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ABSTRACT

Deep learning (DL) can provide critical infrastructure operators with valuable insights and predictive 
capabilities to help them make more informed decisions, improving system’s robustness. However, 
training DL models requires large amounts of data, which can be costly to store in a centralized 
manner. Storing large amounts of sensitive critical infrastructure data in the cloud can pose significant 
security risks. Federated learning (FL) allows several clients to share learning data and train ML 
models. Unlike centralized models, FL does not require the sharing of client data. A novel framework 
is presented to train a VGG16 based CNN global model without sharing the data and only updating 
the local models among clients using federated averaging. For experimentation, MNIST dataset is 
used. The framework achieves high accuracy and keep data private using FL in critical infrastructures. 
The benefits and challenges of FL along with security vulnerabilities and attacks have been discussed 
along with the defenses that can be used to mitigate these attacks.
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1. INTRoDUCTIoN

Critical infrastructures are systems which are essential for the smooth functioning of a society and its 
economy and these include such as transportation systems, communication networks, and financial 
systems. These infrastructures are often complex, interdependent, and vulnerable to disruptions, 
which can have serious repercussions for public safety, economic stability, and national security. 
Deep Learning (DL) (Aggarwal et al., 2022; Mengi et al., 2023) provides critical infrastructure 
operators with valuable insights and predictive capabilities that can help them make more informed 
decisions, improve system resilience, and enhance public safety. By analyzing data from sensors and 
other sources, DL models can identify patterns and anomalies that may indicate equipment failure or 
maintenance needs so that it could be repaired before failures occur, reducing downtime (Mandle et 
al., 2022). Deep learning in critical infrastructure requires large amounts of training data for accurate 
and reliable modeling of the task. Traditionally, training data for these systems has been collected in 
data centers or on a single machine, which can be costly and time-consuming. Storing large amounts 
of critical infrastructure data in the cloud can pose significant risks and responsibilities, such as the 
potential for data breaches and cyber attacks. To address these challenges, training data from these 
systems must be collected and managed, in a decentralized manner. These approaches could help 
ensure the accuracy and quality of the training data while also reducing the risks and responsibilities 
associated with storing large amounts of sensitive data in the cloud. Federated Learning (FL) (D. Li 
et al., 2023) can be used to secure critical infrastructure making it possible to achieve the benefits of 
improved efficiency and performance while utilizing DL without compromising the safety and security 
of the system. Enhancing privacy(M. Singh et al., 2023) in critical infrastructure systems is crucial 
for safeguarding sensitive information and ensuring the reliability of essential services. Developing 
different prediction algorithms for critical infrastructure system (I. Singh, Singh, Singh, et al., 2022) 
(Peñalvo, Maan, et al., 2022) (S. Gupta et al., 2023) with sustainable development (Chopra et al., 
2022; Peñalvo, Sharma, et al., 2022) (Bouncken et al., 2022; M. Singh et al., 2023) is an art which 
involves a deep understanding of the underlying systems, the potential risks they face, and a creative 
approach to designing algorithms with minimum overheads (S. Kumar et al., 2021) (S. Kumar et al., 
2022) (P. S. Kumar, 2022; S. Kumar et al., 2023).

Federated deep learning is a technique and architecture which allows multiple clients to interact 
and train a deep learning model without having to share their raw data with each other. In federated 
learning, the training data is distributed across multiple clients or devices and the model is trained 
locally on each client using its own data. The updates from the local models are then aggregated to 
create a global model that is more accurate and robust. In this approach, since the data remains on 
the local devices or servers, and only the model updates are exchanged between the clients or with 
a central server. Therefore, federated deep learning helps to preserve the privacy and security (A. 
Sharma et al., 2023; I. Singh, Singh, Kumar, et al., 2022) of sensitive data and reduces the risk of data 
breaches and cyber attacks. In this paper a novel framework using federated deep learning for critical 
infrastructure has been proposed in which multiple devices or clients collaboratively train a global 
model without sharing their raw data. The global model is a convolutional neural network (CNN) 
(Kaur et al., 2021) that is trained initially on a centralized dataset. The framework is demonstrated 
on the MNIST dataset, a commonly used benchmark dataset for image classification.

In this paper, the authors briefly review all the important components of federated learning 
in privacy protection in section 2 they described previous contributions and use cases of federated 
learning in cyber security. In section 3 of this paper, authors described motivation to use federated 
learning in privacy protection and simultaneously achieving security and privacy in FL. Section 4 
of the paper introduces a secure FL based deep learning framework for critical infrastructure. In the 
5th section of this paper the authors elaborated security vulnerabilities and attacks in the FL domain. 
Continuing these attacks from section 6, they described defenses against these attacks. Since FL 
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is a new and recent technology, section 7 throws light on limitations of federated learning and the 
application of FL are discussed in section 8.

2. LITERARy woRK

While there has been some research on this subject, progress has been achieved; nonetheless, basic 
research in some areas lags behind when it comes to understanding FL and its security and privacy 
implications. This study differs from previous efforts in that it aims to provide a comprehensive 
analysis of FL security in terms of a formal introduction, dangers, countermeasures or defenses (Pan 
et al., 2022), applications, and issues.

FL might be used to create highly high-end ML based, multi-domain, real-time applications by 
letting users keep their data private. FL Models are commonly applied in a variety of fields, including 
smart cities(Chopra et al., 2021; R. Singh, Singh, Kumar, et al., 2022), education, finance (Lee & 
Suh, 2022; Marinakis & White, 2022), edge technology (Saini et al., 2020; R. Singh, Singh, Kumar, 
et al., 2022), healthcare and insurance, and various other intelligent applications(Khade et al., 2012). 
This section goes over a few notable use cases that have been deployed in real-time utilizing FL 
technology (Alazab et al., 2022).

