
DOI: 10.4018/JDM.334710

Journal of Database Management
Volume 35 • Issue 1 

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

RDF(S) Store in Object-
Relational Databases
Zongmin Ma, Nanjing University of Aeronautics and Astronautics, China

 https://orcid.org/0000-0001-7780-6473

Daiyi Li, Nanjing University of Aeronautics and Astronautics, China

Jiawen Lu, Nanjing University of Aeronautics and Astronautics, China

Ruizhe Ma, University of Massachusetts, Lowell, USA*

Li Yan, Nanjing University of Aeronautics and Astronautics, China

ABSTRACT

The Resource Description Framework (RDF) and RDF Schema (RDFS) recommended by World 
Wide Web Consortium (W3C) provide a flexible model for semantically representing data on the 
web. With the widespread acceptance of RDF(S) (RDF and RDFS for short), a large number of 
RDF(S) is available. Databases play an important role in managing RDF(S). However, there are few 
studies on using object-relational databases to store RDF(S). In this paper, the authors propose the 
formal definitions of RDF(S) model and object-relational databases model. Then they introduce the 
approach for storing RDF(S) in object-relational databases based on the formal definitions. They 
implement a prototype system to demonstrate the feasibility of the approach and test the performance 
and semantic retention ability of this prototype system with the benchmark dataset.

Keywords
Object-Relational Databases, PostgreSQ, RDF(S), Storage

1. INTRODUCTION

The Semantic Web has been proposed by Tim Berners-Lee to provide a common framework for 
information sharing across multiple domains (Crasso et al., 2012). With the Semantic Web, data are 
provided with data semantic meaning (through metadata), and concepts and entities in the real world 
can be represented in a machine-readable and structured form. The Resource Description Framework 
(RDF) proposed by the World Wide Web Consortium (W3C) is a model of representing metadata of 
resources on the Web. RDF Schema (RDF(S)) as well as Web Ontology Languages (OWL) are the 
description of vocabulary semantics used in RDF datasets. RDF and RDF Schema (collectively known 
as RDF(S)) are the core of the Semantic Web. Nowadays, RDF(S) have been increasingly applied 

https://orcid.org/0000-0001-7780-6473


Journal of Database Management
Volume 35 • Issue 1

2

in a wide range of Web-based application scenarios, such as semantic data integration (Arsic et al., 
2019), semantic search (Xiong, Power and Callan, 2017; Zheng et al., 2019), semantic analysis of 
Big Data (Smiatacz, 2018; Shen, Hu and Tzeng, 2017), decision making (Rubio-Largo et al., 2017; 
Zhou et al., 2017) and so on. Currently, RDF(S) has become the de-facto standard of representing 
and handling data semantics. In particular, knowledge graphs (KGs) mostly adopt RDF mode to 
represent massive instances, and now are widely investigated and applied in diverse domains for the 
semantic and intelligent processing of massive data (Song et al., 2019).

With the rapid increase in the number of RDF(S) on the Web, it has become increasingly important 
to efficiently store massive amounts of RDF(S). The storage of RDF(S) (Ma, Capretz and Yan, 2016) 
often supports efficient queries of RDF data, mainly because the storage structure of RDF(S) not only 
directly determines the integrity of storage semantics, but also greatly affects its query efficiency (Ma 
et al., 2016; Ma, et al, 2018). At present, there have been many studies on RDF(S) storage methods, 
which can be roughly divided into the following three categories:

1) 	 Memory-based storage (e.g., Sesame (Broekstra, et al., 2002) and BitMat (Atre, et al., 2008)). 
With this category of methods, memory space is directly allocated for RDF data and indexing 
technology is generally utilized for quick data process. Note that these methods are limited by 
the size of computer memory and are only suitable for storing a small number of RDF datasets;

2) 	 Disk-based storage (e.g., YARS2 (Harth, et al., 2007) and System II (Wu, et al., 2009)). With 
this category of methods, the storage location is transferred from memory to hard disk. These 
methods meet the storage requirements of large-scale RDF datasets in space, but frequent reads 
and writes to disks greatly reduce storage performance;

3) 	 Database-based storage (e.g., Jena-TDB (Wilkinson, et al., 2003), 4Store (Harris, et al., 
2009), Virtuoso (Erling and Mikhailov, 2007), BigOWLIM/OWLIM-SE (Bishop et al., 2011), 
SPARQLcity/SPARQLverse1, MarkLogic2, and Clark and Parsia3). This category of methods 
uses database technology to store RDF data. In addition to some commercial systems, there are 
some developed prototypes such as RDF-3X (Neumann and Weikum, 2010), SW-Store (Abadi, 
et al., 2009) and RDFox4.

With the mature technology and powerful data management capability of relational databases 
(RDBs), research on RDF(S) storage methods based on RDB have achieved some results (Ma, Capretz 
and Yan, 2016; Fan, Yan and Ma, 2020). However, due to the use of a two-dimensional table storage 
structure at the bottom of the RDB, which does not match the structure of RDF(S), the RDF(S) storage 
methods based on RDBs cannot effectively store the semantic information of RDF(S), resulting in 
incomplete storage data semantics and low query efficiency. To store massive RDF data, NoSQL (not 
only SQL) databases are applied to store RDF data (Cudre-Moroux et al., 2013). However, although 
NoSQL-based storage is highly efficient for massive RDF(S) data, it is recognized that there is no 
unified standard for NoSQL databases, and different databases use different query languages, each 
with its own advantages and disadvantages (Edwards, 2022). Considering the cost, familiarity and 
technical maturity, for the storage of non-massive RDF data, traditional databases rather than NoSQL 
databases are still the first choice due to the mature theoretical basis and powerful data management 
capabilities.

Object-relational databases (ORDBs) are based on RDBs and combine object-oriented features. 
Therefore, they not only support the integrity constraints and SQL standards of RDBs, but also 
utilize object-oriented features to handle complex data relationships. At present, although ORDBs 
are widely applied in various domains such as geographic information management (Ackere et al. 
2019), software engineering (Gregory, 2019), multimedia (Khanduja and Chkraverty, 2019) and other 
fields, there is relatively little research on using ORDBs to store RDF(S). In (Alexali et al., 2001), a 
tool called RDF Suite was implemented based on an ORDB, which can be used for RDF(S) storage 
and querying. This RDF(S) storage method achieves the separation of RDF(S) schema information 



Journal of Database Management
Volume 35 • Issue 1

3

and data information, mainly using four data tables: class, subClass, property, and subProperty to 
store RDF(S) schema information, and then connecting instance tables based on inheritance. This 
method is more suitable for scenarios with more pattern types and less instance data. In (Astrova 
et al., 2008), a method for storing ontology in an ORDB was proposed. This method directly stores 
ontology as an object in the database, but does not store semantic relationships such as attributes, 
resulting in incomplete semantic information stored in the database. The Sesame tool (Broekstra et 
al., 2002) is also an RDF(S) storage tool based on an ORDB. This tool creates a data table for each 
class (the class table only contains a field to record the URI), which is used to record all instance 
information of that class. Meanwhile, the tool also creates a data table for each attribute (the attribute 
table contains two fields: subject and object), which is used to record the instance information of 
the attribute. Class tables and property tables are created according to corresponding inheritance 
relationships. The experimental results show that although this method can effectively maintain the 
semantic information of RDF(S), its query efficiency is not as good as that of relational databases.

In summary, RDBs cannot fully preserve the semantic information of RDF(S) due to a natural 
mismatch between their structural patterns and RDF(S). Meanwhile, unreasonable storage structure 
design can lead to situations such as excessive internal or external connections, which can lead to 
a decrease in query efficiency. Due to the lack of unified standards and query languages in object-
oriented databases (OODBs), the technological development is still not mature enough. Although 
it can better express RDF(S) semantic information, it is difficult to achieve good query results, and 
its usability in actual production is low. The structure of ORDBs has a certain similarity to that of 
RDF(S), which can handle complex data relationships, has stable performance, and high commercial 
value. Therefore, it is currently a good choice for storing RDF(S). However, existing solutions for 
storing RDF(S) based on ORDBs still have the following issues and challenges:

1) 	 Unable to store RDF(S) semantic information well. Some storage schemes only store RDF 
triplet data, with little consideration given to the structural semantic information contained in 
the RDF(S), resulting in incomplete RDF(S) storage information.

2) 	 Unreasonable storage structure design. A large number of null values appear in the data table, 
and there may be too many internal or external connections when querying the database, which 
seriously affects query efficiency. 

3) 	 Some studies only utilize the theoretical methods of storing RDF(S) based on OEDBs without 
implementing corresponding system tools, and have not tested the performance of the proposed 
methods.

In this paper, we advocate to apply the ORDBs to persist RDF triples as well as RDF Schema 
data. The contributions of this work mainly include three aspects. 1) We formally define the object-
relational database model and the RDF(S) model. The structure and semantics of RDF(S) and RDBs 
are comprehensively summarized, which lays a theoretical foundation for the storage of complete 
semantics in RDF(S); 2) Based on the formal definitions of these two models, we propose some 
rules for mapping RDF(S) into the ORDBs. These mapping rules can effectively reduce null values 
in data tables, avoid a large number of data table connections during queries, and support inference 
queries on RDF(S) stored in the ORDBs; 3) We develop a prototype system named RDF2ORDB to 
verify the feasibility of our storage approach. By comparing with existing RDF(S) storage methods, 
we demonstrate that the proposed method can effectively retain the semantic information of RDF(S) 
and achieve better query efficiency.

