ensures the accuracy of training and testing, making the evaluation results 
more reliable.

3. 	 Large scale datasets: UNSW-NB15 is a large-scale dataset that contains a large number of 
network traffic samples. This enables the dataset to support larger scale training and testing, 
which helps improve the generalization ability of NID systems.

4. 	 Rich in features: UNSW-NB15 contains rich feature information, including statistical 
characteristics of network traffic, time characteristics, and protocol characteristics. These features 
help to more comprehensively describe the behavioral patterns of network traffic and improve 
the accuracy of NID systems.

UNSW-NB15 is generated by simulating traffic in real-world network environments, which 
makes this dataset highly relevant and practical. The network traffic in this dataset includes both 
normal traffic and various attack traffic, which helps to comprehensively evaluate the performance 
of NID systems.

The experiment used classification accuracy (A) and F1 score to evaluate the model’s classification 
performance. A refers to the proportion of correctly classified data among all data, calculated as 
shown in eq (5) below:

A
T T

T T F F
P N

P N P N

=
+

+ + +
	 (5)

The selection of accuracy as the evaluation indicator for network intrusion detection is mainly 
because accuracy can intuitively reflect the performance of the intrusion detection system. The higher 
the accuracy, the more accurately the system can identify normal traffic and attack traffic, avoiding 
false positives and omissions. In practical applications, the purpose of network intrusion detection 
systems is to discover potential attack behaviors in complex network traffic and prevent the network 
from being exploited by malicious attackers. If the accuracy of the detection system is low, it is easy 
to misjudge normal traffic as attack traffic, or miss the true attack traffic, which will pose a threat 
to the normal operation of the network. Therefore, choosing accuracy as an evaluation metric can 
measure the performance of intrusion detection systems in identifying normal traffic and attack 
traffic, helping us determine the reliability and security of the system. Meanwhile, accuracy can also 
serve as a basis for optimizing and improving the system, enhancing its performance and accuracy.

F1 score is the harmonic mean of accuracy and recall, calculated as shown in equation (6):
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In equation (6), D
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 represents the number of correctly 

predicted samples, F
P

 represents the number of samples that were incorrectly identified as this class, 
T
N

 represents the number of samples that were correctly predicted as other classes, and F
N

 represents 
the number of samples that were incorrectly predicted as other classes.
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The reason for choosing F1 value as the evaluation metric for network intrusion detection 
is mainly because F1 value can comprehensively reflect the precision and recall performance 
of the classifier and has high evaluation accuracy. The F1 value is the harmonic mean of 
precision and recall, taking into account both the precision of true examples and the recall of 
true negative examples. Therefore, the F1 value can provide a more comprehensive evaluation 
of the performance of intrusion detection systems. In real-world scenarios, network intrusion 
detection systems need to accurately detect attack behavior in complex network traffic while 
avoiding false positives and false negatives. If the precision is too high and the recall is too low, 
there may be missed reports, resulting in some attack traffic not being detected; if the precision 
is too low and the recall is too high, there may be false positives, misjudging a large amount of 
normal traffic as attack traffic. Therefore, a comprehensive indicator is needed to consider both 
precision and recall performance, and F1 value is precisely such a suitable indicator. In addition, 
F1 value also has the advantages of relatively simple calculation and easy understanding, so F1 
value is used as an evaluation indicator in many classification tasks.

Experimental Environment
Table 1 shows the specific experimental environment.

Model Training
First, the impact of participant number N  and learning rate a  on model performance are analyzed. 
In the experiment, the number of participants N  was set to be 10 and 20, and the learning rate a  
was 0.001 and 0.0001, respectively. The model was trained, and the test results were recorded. The 
accuracy obtained from training with the NSL-KDD and UNSW-NB 15 datasets is shown in Figures 
10 and 11, respectively.

Figures 10 and 11 show the experimental content recorded in terms of the number of epochs 
and model prediction accuracy during the training process of the model. It can be seen that when 
the learning rate is set to 0.001, the accuracy changes with the increase of epoch, and this is used as 
the baseline for comparison.