For monitoring risk in small and micro firm loans, most banks traditionally employed a 
process known as whitelisting. Whitelisting is a screening technique that employs some rules 
and requires user involvement. For this, data should be obtained from banks that hold all credit 
reports. Encryption utilizing the RSA encryption technique is currently utilized when conveying 
sensitive information. This process is likewise restricted to approved agents and banks. To 
eliminate the need for manual intervention, machine learning (ML) and artificial intelligence (AI) 
models must be developed (A. Gupta et al., 2022a). However, owing to the sensitivity of the data, 
acquiring initial data on which the ML model is formed, as well as testing, is one of the most 
difficult issues. Previously, a Chinese bank called WeBank attempted to overcome the issue by 
deploying an AI-based risk-control strategy. However, owing to cyber-attacks, sending sensitive 
data via the Internet was a huge difficulty. To address this issue, FredeRick Ctrl, a FL-based risk 
control system for SME loan applications, has been introduced. The FL-AI Technology Enabler 
platform is used to implement the application. The application is based on the heterogeneous 
FL idea. When compared to a traditional ML strategy, Hetero-LR improves prediction accuracy 
by roughly 12% during the screening step.

Anti-money laundering efforts are typically seen as critical in the banking sector. Based 
on traditional methods, if a transaction must be determined as money laundering activity, rule-
based models are used to filter the right records, requiring a significant amount of manual 
intervention to review and classify any transactions of money laundering which is a time-
consuming process. Though most banks utilized ML algorithms on a regular basis to determine 
these sorts of transactions, the performance is not as high as expected due to the lack of training 
data. Multiple banks must be connected to collect large amounts of data, but this is impractical 
since banks are reluctant to reveal their private information. Even if they do share, the attackers 
may misunderstand the data, causing the action to be misunderstood. As a result, an online 
bank of China constructed a platform employing FL for virtually merging the data of all banks 
and generated a model called Homo-LR to train the data and to avoid cyber-attacks. Each client 
bank trained the model locally using the global model without publicly disclosing the data, and 
then global model was updated based on the training values of each individual client with the 
latest parameters. This notion aided in resolving the data island problem without jeopardizing 
data privacy. Due to its usage, the no. of transactions to be reviewed manually decreased from 
thousands to less than 50.
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3. FEDERATED LEARNING AND PRIVACy

3.1 Motivations to Use Federated Deep Learning 
for Security of Critical Infrastructure
The traditional approach to cybersecurity (Bhardwaj & Kaushik, 2022) makes it more difficult 
to acquire and share data in a privacy-invading manner. Similarly, data aggregation from several 
data providers is a difficult task. FL might be used to reduce cyberattacks while also achieving 
data privacy and security (Arafeh et al., 2022). The paper (Jalali & Chen, 2023) discusses security 
vulnerabilities in federated learning under IoT critical infrastructure and proposes security models 
and algorithms as solutions. The paper (Rathod et al., 2023) proposes an AI and onion routing-based 
secure architecture for IoT-enabled critical infrastructure to address security risks and protect user 
privacy, confidentiality, and integrity. Figure 1 displays the many elements that impact the usage of 
FL for cybersecurity, as well as the strategies employed by FL to attain these advantages. The steps 
followed to simulate federated learning are shown in figure 2. The following are the reasons for using 
FL for cybersecurity (Alazab et al., 2022).

• Data privacy: Critical infrastructure systems are often highly sensitive and proprietary, and 
their data cannot be shared openly. Federated learning enables organizations to train models 
collaboratively without sharing their data, thus maintaining data privacy and confidentiality.

• Distributed computation: Federated learning distributes the computation workload among 
multiple parties, reducing the burden on any one organization. This can be particularly useful 
for critical infrastructure systems that require real-time response times.

• Enhanced security: Federated learning can improve the security of critical infrastructure systems 
by reducing the attack surface area. By keeping data and models decentralized, hackers have 
fewer points of attack, making it more difficult to compromise the system.

• Improved accuracy: Federated learning can also improve the accuracy of models by using more 
diverse data from multiple sources. This can help detect and prevent attacks more effectively.

• Faster model deployment: With federated learning, models can be trained more quickly, as 
multiple parties are collaborating on the training process. This can help organizations respond 
more quickly to new threats and vulnerabilities.

• Flexibility: Federated learning can be applied to a wide range of critical infrastructure systems, 
including power grids, transportation systems, and industrial control systems.

3.2 Simultaneously Achieving Security and Privacy in FL for Critical Infrastructures
Ensuring the security and privacy of critical infrastructure while minimizing computational costs and 
accuracy loss in Federated Learning (FL) poses a significant challenge. The privacy of clients must 
be safeguarded without compromising the accuracy of learned models or adding complexity to the 
network while ensuring strict privacy assurances. Techniques used for privacy protection should not 
result in unacceptably high overhead on the network or complexity in training.

While a multiparty solution that aggregates local updates using significant encryption before 
applying them to the global model can enhance privacy, it can be costly and obscure individual 
changes from the FL server. As a result, the server cannot compute accuracy metrics and weight 
statistics on individual updates, which may result in rejected updates. To ensure consistency with 
security protection, any plan to protect clients from privacy attacks should avoid aggregating updates. 
Combining encryption, differential privacy, secure aggregation, access control, anonymization, and 
model verification techniques can ensure both security and privacy in FL.