The rest of this paper is organized as follows. Section 2 gives an overview of the research status 
of RDF(S) storage. The formal definitions of RDF(S) and ORDBs are introduced in Section 3. In 
Section 4, we propose a storage framework for storing RDF(S) in the ORDBs. We implement and 
verify our approach in Section 5 and Section 6 concludes this paper.



Journal of Database Management
Volume 35 • Issue 1

4

2. RELATED WORK

RDF(S) storage has been studied in a variety of contexts. We can divide RDF(S) storage into two 
categories, which are file-based storage and database-based storage, as shown in Figure 1.

File-based storage is built directly on the file system. This method is easy to use and extend. 
However, when the scale of RDF(S) keeps increasing, file-based storage is not convenient for data 
maintenance and the query efficiency is not ideal. Therefore, this method is only suitable for storing 
small-scale RDF(S) and operations such as updates and queries do not occur frequently.

Relational databases are widely used and have good commercial value, which is the preferred 
method for storing RDF(S). Note that the relational databases store data in the form of two-dimensional 
table, which do not match the structure of RDF(S). Many methods have been proposed to decompose 
RDF(S) into the form that can be stored by relational databases (RDBs). At present, methods for 
storing RDF(S) based on RDBs can be divided into three categories:

•	 vertical storage (Broekstra, et al., 2002; Wilkinson, et al., 2003; Neumann and Weikum, 2010; 
Harris and Gibbins, 2003), which is also known as triple stores such as Sesame5;

•	 horizontal storage (Agrawal, et al., 2001; Bornea et al., 2013) like SW-Store6;
•	 property/type storage (Pan and Heflin, 2003; Levandoski and Mokbel, 2009) like Jena7.

1) 	 Vertical storage, also known as triple storage, mainly stores RDF triples and cannot store 
RDF Schema schema information. An RDF instance can be expressed in the form of a 
triple, which consists of three parts: subject, predicate, and object. The vertical storage 
method directly stores RDF triplets in sequence in a data table containing the subject, 
predicate and object fields. This method has good scalability, can directly add data to 
the data table, and the parsing of RDF is also very simple. However, it cannot store 
RDF Schema information and cannot use RDF Schema for inference, resulting in poor 
semantic expression ability. In addition, querying data tables involves a large number of 
self-join operations, and as the complexity of SQL language increases, query efficiency 
will significantly decrease.

2) 	 Horizontal storage: The basic idea of horizontal storage is to store all properties of 
RDF(S) as fields in a table, and a row of data in the data table is a complete instance. 
Compared to vertical storage, horizontal storage can effectively avoid a large number of 
self-join operations when querying RDF(S), and the query statement is relatively simple. 
In (Agrawal et al., 2001), it was achieved to present vertically stored data to users in the 
form of a horizontal table, allowing users to write query statements based on the horizontal 
storage mode without the need for complex SQL statements. In (Bomea et al., 2013), a 
table structure was designed that includes an entry field and multiple predi and value 

Figure 1. RDF(S) storage approaches



Journal of Database Management
Volume 35 • Issue 1

5

fields. Each instance in RDF stores a subject in the entry field, and all predicates and 
objects owned by that instance are stored in multiple predi and value fields, respectively. 
This method provides an algorithm to map the same predicate from different instances to 
the same predi field in the data table for storage. Although the horizontal storage model 
is simple, instances of different classes in RDF(S) have different properties, and using 
horizontal storage can result in a large number of null values. In addition, the properties 
of an instance may have multiple property values, and the horizontal storage mode cannot 
solve the problem of multi valued properties.

3) 	 Attribute storage can be seen as predicate oriented storage. This method creates a data 
table for each property in RDF(S) and divides RDF triplets into different property tables 
based on the properties. In (Pan and Heflin, 2003), it was achieved to create a property 
table while also creating a data table for storing instance information for all classes, and 
using views to store RDF schema information. However, this method considers incomplete 
semantic information and the efficiency of obtaining class hierarchy information through 
views is not ideal. In (Levandoski and Mokbel, 2009), triples are divided based on 
predicates and stored in different property tables. although joins between different tables 
are faster than self-join operations, the efficiency of query will decrease with the increase 
of query properties.

Due to the natural mismatch in structure between RDBs and RDF(S), the RDBs are not ideal for 
storing RDF(S). Object-oriented databases (OODBs) integrate the powerful modeling capabilities 
of the object-oriented paradigm into database model and store data in the form of objects, which 
are similar to RDF(S) in structure (Bagui, 2003). In (Chao, 2007), an object-oriented data model is 
presented for storing data extracted from RDF(S) and a generic API to support basic RDF(S) query 
operations. In (Zhang, et al, 2015), a method of using RDBs to store ontology is proposed, which 
could better retain semantic information expressed by ontology. Unlike the popular RDBs that are 
very mature, the OODBs do not have unified standards of the implementation and query. In the 
terms of scalability, fault tolerance, transaction support and other fields, the OODBs are far behind 
the RDBs in a practical view.

Recently, NoSQL databases have emerged as a commonly used infrastructure for managing Big 
Data. Particularly, NoSQL databases have been applied to store massive RDF(S) (Cudre-Mauroux 
et al., 2013). Depending on concrete data models for RDF data storage, the NoSQL-based stores of 
RDF data are categorized into key-value stores, column-family stores (e.g., HBase in (Khadilkar, et 
al, 2012; Franke et al., 2011)), document stores (e.g., CouchDB in (Stefani and Hoxha, 2018) and 
MongoDB in (Michel, et al, 2019)) and graph stores (e.g., Neo4j in DBpedia4neo8). Unlike traditional 
databases, NoSQL databases include several types databases, which lack unified standards and query 
languages. Their syntax for data manipulation varies depending on the types of NoSQL databases. In 
addition, NoSQL-based data management still needs improved. For example, the distributed nature 
of NoSQL databases enables faster data availability, but it may make ensuring data consistency even 
more difficult; queries may not always return updated data and may return inaccurate information 
(Edwards, 2022).

With ORDBs, a storage tool named RDF Suit is implemented in (Alexaki et al. 2001), which 
creates four table named class, subclass, property and subproperty for storing RDF Schema. Note that 
this approach pays attention only to storing more schema information rather than massive instance 
(triple) data. The method proposed in (Astrova and Kalja, 2008) is actually designed to store ontologies 
in ORDBs rather than RDF triples. Sesame (Broekstra, et al, 2002) supports storing RDF(S) with 
ORDBs. It creates tables for each class and property and stores instances of the corresponding class 
and property. As we show in the experiment of this paper, the query efficiency of this tool is not 
good enough.



Journal of Database Management
Volume 35 • Issue 1

6

3. FORMAL DEFINITIONS OF ORDBs AND RDF(S)

In this section, we propose formal definitions of RDF(S) model and ORDBs model. The definitions 
provide an overview of major features of RDF(S) and ORDBs, which are very helpful to illustrate 
the storage method proposed in Section 4.

3.1 Formal Definition of RDF(S) Model
The basic idea of RDF(S) is that all information stored in it is regarded as resources. Each resource in 
RDF(S) is identified with a unique International Resource Identifier (IRI). As the basic composition 
unit of RDF(S) model, RDF statement is comprised of subject, predicate and object, which can 
be abbreviated as (s, p, o). In a statement “Mathematic is learned by Student Mike”, for example, 
“Mathematic”, “taught by” and “Student Mike” are subject, predicate and object, respectively. A set 
of RDF triples can be presented as an RDF(S) graph. The nodes of an RDF(S) graph are subject or 
object and its directed edges are predicate.

For the reason that RDF only provides simple descriptions about resources and their values, 
specific properties or special relationships between different resources can be expressed by RDF 
Schema. The important components of RDF Schema include rdfs:Class, rdf:Property, rdfs:Datatype, 
rdfs:subClassOf, rdfs:subPropertyOf, rdf:type, rdfs:domain, rdfs:range and so on. The features of 
RDF Schema are similar to object-oriented model.

To retain RDF(S) semantic information more completely, we propose a formal definition of 
RDF(S) model as follows:

Definition 1. RDF(S) model can be defined as a three-tuple {ConceptSet, AxiomSet, InstanceSet}.

(1) 	 ConceptSet = ClassSet∪PropotySet∪DatatypeSet is a finite set of basic concepts, in which 
InstanceSet represents a finite set of all classes, PropotySet represents a finite set of all 
properties, and DatatypeSet represents a finite set of all data types. Also, PropotySet = Data-
PropotySet∪Object-PropotySet, where Data-PropotySet represents datatype properties and 
Object-PropotySet represents object properties.

(2) 	 AxiomSet = ClassAxiom∪PropertyAxiom is a finite set of axioms of RDF(S), which ClassAxiom 
is a finite set of axiomatic declaration on classes and PropoertyAxiom is a finite set of axiomatic 
declaration on properties.

(3) 	 InstanceSet is a finite set of instance resources and InstanceSet = I∪B∪L. Here I represents the 
finite set of all resources, B represents the finite set of all empty nodes and L represents the finite 
set of all literal resources. RDF also can be expressed as a triple t = <s, p, o>, where s ∈ I∪B, 
p∈ I, o∈ I∪B∪L.

Based on the formal definition above, the main syntax of RDF(S) used in this paper is shown 
in Table 1.

To understand the structural information of RDF(S), we provide an example of RDF(S) data.
As shown in Figure 2. Nodes Person, School, Student and University are two classes. Nodes 

doctorDegreeFrom and degreeFrom are object properties. The lass Student is a subclass of the Person 
class and this semantic relationship belongs to CAxiom. The property inheritance relationship between 
degreeFrom and doctorDegreeFrom belongs to PAxiom. Node Mike is the subject of the triple and 
node Stanford University is the object of the triple. doctorDegreeFrom is the predicate of the triple. 
The property doctorDegreeFrom has the domain “Student” and the range “University”, meaning a 
mapping described by the property from the domain to the range.