When the number of participants is 10, adjusting the learning rate from 0.0001 to 0.001 can 
accelerate the convergence of the model, reaching an accuracy of 99.65% when the epoch is 20. 
When the number of participants is 20, the learning rate is adjusted from 0.0001 to 0.001, and the 
highest model accuracy can also reach 99.6%, but the convergence speed is significantly reduced. 
From this, it can be seen that regardless of the number of participants, the change in learning rate 
is a key factor affecting the model’s faster convergence to maximum accuracy. Meanwhile, because 
each participant has the same training sample data, the number of participants directly affects the 
total amount of data participating in model training. This will affect the speed of model convergence 
and require more epoch to ensure model accuracy.

Table 1. Experimental platform settings

Experimental Environment Specific Information

Operating system Windows 7

Memory 64GB

Language Python3.8.2

Development tool Pycharm

Graphics card GTX 2080

Development platform Tensorflow2.3.2
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When setting different batch sizes, the model loss during the training process using the NSL-
KDD dataset is shown in Figure 12.

In Figure 12, the results show that as the batch size increases, the convergence speed of the model 
slows down. This is because as the batch size increases, the number of communication times for 
FedL also increases, and network overhead is often a significant expense in the system. Therefore, a 
smaller batch size will be used for subsequent experiments.

To further validate the detection effect of the model on network intrusion behavior, the k-fold 
cross validation method is used to conduct experiments on the accuracy and F1 score of the model 
on two datasets. The results are shown in Figure 13 and Figure 14.

Figure 10. Accuracy using NSL-KDD dataset

Figure 11. Accuracy using UNSW-NB15 dataset
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Figures 13 and 14 show that, after testing with k values ranging from 1 to 10, the accuracy and 
F1 score values of both datasets increase with the increase of k values. This is because as the k-value 
increases, the number of partitions in the dataset will increase, and the data used as the training set 
will also increase. The more data participate in training, the higher the final evaluation indicators 
such as test accuracy will be.

Comparative Analysis
In order to further verify the superiority of the proposed NID method that integrates transformer and 
FedL, comparative experiments were conducted with IDS-FMLT (Mourad, et al., 2020), FLTrELM 
(Alkhatib et al., 2022), and FedACNN (Chellammal et al., 2023).

The experiments were conducted using two datasets, and the accuracy obtained by different 
methods is shown in Figure 15 and Figure 16, respectively.

Figure 12. Training losses using NSL-KDD dataset

Figure 13. Accuracy when using different datasets
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The F1 scores obtained by different methods under different datasets are shown in Figure 17 
and Figure 18.

The above experimental results provide the NID results of the four methods under the same 
experimental conditions using two different datasets, NSL-KDD and UNSW-NB15. It can be seen 
that the proposed method has the highest NID accuracy and F1 score. The following will provide a 
detailed analysis of the experimental results.

From the experimental results, it can be seen that the proposed method can solve the problem 
of ineffective protection of data privacy faced by current network intrusion detection technology 
through collaboration among multiple users under the coordination of a central server. In addition, 
each user’s original private dataset is stored locally. By applying transformer and federated learning 
to network intrusion detection, the issues of sensitive information protection and incomplete data in 
training data are solved, thereby improving the accuracy of network intrusion detection.

Figure 14. F1-score when using different datasets

Figure 15. Accuracy when using NSL-KDD datasets with different methods
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RESULTS

Results Under the NSL-KDD Dataset
The accuracy of different methods and the maximum values of F1 score when using the NSL-KDD 
dataset are compared as shown in Figure 19 and Table 2.

Results Under the UNSW-NB15 Dataset
The accuracy of different methods and the maximum values of F1 score when using the UNSW-NB15 
dataset are compared as shown in Figure 20 and Table 3.

Figure 16. Accuracy when using UNSW-NB15 datasets with different methods

Figure 17. F1-score when using NSL-KDD datasets with different methods
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Figure 18. F1-score when using UNSW-NB15 datasets with different methods