To enhance privacy, an alternative approach is to sever the relationship between updates and 
their creators, for instance, through anonymous communications. Encrypted communications such 
as SSL/TLS alone may not be adequate, as the FL server could be considered a potential adversary 
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despite securing communications against third parties. Additionally, the removal of identifiers 
from the communication payload may not be sufficient to ensure privacy, as metadata such as IP 
addresses or timestamps can reveal personal information about individuals and be used by the server 
to track specific, identifiable individuals. By using anonymous communication channels that make it 
impossible for contact parties to understand the metadata of message messages, unlinkability between 
sender-messages can be achieved. In conclusion, implementing these techniques can provide a secure 
and privacy-preserving approach to collaborative machine learning in critical infrastructure.

4. SECURE FL BASED DEEP LEARNING FRAMEwoRK 
FoR CRITICAL INFRASTRUCTURE

In critical infrastructure, the privacy and security of data are of utmost importance. Thus, the Federated 
Learning (FL) algorithm can be utilized to protect sensitive data while training machine learning 
models. The steps involved in the FL algorithm remain the same as follows:

1.  Initialize the model: Start by defining the model architecture and hyperparameters.
2.  Split the dataset: Divide the dataset into multiple non-overlapping subsets based on the privacy 

requirements of the clients. The sample representation of the dataset used is shown in figure 3.

Figure 1. Motivation to use federated learning in cybersecurity

Figure 2. Federated learning system’s life cycle, as well as the various actors involved
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3.  Select clients: Randomly select a subset of clients from the pool of all clients that have enough 
data to participate in the training process.

4.  Transmit the model: Send the initial model to the selected clients.
5.  Train locally: Each selected client trains the model on their local data without transmitting their 

data or model parameters.
6.  Aggregate the model: Collect the model updates from the selected clients and aggregate them 

using secure aggregation methods like Federated Averaging.
7.  Update the global model: Update the global model with the aggregated updates.
8.  Repeat the process: Repeat steps 3-7 for multiple rounds until convergence or stopping criteria 

are met.
9.  Evaluate the model: Evaluate the model on a separate test dataset to measure its 

performance.
10.  Privacy protection techniques: Use privacy-enhancing techniques like differential 

privacy, secure multi-party computation, homomorphic encryption, and secure 
aggregation to protect the privacy of clients’ data and model parameters during the 
training process. There are several privacy protection techniques that can be used in 
Federated Learning, including:
A.  Differential privacy: This technique adds noise to the aggregated model updates to ensure 

that individual clients’ data remains private.
B.  Secure multi-party computation: This technique uses cryptographic protocols to 

allow multiple parties to jointly compute a function without revealing their private 
inputs.

C.  Homomorphic encryption: This technique allows the central server to perform 
computations on encrypted data without decrypting it, preserving the privacy of the 
data.

D.  Federated Transfer Learning: This technique allows the model to learn from other models 
and data sources without exposing the client’s data or the global model.
By using privacy protection techniques, Federated Learning can be used in sensitive domains 

such as healthcare, finance, and government where the privacy of the data is of utmost 
importance.

11.  Fine-tune the model: Fine-tune the global model on the centralized data to improve its 
performance.

12.  Deploy the model: Deploy the final model on the centralized server or clients’ devices based 
on the privacy requirements and resource constraints.
The deployment process involves several steps, including:

A.  Converting the model to a deployable format: The model is converted to a format 
that can be used by the target deployment platform or application.

B.  Testing the model: The model is tested in a controlled environment to ensure that it 
works as expected and performs well on real-world data.

C.  Integration with the application: The model is integrated with the larger system or 
application and made available for use by end-users.

D.  Monitoring and maintenance: The model is monitored over time to ensure that it 
continues to perform well and is updated as needed.
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The algorithms 1 and 2 allows for training ML models using distributed data while maintaining 
the privacy of the individual clients. Federated learning and deep learning algorithms can work 
together to leverage the benefits of deep learning while addressing the privacy concerns associated 
with centralized data storage. The achieved graph for training and testing accuracy is shown in figure 
4. It can be seen that accuracy is increasing with epochs. This framework is designed to be used in 
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critical infrastructure where high accuracy is required. The model has achieved testing accuracy of 
98.4% and training accuracy of 99.8%. Furthermore, the proposed model is not overfitting even with 
these accuracies.

5. SECURITy VULNERABILITIES AND ATTACKS IN FL DoMAIN

5.1 Sources of Vulnerabilities
Critical infrastructure vulnerabilities can be exploited by attackers, making it essential to understand 
and manage these vulnerabilities to defend against potential attacks. Open vulnerabilities can arise 
from non-secure channels, and homomorphic encryption is the current widely-used safeguard for 

Figure 3. Sample representation of MNIST dataset used to implement the model

Figure 4. Accuracy of train and test vs Epoch curves of the model during training
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data in critical infrastructure. However, attackers can still obtain sensitive information, such as leaked 
gradients, which can be used to defeat defenses. Attackers can exploit vulnerabilities in critical 
infrastructure to obtain sensitive information about individuals. Gradient leakage can occur, allowing 
attackers to gain access to critical information about local data. Bad actors are challenging to detect, 
and they can use knowledge of benign participants to customize their updates, making Byzantine 
attacks more powerful than other attacks. It is crucial to identify and address vulnerabilities in the 
critical infrastructure to defend against potential attacks.