3.2 Formal Definition of Object-Relational Database Model
The ORDBs combine the advantages of object-oriented databases and relational databases to model 
and encapsulate the stored data in a more complex way. It not only supports object-oriented features 



Journal of Database Management
Volume 35 • Issue 1

7

such as inheritance, composite datatype customized by users, but also supports updating and querying 
databases with SQL statements (Auzi et al., 2018).

Since the ORDBs still adopt the two-dimensional table structure to store data, which is as 
same as relational databases, ORDBs should also meet the integrity constraints. The integrity 
constraints mainly include not null constraints, unique constraints, primary key constraints, foreign 
key constraints. The not null constraint is used to specify that a field does not have a null value. 
The unique constraint is used to specify that data in a field or set of fields in a data table is unique 
across all rows. The primary key constraint is generally used as a unique identifier of the row data. 

Table 1. Main syntax of RDF(S)

Syntax Description

type(x) ∈ClassSet∪PropertySet x is the resource referenced by IRI. type(x) is the class or property to which the 
resource belongs.

type(L)∈ DatatypeSet L stands for literal resources. type(L) represents the datatype of the literal resource.

dom(p) ∈ ClassSet p represents a property and dom(p) indicates the domain of the property is a class.

ran(p) ∈ DatatypeSet∪ClassSet p represents a property and ran(p) indicates that the range of the property can be 
either a class or a primitive datatype.

pro(c) ⊆PropertySet pro(c) represents the collection of all properties of the class C.

parent(c)⊆ClassSet parent(c) represents the collection of all parents of the class C.

sco(c1, c2) ∈ClassAxiom c1 is a subclass of c2

spo(p1, p2) ∈PropertyAxiom p1 is a subproperty of p2

sub(t)∈s t is an instance, sub(t) is the subject of the instance.

pre(t)∈p t is an instance, pre(t) is the predicate of the instance.

obj(t)∈o t is an instance, obj(t) is the object of the instance.

name(IRI) name(IRI) represents the namespace of IRI.

Figure 2. An example of RDF(S)



Journal of Database Management
Volume 35 • Issue 1

8

The field to which the primary key constraint is added must satisfy both the not null and unique 
constraints. The foreign key constraint maintains referential integrity between two associated 
tables. The foreign key constraint specifies that the value of the field must be the same as some 
data value in the associated data table.

At present, there is still no standard formal definition of ORDBs. In order to generalize 
characteristics of the object-relational database, this paper puts forward the formal definition of 
object-relational database as follows:

Definition 2: An object-relational database can be defined as a four-tuple (Basic, Cons, Inh, Ins).
Basic represents a finite set of basic concepts in an ORDB. Basic = Tab∪Col∪Dtype. Tab is a 

finite set of all tables in an object-relational database. Col is a finite set of fields in a data table. Dtype 
is a finite set of datatypes. Dtype = Ptype∪Ctype. Ptype is a collection of primitive datatypes. Ctype 
is a collection of user-defined composite datatypes.

Cons is a collection of constraint relationships in an object-relational database. Cons = 
Pcons∪Fcons∪Ucons∪Ncons. Pcons is a set of primary key constraints. Fcons is a finite set of 
foreign key constraints. Ucons represents a finite set of unique constraints, and Ncons is a finite set 
of all not null constraints.

Inh is finite set of inheritance relationships in an object-relational database. Inh = SInh∪MInh. 
SInh is a collection of single inheritance relationships and MInh is a collection of multi-inheritance 
relationships.

Ins is a collection of all instances in a database.
Based on the formal definition of ORDBs, we define its abstract syntax. Table 2 shows the main 

abstract syntax for the ORDBs. Note that, in this paper, we apply the ORDBs to persist RDF(S) and 
do not mention some advanced features of the ORDBs (e.g., multiple inheritance and method of 
ORDB model). Ones can refer to (Auzi, A. et al., 2018) for more details.

4. STORAGE OF RDF(S) IN ORDBs

In this section, we propose an approach to store RDF(S) in the ORDBs based on the formal definitions 
of two models proposed in Section 3. Specifically introduced the general architecture of the storage 
pattern and storage rules.

Table 2. Main syntax of ORDBs

Syntax Description

c∈Col, table(c) ∈ Tab c is a field and table(c) means the table to which field c belongs.

t∈Tab, col(t) ∈Col t is a table and col(t) represents all fields contained in table t.

c∈Col, type(c) ∈Dtype c is a field and type(c) means the data type of c.

i∈Ins, table(i)∈Tab i is an instance and table(i) represents the table to which i belongs.

i∈Ins, column(i)∈Col i represents the data instance and column(i) represents the field in which the data resides.

PK(t, c)∈Pcons Primary key of table t contains field c.

FK(t, c)∈Fcons Foreign key of table t contains field c.

FK(t1, c1, PK(t2, c2))∈Fcons Foreign key of table t1 points to primary key of table t2.

sub(t1, t2)∈ SInh sub() represents a single inheritance relationship and table t1 is a child of table t2

subM(t1, t2, ….)∈ MInh subM() represents a multi-inheritance relationship and table t1 is a child of multi tables.

parent(t)∈Tab parent(t) represents the set of all the parent tables of table t.



Journal of Database Management
Volume 35 • Issue 1

9

4.1 The Overall of Storage Framework
RDF Schema represents information about classes and properties. Each table in an object-relational 
database corresponds to a set of entities in the real world and ORDBs support the inheritance 
relationship between tables. So, the structure of RDF Schema is very similar to the structure of 
ORDBs. In this section, we propose an object-relational storage model by analyzing the structure 
information of RDF Schema.

The main idea of the storage framework proposed in this paper is to respectively create a table for 
each class and each property in RDF Schema. We then use the created table to store the corresponding 
instances of the class (or property). In many real applications, the number of class and property 
are often much smaller than instances. Actually, our storage framework based on ORDBs mainly 
contains five types of tables: class table, property table, property-relation table, property-type table, 
and namespace table.

For the RDF(S) shown in Figure 2, for example, Figure 3 shows the object-relational storage 
model generated by the RDF Schema in Figure 2. We take Figure 3 as an example to illustrate the 
overall architecture of RDF(S) storage with the ORDBs. In Figure 3, there are totally four class 
tables (i.e., university, school, student, and person), two property tables (i.e., degreefrom and 
doctordegreefrom), two property-type tables (i.e., pro_domain and pro_range), one property-relation 
table (i.e., property_relation), and one namespace table (i.e., bief_namespace).

According to the formal definitions proposed in Section 2, RM = (RB, RA, RI) is used to represent 
RDF(S) model and ORDBM = (Basic, Cons, Inh, Ins) is used to represent object-relational database 
model. We use ρ to express the process of creating tables.

1. 	 ProTable(property table): ∀ p∈ RP THEN ρ (p) ∈ ProTable

We can create a table for each property in RDF Schema and the table name is the property 
name. The table contains two fields. The first field is named subject which is used to store instance’s 
subject. The second field is named the property name and is used to store instance’s object. In Figure 
3, the degreefrom table and doctordegreefrom table are created by the degreeFrom property and 
doctorDegreeFrom property in RDF Schema, respectively.

2. 	 ClaTable(class table): ∀ c∈ RC THEN ρ (c) ∈ ClaTable AND subM(ρ (c), ρ (pro(c)), ρ (parent(c)))

We also create a table for each class in RDF Schema and the table name is the class name. This 
table contains only one field named subject, which is used to store all instances of this class. When a 

Figure 3. Object-relational storage model



Journal of Database Management
Volume 35 • Issue 1

10

class table is created, it should inherit from its parent class table, along with property tables created 
by all properties whose domain is this class. In Figure 2, Person class is the parent of the class Student 
and the domain of the doctorDegreeFrom property is the class Student. The student table inherits 
from the Person table and the doctordegreefrom property table. So, the student table owns all the 
fields in the parent table and the property table.

3. 	 ProRelTable(property-relation table): ∀ spo(p1,p2) THEN ρ (spo(p1, p2))∈ProRelTable

Property inheritance relationships are not treated in the same way as class tables. Instead, the 
property-relation table is created to store inheritance relationships between properties. Property-
relation table contains two fields, child_property and parent_property like the property_relation 
table in Figure 3.

4. 	 ProTypeTable(property-type table): ∀ p∈ RP THEN ρ (dom(p)) ∈ProTypeTable AND ρ (ran(p)) 
∈ProTypeTable

ProTypetable is used to store property’s domain and range. In Figure 3, pro_domain table 
contains two fields, property and domain, to store all the defined domains of the property. Pro_type 
table contains three fields: property, range, and type, which are used to store name, range and type 
of the property.

5. 	 NameSpaTable(namespace table): ∀ name(t) THEN ρ (name(t))∈NameSpaTable

To improve the readability of RDF(S), RDF(S) defines abbreviations to describe commonly used 
namespaces. A large number of resources in RDF(S) shares the same namespace. Duplicate storage 
can cause a large amount of wasted space. So, we create a namespace table to store the namespaces 
defined by RDF(S) and their corresponding abbreviations like the brief_namespace table shown in 
Figure 3.