Figure 19. Comparison of different methods using NSL-KDD dataset

Table 2. Comparison of different methods using NSL-KDD dataset

Method
Index

Accuracy F1-Score

Proposed method 99.65% 99.45%

IDS-FMLT 99.23% 99.06%

FLTrELM 97.68% 97.45%

FedACNN 97.55% 97.26%
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The above experimental results provide the network intrusion detection results of the four methods 
under the same experimental conditions using two different datasets, NSL-KDD and UNSW-NB15. It 
can be seen that the proposed method has the highest accuracy in network intrusion detection and F1 
score, with the highest accuracy of 99.65% and 89.25% on the NSL-KDD dataset and UNSW-NB15 
dataset, respectively, while F1 score has the highest accuracy of 99.45% and 88.13%, respectively. 
Compared to the other three comparison methods, the accuracy on the NSL-KDD dataset has improved 
by a minimum of 0.42% and a maximum of 1.9%. F1 score showed a minimum improvement of 0.39% 
and a maximum improvement of 2.19%. The accuracy on the UNSW-NB15 dataset improved by a 
minimum of 1.12% and a maximum of 4.28%. F1 score showed a minimum improvement of 1.18% 
and a maximum improvement of 4.25%. This is because the introduction of a self-attention mechanism 
has improved the encoder and decoder of traditional transformer networks, enabling them to adapt 
to one-dimensional signal data in network intrusion detection and achieve multi-layer stacking. In 
addition, using DNN to extract deep level features of traffic and GRU to extract temporal features 
of traffic ensures the comprehensiveness of the extracted features, further improving the accuracy 
of network intrusion detection.

Ablation Experiment
To further validate the effectiveness of each module in the model, a model ablation experiment was 
designed to compare the impact of different modules on the overall performance of the model. The 
design is as follows:

Figure 20. Comparison of different methods using UNSW-NB15 dataset

Table 3. Comparison of different methods using UNSW-NB15 dataset

Method
Index

Accuracy F1-Score

Proposed method 89.25% 88.13%

IDS-FMLT 88.13% 86.95%

FLTrELM 85.32% 84.20%

FedACNN 84.97% 83.88%
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Model 1: Without transformer - Removing the feature fusion of the transformer from the 
proposed model.

Model 2: Without federated learning - Does not use federated learning for local model training and 
parameter uploading; directly uploads data for training.

Model 3: Without DNN - Removes the DNN module from the proposed model.
Model 4: Without GRU - Removes the GRU module from the proposed model.

The experiment was conducted using the NSL-KDD dataset, and the final results of the model 
ablation experiment are shown in Table 4.

In Table 4, the experimental results on the NSL-KDD dataset show that removing any module 
from the model will result in a decrease in the accuracy and F1 score of the model’s sentiment analysis. 
Among all modules, the indicator values of model 1 and model 4 have decreased significantly, 
indicating that federated learning and transformer modules have made significant contributions to 
the improvement of results. When either of them is missing, it will have a significant impact on the 
model. However, the performance of other models cannot achieve the best, which indicates that DNN 
and GRU also contribute to the improvement of the results. The results of the ablation experiment 
fully validate the necessity of each module in the proposed model to achieve the best results.

DISCUSSION

Based on the previous theoretical analysis and experimental results, it can be concluded that the 
implementation of high accuracy and F1 in NID is of great significance, as follows:

1. 	 Improving security: A highly accurate NID system can more accurately identify normal and 
attack traffic, avoid false positives and false negatives, thereby reducing the risk of malicious 
attacks on the network and improving network security.

2. 	 Reducing erroneous operations: NID systems with high F1 values can maximize recall while 
ensuring accuracy. This means that the system can not only accurately identify the true attack 
traffic but can also avoid the occurrence of false positives as much as possible, thereby reducing 
maloperations and potential losses.

3. 	 Improving user experience: NID systems with high accuracy and F1 values can provide a better user 
experience. When users access the network, the system can quickly and accurately determine the normal 
and attacked traffic, avoid misjudgment and maloperation, improving user satisfaction and trust.

4. 	 Optimizing system performance: A NID system with high accuracy and F1 value can better 
detect and prevent network attack behavior, thereby reducing waste and abuse of network 
resources. This helps optimize the performance of the system and improve the operational 
efficiency of the network.

Table 4. Model ablation experimental results

Model
Indicator

Accuracy F1-Score

Model 1 85.43% 85.33%

Model 2 82.65% 82.45%

Model 3 91.23% 91.06%

Model 4 92.68% 92.45%

Proposed model 99.65% 99.45%
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5. 	 Evaluating performance: A NID system with high accuracy and F1 value can better evaluate 
the performance of the system. By comparing the accuracy and F1 value of different systems, 
it is possible to determine which system has better performance, thereby better selecting and 
configuring NID systems.