A server or a cluster of servers is frequently used in a cloud-based architecture for critical 
infrastructure. Cloud computing and hacking attacks, as well as distributed denial of service (DDoS) 
attacks (Devi & Bharti, 2022), can all be used to attack cloud computing infrastructures or physical 
servers. The server’s security should be audited on a regular basis for any vulnerabilities that attackers 
might exploit. During Federated Learning in critical infrastructure, clients receive the global model 
during each training cycle, and local gradients are calculated and sent to a central aggregator. However, 
clients may encounter system issues, leading to a low-quality, skewed model if successful processes 
fail. The design of the training pipeline must integrate with the Federated Learning environment 
and address data privacy restrictions, making it challenging to detect bugs. It is essential to audit the 
Federated Learning process to detect any vulnerabilities that attackers could exploit.

In critical infrastructure, an adversary can intentionally create failures such as limited bandwidth 
or processing power to compromise the quality of the model being trained in Federated Learning. 
Technical difficulties, noisy feedback from clients, and network issues can also distort model updates. 
The dispersed nature of Federated Learning enables collusion and dispersed attacks, where clients 
from past, present, and future can work together to launch attacks on global model improvements. A 
recent example is the Dispersed Back-door attack (DBA), which takes advantage of the distributed 
properties of Federated Learning to create a unique conspiracy attack. DBA decomposes trigger 
patterns into local patterns altered for usage by adversarial parties, making it significantly more subtle 
and long-lasting when deployed against various datasets, including finance and image data. In non-
homogeneous data, skewed Federated Learning can make it more challenging to detect false positives.

5.2 Attacks in Federated Learning
Critical infrastructure can also be vulnerable to data poisoning attacks in ML algorithms (A. Gupta 
et al., 2022b). Attackers can exploit vulnerabilities in the training process of ML algorithms used in 
critical infrastructure to compromise security and privacy standards. For example, if a ML algorithm 
is used to monitor and control a power grid, an attacker can inject malicious data to manipulate the 
system’s behavior, resulting in power outages or other serious consequences.

Federated Learning (FL) is a decentralized machine learning approach that allows multiple clients 
to participate in data processing and model parameter sharing. However, the decentralized environment 
also creates the potential for malicious clients to interfere with the training process and poison the global 
model. This poses a significant threat to critical infrastructure as data poisoning attacks can affect the 
accuracy and reliability of the ML algorithm used in critical infrastructure (D. Li et al., 2019). In FL, 
data poisoning attacks are defined as the use of malicious examples to train the global model with the 
intention of obtaining global model parameters and sending them to the server. Data injection is a type 
of data poisoning where a rogue client injects dangerous data into the local model processing, allowing 
the malicious agent to take control of multiple clients’ local models and eventually alter the global 
model with harmful information. As FL involves model updates from multiple clients, the risk of data 
poisoning attacks originating from one or more clients’ training data is high, making it a significant 
threat to critical infrastructure that relies on accurate and reliable ML algorithms.

5.2.1 Dirty-Label Attacks
In critical infrastructure, data poisoning attacks can occur when attackers insert fictitious data into 
the training process of ML algorithms to manipulate their behavior, compromising the security and 
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privacy standards. For instance, a malicious actor could use label-flipping, a common type of dirty-
label poisoning attack, to misidentify data samples with the desired label, causing the ML algorithm 
to produce inaccurate results. Model poisoning is another type of attack that involves directly attacking 
the global model rather than using fictitious data. The working of data poisoning attack is shown in 
figure 5. These attacks can have severe consequences, such as power outages, in critical infrastructure 
systems (Lim et al., 2020).

Data tampering/modification attacks, such as feature collision, can also be used to perform data 
poisoning attacks in critical infrastructure systems. These attacks can be accomplished by altering the 
training dataset, causing the ML algorithm to produce misleading results. In some cases, solutions can 
apply a shade or pattern from another class to a certain class, causing the ML algorithm to become 
confused. Random labeling of the training dataset is another option for attackers to carry out data 
poisoning attacks. Data injection and data modification attacks are examples of ML data poisoning 
threats in Federated Learning, which can significantly affect the accuracy and reliability of the ML 
algorithm used in critical infrastructure (Xie et al., 2020).

5.2.2 Backdoor
In the context of critical infrastructure, backdoor attacks can pose a serious threat to the security 
and reliability of ML algorithms used in critical infrastructure. Backdoor attacks can be used by 
attackers to introduce malicious code into the system, which can be triggered to cause a major security 
breach or system failure as shown in figure 6. This type of attack is particularly difficult to detect 
and prevent because it does not immediately affect the accuracy of the ML model. Researchers have 
investigated backdoor attacks in the context of FL, and have highlighted the significant impact that 
these attacks can have on the accuracy and reliability of the global model. In a study by (Hynes et 
al., 2018), the authors demonstrated how backdoor attacks can be used to predict ML algorithms and 
accurately forecast false positives. This highlights the potential danger of backdoor attacks in critical 
infrastructure and the need for robust security measures to prevent and detect these types of attacks.