4.2 Storage Rules
The previous section describes the overall framework of RDF(S) store with ORDBs. The framework 
mainly preserves the inheritance relationships of classes in RDF Schema. Based on the framework, 
this section explains the storage rules from two aspects: storing RDF Schema and storing instances. 
This section also adopts RM = (RB, RA, RI) as an RDF (S) model and ORDBM = (Basic, Cons, Inh, 
Ins) as an object-relational database model. The symbols ψ represents the storing procedure. First, 
let’s introduce the storage of RDF Schema.

Rule 1 (storing namespace): ∀i∈ IRI THEN ψ(name(i)) → NameSpaTable	

All namespaces defined in RDF(S) can be stored into the namespace table. This table contains 
two fields. The abbreviation field stores the abbreviation of the namespace and the namespace field 
stores the full namespace. Figure 4 shows an example of storing RDF(S) namespace.

Rule 2 (storing relationships of properties): ∀spo (p1, p2) THEN ψ(p1, p2) → proRelTable
The inheritance relationship between different properties can be stored in the property_relation 

table. Figure 5 shows an example of storing inheritance relationship between properties. In Figure 
2, degreeFrom is the parent property of the doctorDegreeFrom property. This relationship can be 
stored directly in the property_relation table as shown in Figure 5.

Rule 3 (storing property constraint): ∀p∈ RP THEN ψ(dom(p)) ∈ ProTypeTable AND ψ(ran(p)) 
∈ProTypeTable



Journal of Database Management
Volume 35 • Issue 1

11

To preserve the full semantics of property, the domain, range, and the type of the property need 
to be stored in the property -type table. Figure 6 shows an example of storing constraint information 
related to a property.

In Figure 6, there is an object property doctoraldegreeFrom and a datatype property name. 
pro_domain table and pro_range table are used to store the domain, range and property type of 
doctoralDegreeFrom and name. rdf: ID =” doctoralDegreeFrom” is the abbreviation of rdf: about = 
http://www.example.com/rdf/#doctoralDegreeFrom doctoralDegreeFrom”.

Rules 1-3 store the RDF Schema semantic that is not retained by the object-relational framework 
created in Section 4.1. Then we introduce rules about storing RDF instances.

Rule 4 (storing instances of class): ∀type ((sub(t))∈RC THEN ψ(sub(t)) → claTable (type(sub(t)))
Each instance has a corresponding class. Figure 7 shows how the class instance is stored. In this 

example, University0 and Univeristy1 are both instances of the class University. So, the resource is 
stored in the corresponding class table. As the analysis in Section 4.1, each class table has a subject 
field that stores all instance resources.

Rule 5 (storing property resources whose domain is not empty): ∀pre(t)∈RP AND dom(pre(t)) 
∈ RC THEN ψ(t) → ClaTable(dom(pre(t)))

The domain of a property restricts the subject type of the property instance. Usually, the domain 
of a property is a class. If the domain of the property is not empty, the class table has the field of the 
current property according to Rule 2 in Section 4.1. Property instances whose domain is not empty can 
be stored directly in the corresponding class table. For example, the domain of name and telephone 
property in Figure 8 are both Student class. So, the student table inherits the name property table and 

Figure 4. An example of namespace storage

Figure 5. An example of property relationship storage

Figure 6. An example of property constraint storage

http://www.example.com/rdf/#doctoralDegreeFrom


Journal of Database Management
Volume 35 • Issue 1

12

telephone property table and have name_value field and telephone_value field. The instance Mike in 
Figure 8 can be directly stored in the student table.

There are multi-valued properties in RDF(S). A row of data in a class table cannot store multiple 
values of the same property. Therefore, if the property value is found to already exist when you insert 
it, the property is a multi-valued property. Then the new value should be stored in the property table 
not in the class table. This method can effectively solve the problem of multi-valued properties. It is 
important to note that when querying a multi-valued property, the property table needs to be queried. 
This is because the property table contains all information about the current multi-valued property, 
while the class table contains incomplete data.

Rule 6 (storing property resources whose domain is empty): ∀pre(t)∈RP AND dom(pre(t))=∅ 
THEN ψ(t) → proTable(pre(t))

If the domain of a property is empty, this property can belong to any class. So, according to the 
framework created in Section 4.1, there is not a class table that inherits this property table. Figure 9 
shows an example of storing property resources whose domain is empty. In this example, the domain 
of the property ID is empty. So, the instance of the property is stored directly in the property table 
rather than the class table. This may result in joins between tables when querying data, but it avoids 
a large number of null values in class tables.

4.3 Storage Algorithm
This paper designs two data structures, RDFClass and RDFProperties, to store the structural 
information analyzed from RDF Schema files. RDFClass stores the class name of the current class, the 
direct parent class, and a collection of attributes that define the domain as that class. RDFProperties 

Figure 7. An example of class instance storage

Figure 8. An example of storing the property with no-empty domain

Figure 9. An example of storing the property instances with empty domain



Journal of Database Management
Volume 35 • Issue 1

13

store the property name of the current property, the direct parent class of the property, as well as the 
definition domain, value domain, and property type of the property.

The creation of an object-relational storage model for RDF(S) is described in Table 3. The 
input of this algorithm is the RDF(S) and the JDBC connection (connecting to the database). The 
output is the created object-relational storage model, classes set and properties set. Among them, 
each element in the classes set is an instance of RDFClass, and each element in the properties set is 
an instance of RDFProperty.

The detailed process of creating an object relational storage model based on RDF Schema is as 
follows:

1) 	 Firstly, create a namespace table, property type table, and property relationship table in the 
database (steps 1-3). These three tables are directly created based on the storage structure designed 
in section 4.1, and the namespaces and their abbreviations defined in the RDF Schema are stored 
in the namespace table (step 4).

2) 	 Secondly, read the RDF Schema file, extract all properties from the RDF Schema file, store the 
definition domain, value domain, and property type of the attributes to the RDFProperties, and 
save all RDFProperties instances to the properties set (step 5). Then extract all the classes in the 
RDF Schema, store the class name, direct parent class, and other information to the RDFClass, 
and store all RDFClass instances to the classes set (step 7).

3) 	 Then, traverse each instance in the properties set, create a property table containing subject 
and value fields based on the name of the property (step 9), store the inheritance relationships 
contained in the property in the created property relationship table (step 10), and then save the 
definition domain, value domain, and data type of the property in the property type table (step 
11). Due to the fact that each RDFClass structure also defines a set for storing properties of 
the current class in the domain, while traversing the property, the name of the attribute needs 
to be added to the classes set represented by the domain (step 12). The purpose of doing this is 
to facilitate the creation of a class table in the future, where all the properties contained in the 
current class can be directly obtained through the classes set.

Table 3. Algorithm of for creating an object-relational storage model

Input: RDF(S), Database connection (c) 
Output: classes set, properties set, and object-relational storage model

1. createNamespaceTable(c); 
2. createPropertyReltiaonTable(c); 
3. createPropertyConstrainTable(c); 
4. namespaceTable←extractNamespace(rdfSchemaFile)
5. properties←extractProperty (rdfSchemaFile); //Extract all properties from the RDF Schmea
6. classes←extractClass(rdfSchemaFile); //Extract all classes from the RDF Schmea
7. For i in properties do
8. createPropertyTable(c) //Create a property table for each property
9. insertPropertyRelation(c) //Store the inheritance relations of property in the property-relation table
10. insertPropertyType(c) //Store the type relationship of each property in the property-type table
11. addClassDomain(classes, i); //Add the name of an property to the classes set represented by the definition domain
12. End For 
13. For i in classes do
14. stack←findParentClass(i)
15. If stack! = null then
16. createParentClass(stack,c, classes); 
17. Else 
18. createClassTable(classes, c)//Created class table
19. End if 
20. End For



Journal of Database Management
Volume 35 • Issue 1

14

4) 	 Finally, traverse each RDFClass instance in the classes set. Each instance contains the name 
information of the current class, direct parent class information, and all properties of the defined 
domain for that class. Process the parent class relationship to determine whether the data table 
corresponding to the direct parent class of the current class has been created. If it has already been 
created, create a class table directly based on the current class and inherit the data table where 
the parent class is located and all properties are located. There is no need to repeat inheritance 
for properties already owned in the parent class table (step 19). If it has not been created, then the 
parent class of the parent class needs to be searched along the inheritance chain, and all classes 
traversed along the way are pushed into a stack structure named stack until the parent class of 
the already created data table or the top-level parent class of the not created data table is found 
(Step 15). Then create a data table for each class in the stack in the order of stack exit (step 17).

In this algorithm (as shown in Table 3), there are two For loops. The time complexity of the 
first For loop is O(m), where m represents the number of all properties in the properties set. The 
time complexity of the second For loop is O(n), where n represents the number of all classes in the 
classes set. Therefore, the overall time complexity of the algorithm is O(m+n).

With the created object-relational storage model for RDF(S), the RDF(S) file can be stored by 
applying the mapping rules above. The storage of RDF instances in the ORDBs is described in Table 
4. The input of this algorithm is the RDF file and classes set obtained from the algorithm above, and 
the output is the data tables that store RDF data.

The detailed process of storing RDF instance data into an object relational database is as follows:

1) 	 Firstly, extract all instance data from the RDF file (Step 1), and store the namespaces defined in 
the RDF file in the namespace table (Step 2).

2) 	 Secondly, obtain each instance in the RDF file in sequence and analyze the type of the current 
instance (Step 4). Then create a HashMap set called propertyValue. The key is used to store 
the properties of the current instance, and the value is used to store the corresponding property 
values (Step 5).