When applying the proposed NID method to different users or enterprises of different scales, 
small adjustments need to be made based on the actual situation of the users or enterprises. These 
adjustments are mainly reflected in the following two aspects:

1. 	 Adjustment of the number of nodes: Because federated learning collects real-time data from 
users at each node and conducts local model training, the model parameters are sent to the central 
server after the local model training is completed. Therefore, for enterprises of different scales, 
their user distribution and data volume vary, and the corresponding number of nodes needs to 
be adjusted to ensure the accuracy of model training.

2. 	 Adjustment of the computing power of the central server: For large-scale enterprises, there 
are a large number of nodes, and there are also many model parameters submitted after local 
model training. Therefore, stronger computing power is required in the process of forming an 
integrated model on the central server.

The NID method can adapt to larger or more diverse network infrastructure by considering the 
following aspects:

1. 	 Distributed architecture: In order to monitor larger or more diverse network infrastructure, a 
distributed architecture can be considered, where intrusion detection modules are distributed at 
different locations in the network to simultaneously monitor and process multiple network traffic 
data. This can improve detection efficiency and accuracy and reduce network latency.

2. 	 Custom rules and algorithms: For larger or more diverse network infrastructure, more complex 
rules and algorithms can be customized to detect abnormal behavior in network traffic.

3. 	 Real time monitoring and response: In order to better adapt to larger or more diverse network 
infrastructure, intrusion detection methods should have the ability to monitor and respond in 
real time. By analyzing network traffic data in real-time, abnormal behavior can be detected in 
a timely manner and corresponding security measures can be taken quickly to prevent potential 
attack behavior.

4. 	 Automation and intelligence: With the development of network technology, automation and 
intelligence have become important elements of intrusion detection. Intelligent algorithms and 
automation tools can be used to reduce the burden of manual operations, improve detection 
efficiency and accuracy.

There are some ethical issues that need to be considered during the use of the model. Although 
the proposed method uses local model training and does not require the transmission of real-time 
user data, it greatly reduces the risk of privacy leakage during the transmission process of user data. 
However, local model training requires collecting real-time data from users, so we also have to 
consider data breaches caused by human factors, such as malicious privacy breaches caused by staff 
during local training.

The multi-party collaborative learning framework based on federated learning has certain 
limitations in evaluating the effectiveness of data exchange and sharing:

1. 	 For some participants with limited resources, additional hardware and computational support 
may be required.
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2. 	 Because different participants may have different quality and quantity of data, imbalanced and 
biased model training may result. Some participants may not be able to achieve performance 
improvements comparable to other participants due to poor data quality or insufficient quantity.

3. 	 Federated learning requires local model training for each participant, which may require higher 
computational resources.

4. 	 Although federated learning aims to protect data privacy, it may still face legal and compliance 
challenges in cross organizational and cross regional data exchange and sharing processes. It is 
necessary to ensure compliance with relevant data protection and privacy regulations.

CONCLUSION

A NID method that combines transformer and FedL is proposed to address the issue of traditional 
NID methods being unable to achieve high accuracy detection for different types of network intrusions 
while ensuring data privacy. The experimental verification results indicate that building a NID model 
based on FedL can effectively safeguard data privacy without affecting data exchange and sharing. 
Using self AttM to improve the encoder and decoder of traditional transformer networks can enable 
the model to perform parallel calculations, greatly improving its convergence speed. On the basis of 
using DNN to extract deep level features of traffic, using GRU to extract temporal features of traffic 
can effectively ensure the comprehensiveness of the extracted features. In the healthcare industry, 
government, and financial sectors, the NID method can quickly and accurately detect different 
types of attacks that may occur in the network, such as denial of service, port scanning, malware, 
distributed denial of service, or ransomware, by investigating network traffic. The NID method can 
prevent significant losses for different fields or industries. It is suggested that future research areas 
may explore other machine learning techniques or extend this method to a wider network environment.

The next step will focus on reducing the communication cost of model transfer in FedL. Reducing 
the cost of parameter transfer through gradient descent algorithm will make applications in FedL 
environments more efficient. In addition, we can consider optimizing the structure of different sub 
models in the model, such as DNN module, GRU module, encoder module composed of improved 
transformer, and MLP module. The simplified model structure will be simpler, which means that 
the calculation speed of the model will be faster, the calculation volume will be reduced, and the 
cost will be reduced.
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