Figure 5. Data poisoning in federated learning
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5.2.3 Evasion Attacks
In an avoidance attack (Biggio et al., 2013), (Szegedy et al., 2014), an adversary attempts to keep away 
from a sent model via cautiously controlling the information tests given to it. One normal technique for 
avoidance attack is the utilization of purported “ill-disposed examples,” which are changed copies of 
test tests that appear to a human to be practically tradable with the first information tests. Ill-disposed 
information is made by extending blemish onto true information. The attacker attempts to affect the 
FL model’s strength utilizing altered data. Adversarial preparing is a proactive guard approach that 
endeavors all changes of an attack from the start of the preparation to make the FL worldwide model 
impervious to known antagonistic attacks. (Tramèr et al., 2018) examines how to make the learning 
model powerful to antagonistic preparing attacks. The aftereffects of the assessment uncover that 
antagonistic preparation is as yet helpless against black-box attack. Therefore, they likewise give 
Ensemble Adversarial Training, a method that adds bothers to preparing information. Antagonistic 
Training diminishes the danger of delivering real preparing information through surmising by using 
ill-disposed examples, which advances client information protection.

5.2.4 Algorithms Oriented Attacks
It’s respected to be a more modest arrangement of risks than the ones referenced already. The aggressor 
compromises the respectability of the conglomeration calculation (in the event that he approaches 
the server or the aggregator overall) or the neighborhood preparing pipeline, potentially by adjusting 
the enhancer’s solid activity. The hyper-parameters of the nearby preparing plan might possibly be 
controlled by the attacker. This attack vector is more normal when the assailant has unlimited authority 
over at least one member at the FL framework’s edge. It has the likelihood to slant determined figures 
inside the learning framework unintentionally (e.g., model updates).
5.2.4.1 Non-Robust Aggregation
Non-robust aggregation mechanisms in FL can result in compromised models in the event of 
adversarial attacks (Mani et al., 2020), according to (Fu et al., 2019). Additionally, the assumptions 

Figure 6. BackDoor attack in federated learning
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of i.i.d data distribution and gradient uniformity among different clients are often shattered in real-
life FL scenarios, making it difficult to assure the long-term viability of the aggregation algorithm. 
Moreover, poor reweighting procedures combined with aggregation strategies can lead to anomalous 
behavior in the global model.
5.2.4.2 Training Rules Manipulation
Attackers can also manipulate model training rules to sabotage FL computation, as discussed by (Tan 
et al., 2021). For instance, attackers with access to participating devices can change hyperparameters 
such as the no. of epochs, LR, and batch size so that the model can properly trained. Even small 
modifications to the training rules can result in the optimizer failing to converge, making the global 
model compromised.
5.2.4.3 Compromised Distributed Computation
FL figuring, when in doubt, plans to survey a limit on an appropriated client dataset (by and large a 
significant neural association getting ready estimation, but it will in general be something clear, similar 
to a central computation). The current structure’s information design can influence center outcomes, 
making them vulnerable against pernicious performers. There’s an issue called irregularity, which 
insinuates a client’s or a server’s ability to show various individuals that they completed the arranged 
development without uncovering any of the limited intel on which they were acting.

5.2.5 Attacks Focused on Federation
Federated learning aims to protect the security of clients and players by providing model boundaries 
based on the results of local training. However, there are still risks such as enrollment inference attacks 
(shown in figure 7), accidental data leaks through GAN-based and inference-based attacks. Creating 
a federated system with optimal security characteristics is a challenging task due to multiple attacks 
targeting the FL system itself and factors such as data segmentation, network topologies, security 
settings, and goals.

Figure 7. Inference attack in federated learning
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Federated Learning (FL) was created to enhance user privacy, but there are still risks such as 
unintended data breaches, membership inference attacks, and GAN-based inference attacks. GAN-
based client-side attacks can generate prototype samples from the targeted training set and endanger 
the privacy of the training set owner during real-time training. The mGANAI attack is a GAN-based 
server-side FL attack that boosts sample quality without altering the shared model or collaborative 
learning. The attack operates on the FL server side and is undetectable to the FL approach. During 
the GAN training phase, the attack relies on completing additional tasks and allows the retrieval of 
sensitive data at the client level, as the FL server can identify client identities.

In Federated Learning, the central server manages most of the cross-device network effort, 
including initial model setups, receiving updates, and deploying the global model. A malicious 
server, however, can cause significant damage to the global model if it is infected. It is possible for 
them to gain access to private client data or to update the global model in a harmful manner using 
shared processing power. In contrast, the server selects the clients’ perspective on the joint model, 
which has a significant effect on the trained model. This presents an interesting problem in FL, where 
novel sustainable approaches are needed to explore a model’s worst-case attack vulnerability, since 
only the server can control when clients can update the model during FL training. FL is particularly 
useful in gathering training data from client interactions with mobile apps. However, communication 
cost is a significant bottleneck, and free-riding attacks, where clients feign participation in the FL 
process, can have severe consequences, especially in a smaller FL environment with scarce data and 
high communication value models as shown in figure 8.

Figure 8. Severity of attacks in federated learning
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Man-in-the-Middle attacks capture attacks traded among customers and servers and supplant 
them with malignant model changes (Bhushan et al., 2018). These attacks can be conveyed either 
by meddling with real organizations or by developing fake organizations that the assailant controls. 
Compromised correspondence is regularly deprived of encryption to take, change, or reroute 
passed on model updates to the aggressor’s ideal objective. Enemies might be unobtrusively 
observing or rescrambling taken traffic to its expected objective at whatever point it is put away 
or adjusted, making an attack hard to distinguish. FL relies on the participation of customers 
during the training process, but some customers may drop out due to various reasons, which can 
result in inadequate preparation of the global model. This problem is similar to the free-riding 
attack, but customers may miss training due to unforeseeable obstacles rather than deliberately 
avoiding participation and has been presented in table 2. This can affect the flexibility of the 
aggregation process, and it is important to use asynchronous aggregation methods to address 
this issue. The risk of this problem is moderate, as the chance of customer dropouts is low, but 
it can still impact the quality of the final model.