3) 	 Then, traverse all properties in the current instance in sequence. If the definition domain of 
the current property does not include the class to which the instance belongs, it means that 

Table 4. Algorithm for storing RDF instance data

Input: RDF file, Database connection (c), classes set
Output: Data tables for the RDF data

1. instances←extractInstance (rdfFile); //Extract instance data from RDF file
2. namespaceTable←extractNamespace(rdfFile)
3. while instances.hasNext do
4. type←getRDFtype(i) //Get the class that the current instance belongs to
5. propertyValue←createHashMap() //Create a HashMap structure to save property values
6. For j in Allpre(i) do //Traverse all properties of the same subject resource
7. if j∈classes(type).getdomain then //The definition domain of the property
8. If propertyValue.contains(j) then //Multivalued property
9. insertintoProperty(sub(j), obj(j))
10. Else propertyValue.add(j, obj(j))
11. End if 
12. Else 
13. insertintoProperty(sub(j), obj(j))
14. End if 
15. End For 
16. InsertintoClass(i, propertyValue) //Insert into class table
17. End while



Journal of Database Management
Volume 35 • Issue 1

15

the property cannot be inserted into the class table. Then, it can be directly inserted into the 
property table (skip to step 13). Otherwise, it is necessary to determine whether a multivalued 
property appears. If the propertyValue set already contains the current property, it indicates that 
a multivalued property has appeared. Then, the multivalued attribute is directly inserted into the 
property table (steps 8-9). Otherwise, place the property and corresponding property values into 
the propertyValue set (step 10).

4) 	 Finally, after the For loop ends, insert the properties and property values from the obtained 
propertyValue into the class table. The function of propertyValue is to use memory to store 
multiple properties and property values of the same instance, to insert a row of data in the 
class table once, avoiding multiple update operations on the class table and improving storage 
efficiency.

In this algorithm (as shown in Table 4), a while loop is included, mainly used to traverse all 
instances in the RDF file. A for loop is nested within the While loop to traverse all the properties 
contained in the current instance. Therefore, the overall time complexity of the algorithm is O(m × 
Max (n)). Where m represents the number of instances in the RDF file, and max (n) represents the 
maximum number of properties contained in the instance.

4.4 Query Method
At present, SPARQL language is the officially recommended query language for querying RDF(S), 
while the common query language for databases is SQL language. The core idea of SPARQL query 
statements is graph-based queries. The graph patterns in SPARQL can be divided into basic graph 
pattern, composite graph pattern, optional graph pattern, multi graph pattern, and value constrained 
graph pattern.

1) 	 The basic graph pattern is the foundation of all graph patterns. Its structure is the same as the 
triple pattern, consisting of three parts: subject, predicate, and object. For example, ?X eo:name 
?Y is a basic graph pattern. ? identify the variable, where eo:name is a constant. The semantics 
of this statement are to select the subject and object of a triple instance with the predicate name.

2) 	 The combination graph pattern is a combination of multiple basic graph patterns, and the returned 
query results need to meet each basic graph pattern. The idea of the combination graph pattern 
can correspond to the inner join operation in SQL statements.

3) 	 The optional graph pattern utilizes the OPTIONAL keyword to connect different graph patterns, 
and the returned query results may not meet the graph pattern modified by the OPTIONAL 
keyword. The idea of optional graph patterns can correspond to left join operations in SQL 
statements.

4) 	 The multi graph pattern utilizes the UNION keyword to connect different graph patterns, and 
the returned result set should contain the query results for each graph pattern. The idea of this 
pattern can also correspond to the UNION keyword in SQL statements.

5) 	 The value constrained graph pattern mainly constrains the query results, and keywords such as 
Limit and Order by can be selected to modify the result set. The keywords provided by SPARQL 
also have corresponding keywords that can be directly converted in SQL statements.

In summary, the key to converting SPARQL statements into SQL statements is how to map the 
graph patterns of SPARQL. In (Chebotko et al., 2009), an algorithm called BGPtoSQL was proposed to 
convert SPARQL statements of the graph patterns into equivalent SQL statements. SQL statements can 
mainly be decomposed into patterns such as SELECT, FROM, and WHERE. The SELECT keyword 
is followed by the fields that need to be displayed as query results, the FROM keyword is followed by 
the data table that needs to be queried, and the WHERE keyword is the query condition that needs 
to be met. The BGPtoSQL algorithm models the graph pattern in SPARQL query statements as a 



Journal of Database Management
Volume 35 • Issue 1

16

directed graph BGP=(N, E), where N is the node set representing the subject and object. E is the edge 
set used to represent the predicate. Each edge points from the subject node to the object node. Firstly, 
add the data table corresponding to each edge in BGP to the FROM clause, and add the variables in 
the statement to the SELECT clause to construct the query result set. Then, construct corresponding 
WHERE query conditions by determining whether each node is a variable or a constant, as well as 
the degree of entry and exit of the node. Sequentially process each basic graph pattern, perform join 
operations on the basic graph, and parse SPARQL query statements into SQL queries.

Based on the BGPtoSQL algorithm, this study further adjusts the converted SQL statements to 
adapt to the storage structure proposed in this paper. The data table obtained through the BGPtoSQL 
algorithm includes a class table and a property table. Since the class table inherits the fields in the 
property table, if the class table in the FROM clause is a child table of the property table to be queried, 
the property table is removed from the FROM clause and the query conditions for the property table 
in the WHERE clause is converted into queries for the same fields in the class table. If the queried 
property is a multivalued property, then the property table can be directly queried, and the property 
values of the field cannot be obtained through the class table. This is because for multivalued properties, 
only the data stored in the attribute table is complete.

The RDF (S) storage model proposed in this paper includes both property type tables and property 
relationship tables that store property semantics, and different class tables also express inheritance 
semantics. Therefore, the resulting SQL statements can be repackaged to achieve inference queries 
on the stored RDF(S). When conducting inference queries, the main focus is on analyzing the data 
tables queried after from. 

When the queried data table is a class table, the ORDB supports querying all data in the subclass 
table through the parent class table. Therefore, when querying the parent class table, all data in the 
subclass table can be directly obtained without the need for additional SQL statements. 

When the queried data table is a property table, it is necessary to use the property relationship 
table to analyze the inheritance relationship of properties, obtain all sub properties of the current 
property through the property relationship table, and query each sub property table. Figure 10 shows 
an example of using property relationship table for inference queries. When the data table to be 
queried is a degreefrom data table, the table contains two sub properties in the property relationship 
table, namely doctoraldegreefrom and masterdegreefrom. Therefore, the results of the inference query 
should also include data that meets the conditions in both doctoraldegreefrom and masterdegreefrom 
data tables. Use the UNION keyword to merge query results that meet the same conditions in the 
sub property table.

5. EXPERIMENT AND EVALUATION

Based on the storage framework and rules proposed in Section 4, we implemented a prototype system 
named RDF2ORDB, which can store RDF(S) into the ORDBs. In this section, we present the prototype 
system and validate the system with experiments.

5.1 Implementation
Experimental environment: In this section, we briefly discuss the implementation of the 
RDF2ORDB. The prototype system is run on a PC with Intel Core i5, 2.50GHz CPU, 8G RAM and 
Windows 10 operating system. The programming language is JAVA and the version is JDK1.80. The 
development tool is IDEA. The database used is PostgreSQL and the version is 10.12.

The prototype consists of three main modules: parsing module, storage module and query module. 
The overall architecture of the RDF2ORDB is shown in Figure 11.



Journal of Database Management
Volume 35 • Issue 1

17

1) 	 Parsing module: this module receives the RDF(S) file uploaded by users and then parses classes, 
properties and properties contained in the file. This module finally creates the data tables: class 
table, property table, property-relation table, property-type table and namespace table, which 
are included in the object-relational storage model. The creation of an object-relational storage 
model for RDF(S) is described in Table 3.

2) 	 Storage module: this module stores the parsed results of RDF(S) file in the data tables. The 
storage of RDF instances in the ORDBs is described in Table 4.

Figure 10. An instance of converting SPARQL query statements into SQL query statements

Figure 11. The overall architecture of the RDF2ORDB



Journal of Database Management
Volume 35 • Issue 1

18

3) 	 Query module: this module mainly generates the corresponding SQL statement from the 
SPARQL statements issues by users. We follow the mapping of SPARQL-to- SQL developed 
in (Rodriguez-Muro and Rezk, 2015).

The screen snapshot RDF2ORDB running one of the case studies is shown in Figure 12. At the 
top of the interface, users can upload the RDF Schema and RDF files that need to be stored in the 
ORDBs. After successful storage, the left side of the interface displays the created table and fields it 
contains. A query interface is provided on the right side of the system, where users can directly enter 
their SPARQL statements. In the figure, users would retrieve the faculties of assistant of professor in 
the given university. The query results are shown at the bottom of the screen.

5.2 Experimental Dataset
We adopted LUBM dataset (Lehigh University Benchmark) developed in (Guo, Pan and Heflin, 
2005). LUBM provides an ontology built around the university domain, containing 43 classes and 32 
attributes (25 object properties and 7 datatype properties), which describes the complex relationships 
among various kinds of departments and professors within the university. LUBM provides a UBA9 
(Univ-Bench Artificial) data generator tool that can extend RDF instances of any size based on 
ontology. LUBM was chosen as the experimental dataset because the domain described by LUBM is 
familiar to most users, and there are a moderate number of classes, each of which contains complex 
semantic relations. Moreover, LUBM is widely used in various benchmarks and is the authoritative 
benchmark set at present. In this paper, two test datasets, dataset1 and dataset2, were built by using 
LUBM dataset. The detailed information about test datasets is shown in Table 5.

Figure 12. The screen snapshot of RDF2ORDB



Journal of Database Management
Volume 35 • Issue 1

19

Data generation. We generate data with the UBA, a tool that is developed for the benchmark. 
This data generator has the capability of generating data randomly and repeatably. The minimum unit 
of generating data, for example, is a university. Then for each university, it contains a set of OWL 
files describing its department and student information (as shown in Figure 13), where instances of 
classes and attributes are randomly determined. In addition, to make the generated data as realistic as 
possible, some conditions for generating data are set based on common sense and domain knowledge. 
Let us look at an example. We can set “the range of the number of departments in a university is 
set to [10,25]”, “each student should take at least one course or at most three courses”, and so on. 
The data generator then identifies universities by assigning different indexes to them, for example, 
naming the first university as University0, and etc. Also, through the data generator, it is possible 
to manually set how many universities and which ones to generate. Finally, based on the OWL files 
created by the generator, we count the number of RDF triples contained in the OWL files, and this 
provide a data foundation for subsequent query and inference tasks.

5.3 Analysis of Experiment Results
5.3.1 Analysis of Storing and Querying Performance
The existing method of storing RDF(S) based on the ORDBs is still immature. Tools such as RDF 
Suite and Sesame support storing RDF(S) using an object-relational schema, but their query efficiency 
is not as good as relational databases. To evaluate the performance of the storage scheme proposed in 
this paper more objectively, we choose the relatively mature storage mode of the relational database 
for comparison. The effectiveness of the storage method proposed in this paper is compared with 
three representative schemes: Triple (vertical storage), SW-store (horizontal storage) and Jena (type 
storage), which adopt different relational structures. We do not compare our method with few proposals 
that store RDF(S) with OODBS and ORDBs because they are not experimentally evaluated at all. 
In addition, different storage structures have great impact on the query efficiency. Therefore, the 
analysis of performance is evaluated from two aspects: storage performance and query performance.

Table 5. Experimental datasets

Name Dataset Number of RDF Triples Size of Dataset (M)

dataset1 LUBM (1, 0) 103074 12.6

dataset2 LUBM (8, 0) 1035608 132.8

Figure 13. A simple example of generating data



Journal of Database Management
Volume 35 • Issue 1

20

(1) Analysis of storage performance
We evaluate storage performance from two aspects: storage time and storage size.
Storage time. In this paper, we use datasets with different size to obtain the storage time of four 

storage methods by. Each storage method conducted 6 experiments for different datasets, of which the 
first experiment was used as a preheating system and the experimental results were not recorded. The 
final storage time was obtained by calculating the average storage time of the last five times. Figure 
14 shows the storage time of the four storage methods when two test datasets are stored.

It is shown in Figure 14 that our method takes the longest time in RDF data store because it 
needs to parse RDF(S) first, but its storage time is roughly comparable to the storage time of Triple 
and SW-store. It is also shown in Figure 14 that Jena has the shortest storage time among these four 
methods. This is because Jena is a memory-based framework, which directly stores RDF triples 
without a complex parsing process. However, such a simple processing disadvantages Jena in other 
performance aspects.

Storage size. To further validate the effectiveness of our RDF (S) storage method, after the 
prototype system loads the test datasets, we analyze the size of the resulting repository. The size, 
which is tested only for systems with persistent storage, is calculated based on the total size of all 
files that make up the repository. For two datasets with different sizes, Triple, SW-Store, Jena and 
our RDF2ORDB are used to store the test data. After loading the data, the size of each repository is 
shown in Figure 15.

It is shown in Figure 15 that SW-store occupies the largest storage space and our approach 
occupies the smallest storage space. The major reasons are that: (a) for many duplicate prefix IRIs 
in RDF(S) data, our approach uses the namespace table to store unique prefixes so that other tables 
only need to store the ID of the prefix in the namespace table, avoiding the waste of storage space 
caused by duplicate prefix IRIs; (b) there are a large number of duplicate subjects, predicates, and 
objects in the stores of Triple and SW-store, however, our method uses subject table, predicate table 
and object table, and only needs to store unique data, avoiding the duplicate storage. It is also shown 
in Figure 15 that, among three comparison methods, Jena occupies the smallest storage space, but 
it is very larger than our approach and it is especially true for large-scale datasets (e.g., dataset2).

(2) Analysis of query performance
The storage structure directly affects the retention of RDF(S) semantics and the efficiency of 

queries. We verified through queries if our storage method can fully preserve RDF(S) semantics 
and efficiently return query results. We used LUBM dataset to evaluate the query efficiency of 

Figure 14. The storage time of datasets



Journal of Database Management
Volume 35 • Issue 1

21

RDF2ORDB, with two main indicators: query soundness (measured by analyzing how many correct 
answers are returned) and completeness (measured by analyzing how many returned answers are 
correct). Specifically, LUBM provides 14 predefined test queries, in which several test queries have 
a simple structure and strong similarity. So, based on the structural characteristics of predefined 
test queries and the SPARQL10 query structure type, we only selected 8 test queries (Q1-Q8) from 
the LUBM test query set. Here SPARQL is the standard query language recommended by W3C for 
RDF. A basic SPARQL query consists of a SELECT clause, which is followed by query variables 
represented by bound variables (variable with specified value) that appear in the result set, and a 
WHERE clause, which is followed by graph patterns that match against the RDF graph that the query 
is being executed on.

These 8 selected test queries are explained as follows.

(a) 	 Q1, Q2 and Q3 are simple selective queries (single tuple query), which directly obtain the required 
data by querying the corresponding data table. This linear shaped pattern consists of a set of triple 
patterns, where the subject and object are connected by different unique connecting variables. 
That is, the connecting variables are located at the subject position in one triple pattern and at 
the object position in another triple pattern.

(b) 	 Q4 is a star shape query with high selectivity (star query), in which the query statement contains 
multiple attribute information. The star shaped pattern consists of a set of triple patterns, connected 
together by a single connected variable of the subject position or object position.

(c) 	 Q5 and Q6 are snowflake shape queries (chain query), where the object of the previous query 
triplet is the subject of the next query triplet. The snowflake shaped pattern consists of several 
star shapes connected by different connecting variables at the position of the subject or object 
in a triple pattern.

(d) 	 Q7 and Q8 are hybrid queries that combine the characteristics of star query and chain query 
(mixed query), which contain a large number of intermediate results. This complex structure is 
a combination of the above query patterns.

In summary, the above 8 selected test queries cover four different types of query structures in 
SPARQL (i.e., linear shape pattern, star shape pattern, snowflake shape pattern, and complex structure). 
which can effectively evaluate the impact of different query types. To comprehensively verify the 

Figure 15. The storage size of datasets



Journal of Database Management
Volume 35 • Issue 1

22

query efficiency of our storage method, we used the 8 test queries Q1-Q8 to effectively evaluate the 
query efficiency of RDF2ORDB. These 8 selected test queries are presented in Figure 16:

Table 6 shows the query response time for the dataset1. Query time depends not only on the size 
of the dataset, but also on the complexity of the query statement. In the query of Q1-Q3 statements, 
the four methods have achieved good results. This kind of query form is simple. Using the method 
of this paper can directly query the corresponding table to get the required data.

Q4 is a star query. For this type of SPARQL, RDF2ORDB works best. Because the class table 
contains all the property fields whose domain is this class, which is suitable for star query. Triple 
storage scheme is the worst. The triple storage requires a large number of self-joins when querying, 
which has a great impact on efficiency.

Q5-Q6 is a chain query, where the object of the previous query statement is the subject of the 
next query statement. For this kind of query, RDF2ORDB is the best. This is also because the class 
table contains property fields, so only a few joins between tables are needed when querying. The 
hybrid query of Q7-Q8 combines the characteristics of star query and chain query, and RDF2ORDB 
still achieves good performance.

Viewed from query performance in Section 5.3.1, it is shown in Table 6 that Jena stores RDF 
data in memory and traverses the entire dataset for querying. Its query time for different SPARQL 

Figure 16. SPARQL query statements

Table 6. Query response time of dataset1 (ms)

Method Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Triple 78 60 50 563 25841 10066 28494 29825

SW-Store 46 52 60 62 13869 2521 751 3976

Jena 106 102 107 97 119 105 107 93

RDF2ORDB 38 39 42 46 56 34 32 59



Journal of Database Management
Volume 35 • Issue 1

23

queries is relatively stable. While Triple and SW-Store have better processing ability for simple 
queries (Q1-Q4), their query efficiencies are not satisfactory for complex queries (Q5-Q8) because 
a large number of self-join and join between tables are needed. Our approach obtains properties of 
class by querying the class table and this avoids a large number of null values. On the small-scale 
dataset (i.e., dataset1), our RDF2ORDB achieves the shortest query response time for all eight queries. 
For the large-scale dataset (i.e., dataset2), it is shown in Table 7 that, due to so many inner-join and 
out-table join operations, Triples and SW-store take too long to obtain results within a reasonable 
interval for complex SPARQL queries. “NaN” in Table7 indicates that the query processes were 
interrupted because they took too long. It is also shown in Table 7 that the query time of Jena for 
different SPARQL queries is still relatively stable. But the query time of our approach is better than 
Jena for most queries expect for Q3.

To more intuitively reflect the change of the query time with the increase of data size, Figure 
17 shows the increase ratio of the query time. In Figure 17, the abscissa represents different query 
statements and the ordinate represents the value of (t2-t1)/ t1, where t1 is the query time for dataset1 
and t2 is the query time for dataset2.