Table 1. Conclusion of all the attacks, solution, and solution challenges

Type of 
Attack Description of Attack Current Solution Current Solution’s 

Challenge

Inference 
attack

Unintentional Data Leakage 
By Reconstruction Through 
The Inference Models And 
Generative Adversarial Network

The enhancement of FL model privacy 
involves combining Differential Privacy 
(DP) with conventional shuffling 
techniques. Additionally, an algorithm 
named the invisibility cloak algorithm is 
employed to obscure user data.

This methodology 
might reduce the 
training performance 
of the FL model 
as there might be 
uncertainty in the 
parameters that are 
uploaded.

Backdoor 
attacks

Attackers try to inject a task that 
is malicious within the existing 
FL model without affecting the 
rate of accuracy when the actual 
task is performed.

A strategy called SAFELearning is 
introduced to empower FL model users in 
identifying backdoor attacks during the 
aggregation of model parameters. This 
method accomplishes the goal of backdoor 
attack detection through the application 
of two techniques known as oblivious 
random grouping and partial parameter 
disclosure. Additionally, the effectiveness 
of PoisonGAN and DataGen models is 
highlighted.

The process of 
detecting such attacks 
is a highly time-
consuming process as 
there is no impact on 
the accuracy of the 
model.

Adversarial 
attack

Some clients try to deduce the 
information of other clients in 
the landscape.

Two attack models, namely PoisonGAN 
and DataGen, are introduced to iteratively 
regenerate the victim’s samples using the 
global model parameters.

N.A.

Free-riding 
attacks

In some situations, the passive 
client might try to inject a few 
dummy parameters to update 
the global model without 
performing training with their 
local data.

Introducing the BytoChain framework, 
a proposal aimed at enhancing model 
verification through a parallel process 
involving dedicated verifiers. These 
verifiers extensively assess the models, 
employing a concept known as Proof of 
Accuracy. The framework is constructed 
based on blockchain-powered Federated 
Learning (FL).

Slow process 
Harder to Scale
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Table 2. Conclusion of current defenses, description, and attacks

Defenses Description Attacks Defended Against

Anomaly 
Detection

Identification of patterns or instances that deviate significantly 
from the expected behavior in any given system

● Free-Riding Attacks 
● Data Poisoning 
● Model Poisoning

Differential 
Privacy

Protection of sensitive data by adding noise in a controlled 
manner, preventing adversaries from distinguishing if a specific 
information is present or not

● Data Poisoning 
● Inference Attack 
● Model Poisoning 
● Evasion Attack 
● Distributed Computation

Trusted 
Execution 
Environment

Prevention of attacks by creating a secure and isolated ecosystem 
in a processor, ensuring confidential computations and data 
integrity.

● Malicious Server 
● Training Rules 
Manipulation 
● Compromised FL

Robust 
Aggregation

It combines and summarizes data from multiple sources, 
preventing manipulation or compromise during the aggregation 
process, enhancing the integrity and reliability of the aggregated 
information.

● Dropout of Clients 
● Data Poisoning 
● Backdoor Attacks 
● Model Poisoning 
● Non-Robust Aggregation

Pruning
Involves the selective removal of potentially vulnerable elements 
of a system, reducing attack surfaces and minimizing the risk of 
exploitation by malicious actors.

● Communication Bottlenecks 
● Backdoor Attacks

Zero-
Knowledge 
Proofs

Cryptographic protocols are used to validate the possession of 
specific knowledge without disclosing the actual information, 
thus safeguarding data integrity and confidentiality during 
authentication or verification, thereby mitigating exposure risks in 
cybersecurity.

● Model Poisoning 
● Data Poisoning 
● Backdoor Attacks 
● Man-in-the-Middle Attacks

Adversarial 
Training

Optimizing a ML model by iteratively adjusting both adversarial 
samples and model parameters. This involves training on both 
original and crafted adversarial data, enhancing the model’s ability 
to withstand and counter adversarial inputs for heightened security 
and performance.

● Evasion Attacks

Federated Multi-
Task Learning

Training of models for interconnected tasks, boosting fault 
tolerance and creating a resilient system capable of handling 
challenges associated with individual tasks. Thus, contributing to 
overall system versatility and reliability.

● Dropout of Clients 
● GAN Attacks

Moving Target 
Defense

Enhance cybersecurity by introducing dynamic randomness to 
system modules in order to minimize successful attacks and 
decrease attack duration in Moving Target Defense.

● Reconstruction Attacks 
● Inference Attacks 
● Communications 
Bottlenecks 
● Man-in-the-middle Attacks

Recognizing 
Legitimate 
Clients

Determine whether a client is genuine in the presence of multiple 
adversaries to significantly mitigate the effectiveness of poisoning 
attacks.

● Model Poisoning 
● Backdoor Attacks 
● Data Poisoning

Federated 
Distillation

Adversaries exploit the knowledge transfer process between a fully 
trained model and a student model, capitalizing on knowledge 
sharing’s emphasis over weights sharing. This undermines the 
robustness of FL and can compromise the efficiency gains in 
communication and computation costs.