It is shown in Figure 17 that triple storage and SW-store are greatly affected by the increase in 
data size. However, the query time of Jena and RDF2ORDB increases steadily. When querying with 
Q2 and Q3, the query time increment ratio of RDF2ORDB is high. This is because Q2 and Q3 are 
single tuple queries for a certain class with low selectivity. With the increase of data size, the number 
of instances of this class also increases greatly. The data size also has a great impact on the query 
time. Therefore, the query time of Q2 and Q3 is larger than that of other query statements. Although 
Q1 is a single query too, the result set of Q1 is small. So, the query time increase is small. Compared 
with the data size increased by 10 times, the query time of Q2 and Q3 increased by about 2 times, 
and the query time was within the acceptable range.

Table 7. Query response time of dataset2 (ms)

Method Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Triple 870 865 603 1581 NAN 306839 NAN NAN

SW-Store 208 247 387 307 NAN 13893 2822 25493

Jena 114 115 143 112 138 121 130 107

RDF2ORDB 69 103 145 66 78 56 47 98

Figure 17. The increase ratio of query time



Journal of Database Management
Volume 35 • Issue 1

24

In conclusion, RDF2ORDB achieves good query results when dealing with complex SPARQL 
statements and highly selective statements.

5.3.2 Analysis of Semantic Retention
Since there is still no standard for whether the storage semantics of RDF(S) are lost, we analyze the 
semantic retention from two aspects: qualitative analysis and comparative analysis of query results.

(1) Qualitative analysis
According to the formal definition of RDF(S) proposed in Section 2, the semantic information 

contained in the LUBM dataset is shown in Table 8.
In Table 8, the LUBM dataset contains 43 classes, 7 datatype property and 25 object properties. 

The LUBM dataset has no datatype defined, so the basic datatype is 0. There are 36 inheritance 
relationships for classes and 5 inheritance relationship for properties in the LUBM. Then, we analyze 
the semantic information contained in the object-relational storage structure, which is shown in Table 9.

In addition to the namespace table, property-relational table and property type table, the storage 
framework proposed in this paper creates a table for each class and property. The property type table 
contains two tables: pro_domain and pro_range. So, the database should contain 43 class tables, 32 
property tables and four tables defined by the storage framework, for a total of 79 tables which is 
consistent with the statistical results in Table 9.

The inheritance relationship in Table 9 refers to the number of tables which have parent table. 
LUBM dataset contains 43 classes. However, researchAssistant, director and work class don’t have 
parent class and there is no property domain includes these classes. Therefore, there should be 40 
tables, which is consistent with the statistical results in Table 9.

The storage of properties semantic is relatively simple. The constraint relation and inheritance 
relation of the properties are stored directly in the property type table and property relation table. The 
property relation table contains fives records that store each of the five property axioms in Table 6. 
The pro_domain table contains 25 records that store the domain of the properties. Pro_range table 
contains 32 records, which store property types and range values. The data in these two tables are 
the same as the statistical results in LUBM.

Above all, the object-relational storage framework proposed in this paper can retain RDF Schema 
semantics completely.

Table 8. Semantic information contained in the LUBM dataset

Name Number

Class (RC) 43

Datatype property (DataRP) 7

Object property (ObjectRP) 25

Basic datatype (RD) 0

Class axioms (CAxiom) 36

Property axioms (PAxiom) 5

Table 9. The semantic information contained in the object-relational framework

Name Number

Table (Tab) 79

Inheritance relationship (Inh) 40



Journal of Database Management
Volume 35 • Issue 1

25

Example analysis: By analyzing the RDF Schema file of LUBM, it can be seen that in the 
definition of LUBM, the subclass relationship of the Employee class is shown in Figure 18. Due to the 
lack of corresponding instances for the Faculty class and Professor class in the dataset, inferring the 
Employee parent class can obtain all instances of the Lecturer, FullProfessor and AssociationProfessor 
classes, which is consistent with the experimental results obtained in this paper, indicating that the 
semantic information in RDF (S) is well preserved. The statement for conducting inference query 
testing on attributes is as follows:

SELECT ?X ?Y WHERE {?X ub:degreeFrom ?Y}
The semantics of this query statement are to query instances and objects with the property 

degreeFrom. The total number of results obtained from this query statement is 3494. Due to the 
excessive number of query results, only some of them are displayed, as shown in Figure 19.

(2) Comparative analysis of query results
To test the semantic retention of a storage method, we also need to compare instances in RDF(S) 

with data stored in the ORDBs. When Q1-Q7 is queried against the database, the number of result 
sets obtained is exactly the same as that obtained by querying against RDF(S) files. Since the test data 
set contains tens of thousands to millions of data, it is impossible to compare the query results one 
by one, so we select Q1 and Q4 query statements which have small result sets for detailed analysis.

The semantics of Q1 query statement is to query all instances that contain the publicationAuthor 
property and the property value of this attribute is http://www.Department0.University0.edu/
AssistantProfessor0 in dataset1. The query results are shown in Figure 20.

In Figure 20, the x column represents all instances. The same query criteria are used to query 
RDF(S) stored in ORDBs. The corresponding SQL statements obtained through conversion in this 
system are as follows:

SELECT subject FROM publicationauthor WHERE
publicationauthor_value=’http://www.Department0.University0.edu/ AssistantProfessor0’
The results obtained by querying the RDF (S) stored in the database using this SQL statement 

are shown in Figure 21. To show the query results more visually, Figure 19 shows the results of the 
query in the PostgreSQL visualization tool. By comparing Figure 20 and Figure 21, it can be seen 
that queries on RDF(S) files are exactly the same as database.

The semantics of the Q4 query statement is to query the property values of the FullProfessor 
instance, its emailAddress property, and the documentDegreeFrom property The query results need 

Figure 18. Class inheritance relationships in LUBM datasets

http://www.Department0.University0.edu/AssistantProfessor0
http://www.Department0.University0.edu/AssistantProfessor0
http://www.Department0.University0.edu/


Journal of Database Management
Volume 35 • Issue 1

26

Figure 19. Query results for instances and objects with the property degreeFrom

Figure 20. The results of Q1 query against dataset1

Figure 21. The results of Q1 against the database



Journal of Database Management
Volume 35 • Issue 1

27

to meet the property values of the worksFor property http://www.Department0.University0.edu/
FullProfessor. The results obtained by querying dataset1 with Q4 are shown in Figure 22.

In Figure 22, there are three columns, where X represents the FullProfesosor instance, Y1 
represents the value of the EmailAddress property and Y2 represents the value of doctoralDegreeFrom 
property. Using Q4 to query RDF (S) data stored in the database, this system converts the corresponding 
SQL statements as follows:

SELECT
fullprofessor.subject, fullprofessor.emailaddress_value, fullprofessor.doctoraldegreefrom_value 
FROM fullprofessor, worksfor
WHERE fullprofessor.subject=worksfor.subject
AND worksfor.worksfor_value=’http://www.Department0.University0.edu’
The results of this query statement for the database are shown in Figure 23.
The results shown in Figure 22 and Figure 23 are exactly the same. It means that the storage 

method proposed in this paper can store RDF instances into databases without instances loss.

5.3.3 Discussion and Analysis
RDF (S) storage method performance based on ORDBs: Due to the significant impact of different 
storage structures on query efficiency, this paper mainly evaluates performance of the proposed 
method from two aspects: storage performance and query performance. To objectively evaluate the 
performance of the storage scheme proposed in this paper, three different storage schemes, namely 
Triple (vertical storage), SW-store (horizontal storage) and Jena (type storage), were used to store 
RDF(S). The effectiveness of the storage method proposed in this paper was analyzed through 
comparative experiments. The experimental results are analyzed as follows:

Figure 22. The results of Q4 query against dataset1

Figure 23. The results of Q4 query against database

http://www.Department0.University0.edu/FullProfessor
http://www.Department0.University0.edu/FullProfessor
http://www.Department0.University0.edu


Journal of Database Management
Volume 35 • Issue 1

28

1) 	 The method proposed in this paper takes the longest time to store RDF(S) on the same dataset 
(as shown in Figure 13), mainly because it requires first parsing the structural information of 
RDF(S), and then storing RDF(S) in different data tables according to different classes and 
properties. In future work, consider adopting distributed RDF data storage methods to reduce 
storage time;

2) 	 On the same dataset, the method proposed in this paper occupies the smallest storage space (as 
shown in Figure 14), mainly because the method uses a namespace table to store unique prefixes, 
so that other tables only need to store the prefix ID in the namespace table, avoiding the waste 
of storage space caused by duplicate prefix IRIs.

3) 	 On the same dataset, the query efficiency of the method proposed in this paper is the highest 
(as shown in Table 6 and Table 7). The main reason is that when designing the object relational 
storage model, the class table inherits the property table, so the class table will contain all property 
fields that define the domain as that class. By querying the class table to obtain the properties 
of the class, this avoids a large number of null values.

Semantic retention performance of RDF (S) storage method based on ORDBs: Currently, 
there is no standard for evaluating whether there is semantic loss before and after RDF(S) storage. 
Therefore, this paper analyzes the semantic retention performance of the proposed RDF(S) storage 
method through qualitative analysis and comparative analysis of query results before and after RDF(S) 
storage. The experimental results are analyzed as follows:

1) 	 Qualitative analysis: Based on the proposed RDF(S) formal definition (as shown in Section 3.1), 
statistical analysis was conducted on the semantic information contained in the LUBM dataset 
(as shown in Table 8). Meanwhile, analyze the semantic information contained in the created 
object relational storage structure (as shown in Table 9). The comparison results indicate that the 
RDF(S) storage method proposed in this paper effectively preserves the semantic information in 
the RDF Schema;

2) 	 Comparison of query results before and after RDF(S) storage: This paper selects Q1 and Q4 
query statements to query the original RDF(S) and RDF(S) stored in ORDBs, respectively. The 
query results are the same. This further verifying that the RDF(S) storage method proposed in 
this paper effectively saves semantic information in the RDF Schema.