● Communication 
● Reconstruction Attack 
● Bottlenecks 
● Inference Attack 
● Man-in-the-middle Attacks
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6. DEFENSES IN FEDERATED LEARNING

Various issues with joined learning systems can be considered as ensuring power: clean data gets 
degraded or interfered with, whether or not purposely or unexpectedly. Insurance has actually been 
depicted as a strength in data security research, very differential security (DP). As an assurance 
system, differential security has a lot of drawing in components. In any case, it gives strong, most 
negative situation confirmation against a wide extent of risks. Second, different private techniques 
are known, and the defense may be used to settle different AI issues.

Poisoning attacks are handled using a model upgrade that includes:

(1)  putting a norm restriction on the client model update (e.g., by clipping the client updates)
(2)  combining the updates that have been cut
(3)  By injecting Gaussian noise into the aggregate, the service provider can limit the overall model 

contribution of any individual client.

Overfitting to a single update or a small number of troublesome individuals is avoided using 
this method, which is comparable to differential privacy training. Recently, researchers looked into 
this technique and discovered preliminary success in using differential privacy as a defense against 
targeted attacks. (Sun et al., 2019) recommend that they broaden the scope of their targeted attacks 
and tests to include more generic adversarial tactics. Huang et al. (Huang et al., 2022) suggested that 
edge case backdoors, created by low probability data samples in the distribution underlying those 
samples, can be used to exploit differential privacy measures. Further, table 2 has summarized all 
the defense and description of attacks.

Protecting yourself from data poisoning attacks Data poisoning is the incapacity of a learning 
system to be resilient, and it arises when a few attacked training samples have a big impact on the 
learnt model. As a result, making the learning mechanism differentially private, which increases 
resistance, is a natural way to prevent these attacks. Data poisoning precautions such as differential 
privacy have been studied recently (Ma et al., 2019).

6.1 Anomaly Detection
FL systems may use anomaly detection techniques to detect attacks like data poisoning and model 
poisoning. Anomaly detection is a type of proactive security that detects and stops harmful updates. 
One popular strategy is to calculate the test error rate of a single update and reject it if it fails to 
improve the global model (Carminati et al., 2020). Although these anomaly detectors are successful 
against untargeted adversarial attacks, when trained on backdoor data, they are more likely to fail 
because poisoned model updates look and act like infected models.

6.2 Differential Privacy
Differential privacy was created to protect against data poisoning, but it may also be used to protect 
against intrusions of privacy (Ma et al., 2019). It works by introducing a degree of unpredictability 
into the updates. The goal of differential privacy is to ensure that no single data record can be reliably 
distinguished from others (Abadi et al., 2016). An attacker with only a few training samples should 
theoretically be unable to have a significant impact on the distribution of learned models.

The most serious problem in differential privacy is that the clatter introduced by the learning 
approach is added to the noise generated by the computational approach. The noise that has built up 
has the potential to taint the model that has been learned.

6.3 Recognizing Legitimate Clients
For many years, researchers have investigated numerous poisoning attacks in a centralized FL 
environment, including inclusive model poisoning and data poisoning aggressive attacks. The 
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effectiveness of distributed poisoning with multiple attacks over traditional poisoning is questionable 
despite scattered poisoning being a greater threat in FL. Even in the presence of a high number of 
enemies, this defense system detects legitimate users, greatly lowering the success rate of poisoning 
attempts.

6.4 Defending Against Inference Attacks
Differential Privacy (DP) is integrated into the FL model with traditional shuffling, and they employ 
an algorithm called the invisibility cloak algorithm to hide users’ data (Ghazi et al., 2019). This 
practice, however, may reduce the FL model’s training performance because the parameters that are 
uploaded may be unknown. VerifyNet (Xu et al., 2020) is a privacy-protection system that uses a 
double-mask approach to prevent attackers from randomly generating train data. Researchers should 
focus on developing novel frameworks that reduce communication overhead while preserving privacy.

6.5 Defending Against Backdoor Attacks
During the collection of model parameters, a technique called SAFELearning is being created to 
allow FL model users to discover backdoor threats (Z. Zhang et al., 2021). The technology detects 
the backdoor attack by employing 2 strategies: partial parameter disclosure and oblivious random 
grouping.

6.6 Defending Against Adversarial Attacks
PoisonGAN and DataGen are two attack models proposed in (J. Zhang et al., 2021) for iteratively 
replicating the victim’s data using the parameters of the global model. The testing of these models 
was based on a FL prototype, and the results revealed in addition to adversarial attacks, they are also 
successful at backdoor attacks and label flipping.

6.7 Defending against Free Riding Attacks
For better model verification, a framework called BytoChain is presented (Z. Li et al., 2021). The 
verification is carried out parallelly by adding verifiers who will thoroughly test the models. The 
technique called Proof of Accuracy is employed. The framework is based on FL, which is a blockchain-
based technology.

7. LIMITATIoNS oF EXISTING SoLUTIoNS

Since the objective of FL is for the server to show the populace example of customer information, 
the objective of regular security is to measure and maybe oblige the server’s capacity to reproduce 
the info information of individual customers. is. This incorporates

(a)  Officially characterizing what is a perspective on customer information presented to the server 
because of FL execution

(b)  What is the security loss of such a view? increment. In FL, we are especially keen on permitting 
the server to total reports from customers while simultaneously concealing the commitments of 
individual customers here and there. This should be possible in an assortment of ways.

You commonly utilize the idea of delta information insurance. There are a wide range of ways of 
doing this, particularly in FL, each with its own shortcomings. For instance, as referenced over, the 
issue is that the focal DP needs to be confided in the central server. This prompted other promising 
private divulgence strategies that are already portrayed in this paper. Here we diagram a portion of 
the shortcomings of these strategies.
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As previously said, LDP eliminates the need for a presumed central server by requiring each 
customer to execute a delta private modification of the report before sending it to the central server. 
The LDP anticipates that client protection will arise only from the customer’s own addition of 
irregularity. As a result, the client information insurance guarantees that it is free of any further 
arbitrariness added by any lingering clients. In greater layered information settings, the LDP convention 
is convincing and hypothetically supported for carrying out information insurance while achieving 
nearby differential protection and protecting the utility. Numerous results indicate that it is a test. 
Because of the method that the amount of irregular commotion familiar should be similar with the 
size of the sign in the information, this problem is worsen. This can need combining reports from 
many consumers. equivalent to the central setup, equivalent benefits with LDP need a substantial 
customer base or boundary selection.

The hybrid differential information assurance model diminishes the size of the client base needed 
by dividing clients dependent on trust settings. Be that as it may, it is hazy which application regions 
and calculations can best utilize the half breed trust model information. Also, current work on half 
breed models ordinarily expects that the information are from a similar circulation, paying little heed 
to the client’s trust inclinations. Loosening up this supposition that is particularly significant for FL, 
as the connection between trust settings and real client information can be precarious.

This strategy, however, has several drawbacks. Sparse vector aggregation is inefficient, (A) 
assuming a semi-honest server (private key infrastructure phase only), (B) allowing the server to 
recognize a group of peripherals (which may lose information), (C) and (D) does not have the capacity 
to enforce well-formed expressions on client input. It is still unclear how to develop an effective, 
reliable, and secure aggregation system that handles all of these issues.

8. APPLICATIoNS oF FL IN CyBERSECURITy

There are numerous applications of FL in cybersecurity that can benefit critical infrastructure systems 
which are discussed below in the section.

8.1 Federated Learning for Authentication
A potential method for developing user authentication models for vital infrastructure is FL. A decision 
problem called UA makes use of an embedding space to examine input similarity. Authentication 
models must be trained on a variety of data sources in order to successfully reject forgers. However, 
centralized user data collection and model training presents privacy issues. FL eliminates the need 
for a central server and restricts access to other users’ data, minimizing privacy problems. FL can 
therefore aid in enhancing the efficacy of authentication methods by thwarting assaults like evasion 
and poisoning.

8.2 Learning for Privacy
In the context of critical infrastructure, traditional machine learning models send sensitive data to a 
centralized cloud (Stergiou et al., 2022) for training, which poses a security risk. Federated learning 
(FL) provides personalized predictions on local hosts while keeping sensitive data locally on mobile 
or edge devices. FL only transmits parameters from these devices to train the global model, ensuring 
data privacy and security. FL can be used in various critical infrastructure applications such as social 
media, medical applications (Vijayakumar P. et al., 2022), traffic management, and smart city apps.

8.3 Federated Learning for Trust Management
Massive amounts of data generated by IoT and smart phones (R. Sharma & Sharma, 2022) are utilized 
to train machine learning models for improved mobile services. Storing user data on a centralized server 
for model training, on the other hand, increases communication costs, storage space requirements, 
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and the danger of data privacy leaks. FL solves these concerns by running predictive algorithms on 
local devices and communicating only the parameters needed to run the global ML model for larger-
scale predictions, while preserving sensitive data locally. Despite this, FL is still subject to security 
threats and requires trust measures to detect untrustworthy local model changes. Traditional machine 
learning includes transferring data to a centralized cloud for model training, exposing sensitive data 
to intruders/hackers.

8.4 Federated Learning for Attack Detection
The security of sensitive data from prospective attackers is crucial in critical infrastructure. The danger 
of data being accessible to unauthorized users has grown as digitalization and online transactions 
have expanded. An intrusion detection system (IDS) (Yadav et al., 2021) and anomaly detection can 
help identify and detect malicious network users or intruders. Machine learning-based models have 
shown potential in spotting intruder patterns, which can assist in the construction of an effective 
intrusion detection and anomaly detection system. Critical infrastructure must have strong security 
measures in place to avoid any possible assaults on sensitive data.

9. CoNCLUSIoN AND FUTURE woRK

Federated Learning is a new learning paradigm that addresses the increased processing capacities of 
devices such as wearables, smartphones, and self-driving cars, as well as privacy concerns. Federated 
learning was proposed as a way to extend the advantages of machine learning to places where sensitive 
data is stored. In a range of areas, such as education, finance, and health insurance, learning from 
private data while respecting user privacy has immense promise. However, it provides a number of 
open concerns and ideas for future federated learning research, such as how to prevent or safeguard 
the vulnerabilities in FL systems. This research came to a conclusion after looking into a number of 
vulnerabilities and attacks. The most common dangers in FL are model poisoning, backdoor attacks, 
and inference attacks. Continuous vulnerability assessment is critical for ensuring the security of FL 
systems. Current detection and mitigation methods are often limited in their effectiveness, and new 
methods need to be developed that are tailored to the unique challenges of FL systems. Existing FL 
protocols often have security vulnerabilities, and new protocols need to be designed that are more 
robust to attack. Promising new cryptographic techniques, such as trusted execution environments 
(TEEs) and zero-knowledge proofs (ZKPs), have the potential to significantly improve FL security. 
Using cryptographic protocols like trustworthy Execution Environments and Zero-Knowledge Proofs 
to build and ensure agreement among cooperative parties may give crucial protection against failures 
and attacks that must be addressed in this privacy protection through federated learning.
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