The experimental results show that the RDF(S) storage method proposed in this paper can 
effectively preserve semantic information. However, due to the fact that RDF Schema and ORDBs 
belong to different models, there are certain differences in modeling ideas, implementation methods, 
and application scenarios between the two, which inevitably leads to some semantic deficiencies.

1) 	 During the process of mapping RDF(S) instances to records in relational database tables, there 
may be a large number of null values. The main reason for this problem is that the definition of 
an individual in RDF(S) does not need to explicitly represent all its properties, so it is represented 
as a null value when mapping to an ORDB.

2) 	 The cardinality of property correspondence cannot be well determined (one-to-one, one-to-many, 
many-to-one and many-to-many). The constraint of RDF(S) on properties is limited to the definition 
domain and value domain, and there is no corresponding metadata to describe the cardinality 
relationship of properties resulting in semantic loss. This problem can be well solved in OWL 
language, and the cardinality of property correspondence can be accurately divided through the 
property function (owl:FunctionalProperty) and inverse function (owl:InverseFunctionalProperty) 
provided by OWL language.



Journal of Database Management
Volume 35 • Issue 1

29

In summary, viewed from storage time, our proposed storage method is roughly comparable to 
Triple and SW-store. Jena takes the shortest to store data than other methods and this is a limitation of 
our method, but the storage time of storage time is still within an acceptable range. More importantly, 
our method occupies the smallest storage size after storing RDF data and takes almost the shortest in 
retrieving RDF data. Jointly considering storage time, storage size, query response time and semantic 
retention, our approach has its advantage, compared with the comparison methods.

6. CONCLUSION

With the wide applications of RDF(S) and the increasing number of RDF(S) data available, effective 
management of large-scale RDF(S) data are essential. Fully considering the structural advantages of 
ORDBs, in this paper, we propose an RDF(S) storage paradigm based on the ORDBs. Specifically, 
we first present the formal definitions of RDF(S) and ORDBs Then, based on the semantic structure 
contained in RDF(S) and the structure information of the ORDBs, we propose a set of rules that 
maps RDF(S) data to the ORDBs. We design and implement a prototype system that supports the 
storage of RDF(S) in the ORDBs. In particular, we use the benchmark LUBM dataset evaluating the 
performances of storage and query of our storage system. Experimental results show that the RDF(S) 
storage method proposed in this paper cannot only retain complete semantic information, but also 
have better query efficiency.

Basically, the ORDB-based RDF(S) storage method proposed in the paper can effectively preserve 
the semantic information in RDF(S) and meanwhile can improve data query efficiency. In practice, 
our method is especially suitable for the scenario of managing medium- scale and large-scale RDF 
data with traditional databases. In this paper, our storage pattern based on the ORDBs is verified 
only with the benchmark LUBM dataset. However, once the object relational storage model in the 
database is created, only RDF(S) with the same RDF Schema structure can be stored. For RDF(S) 
with different schema structures, they cannot be stored in the same database at the moment, and 
their scalability needs to be improved. Therefore, in future work, we will conduct research from the 
following aspects:

1) 	 We will study how to uniformly store RDF(S) data with different RDF Scheme structures, and 
conduct relevant experiments on a large amount of RDF(S) data with different scales and types

2) 	 we plan to utilize the indexing characteristics of ORDBs over the data table structure in the 
databases. By introducing appropriate indexing and hashing techniques, the query efficiency of 
RDF(S) storage can be further improved.

3) 	 With the exponential explosive growth of RDF data, the scalability issue of massive RDF(S) 
store is increasingly important. In our future work, we will improve our approach to support for 
distributed RDF(S) store and evaluate our approach against some advanced proposals such as 
Triag (Naacke & Curé, 2020) and WISE (Guo, Gao & Zou, 2020).



Journal of Database Management
Volume 35 • Issue 1

30

REFERENCES

Abadi, D. J., Marcus, A., Madden, S. R., & Hollenbach, K. (2009). SW-Store: A vertically partitioned DBMS 
for Semantic Web data management. The VLDB Journal, 18(2), 385–406. doi:10.1007/s00778-008-0125-y

Ackere, S. V. (2019). FLIAT, an object-relational GIS tool for flood impact assessment in Flanders, Belgium. 
Water (Basel), 11(4), 711–743. doi:10.3390/w11040711

Agrawal, R., Somani, A., & Xu, Y. (2001). Storage and querying of e-commerce data. Proceedings of the 27th 
International Conference on Very Large Data Bases, 149-158.

Alexaki, S. (2001). The ICS-FORTH RDFSuite: managing voluminous RDF description bases. Proceedings of 
the 2nd International Workshop on the Semantic Web.

Arsic, B., Ðokić-Petrović, M., Spalević, P., Milentijević, I., Rančić, D., & Živanović, M. (2019). SpecINT: A 
framework for data integration over cheminformatics and bioinformatics RDF repositories. Semantic Web, 10(4), 
795–813. doi:10.3233/SW-180327

Astrova, I., & Kalja, A. (2008). Storing OWL ontologies in SQL3 object-relational databases. Proceedings of 
the 8th International Conference on Applied Informatics and Communications, 99-103.

Atre, M., Srinivasan, J., & Hendler, J. A. (2008). BitMat: a main-memory bit matrix of RDF triples for conjunctive 
triple pattern queries. Proceedings of the Poster and Demonstration Session at the 7th International Semantic 
Web Conference.

Auzi, A. (2018). Object-relational database structure model and structure optimisation. Applied Computer 
Systems, 23(1), 28–36. doi:10.2478/acss-2018-0004

Bagui, S. (2003). Achievements and weaknesses of object-oriented databases. Journal of Object Technology, 
2(4), 29–41. doi:10.5381/jot.2003.2.4.c2

Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z., & Velkov, R. (2011). Owlim: A family of scalable 
semantic repositories. Semantic Web, 2(1), 1–10. doi:10.3233/SW-2011-0026

Bornea, M. A. (2013). Building an efficient RDF store over a relational database. Proceedings of the 2013 ACM 
SIDMOD International Conference on Management of Data, 121-132. doi:10.1145/2463676.2463718

Broekstra, J., Kampman, A., & van Harmelen, F. (2002). Sesame: A generic architecture for storing and querying 
RDF and RDF Schema. Proceedings of the 2002 International Semantic Web Conference, 54-68. doi:10.1007/3-
540-48005-6_7

Chao, C. M. (2007). An object-oriented approach for storing and retrieving RDF/RDFS documents. Tamkang 
Journal of Science and Engineering, 10(2), 275–286.

Chebotko, A., Lu, S., Jamil, H. M., & Fotouhi, F. (2009). Semantics preserving SPARQL-to-SQL query translation 
for optional graph patterns. Data & Knowledge Engineering, 68(10), 973–1000. doi:10.1016/j.datak.2009.04.001

Crasso, M., Mateos, C., Zunino, A., & Campo, M. (2012). A programming model for the Semantic Web. 
Proceedings of the Second International Conference on Advances in New Technologies, Interactive Interfaces 
and Communicability, 208-218. doi:10.1007/978-3-642-34010-9_20

Cudre-Mauroux, P. (2013). NoSQL databases for RDF: an empirical evaluation. Proceedings of the 12th 
International Semantic Web Conference, 310-325. doi:10.1007/978-3-642-41338-4_20

Edwards, R. (2022). SQL vs. NoSQL: Pros and Cons. https://dzone.com/articles/sql-vs-nosql-pros-amp-cons-1

Erling, Q., & Mikhailov, I. (2007). RDF support in the virtuoso DBMS. Proceedings of the 1st Conference on 
Social Semantic Web, 59-68.

Fan, T., Yan, L., & Ma, Z. (2020). Storing and querying fuzzy RDF (S) in HBase databases. International Journal 
of Intelligent Systems, 35(4), 751–780. doi:10.1002/int.22224

Franke, C. (2011). Distributed semantic web data management in HBase and MySQL Cluster. Proceedings of 
the 2011 IEEE International Conference on Cloud Computing, 105-112. doi:10.1109/CLOUD.2011.19

http://dx.doi.org/10.1007/s00778-008-0125-y
http://dx.doi.org/10.3390/w11040711
http://dx.doi.org/10.3233/SW-180327
http://dx.doi.org/10.2478/acss-2018-0004
http://dx.doi.org/10.5381/jot.2003.2.4.c2
http://dx.doi.org/10.3233/SW-2011-0026
http://dx.doi.org/10.1145/2463676.2463718
http://dx.doi.org/10.1007/3-540-48005-6_7
http://dx.doi.org/10.1007/3-540-48005-6_7
http://dx.doi.org/10.1016/j.datak.2009.04.001
http://dx.doi.org/10.1007/978-3-642-34010-9_20
http://dx.doi.org/10.1007/978-3-642-41338-4_20
http://dx.doi.org/10.1002/int.22224
http://dx.doi.org/10.1109/CLOUD.2011.19


Journal of Database Management
Volume 35 • Issue 1

31

Gregory, V. (2019). Lessons in persisting object data using object-relational mapping. IEEE Software, 36(6), 
43–52. doi:10.1109/MS.2018.227105428

Guo, X., Gao, H., & Zou, Z. (2020). WISE: Workload-aware partitioning for RDF systems. Big Data Research, 
22, 100161. doi:10.1016/j.bdr.2020.100161

Guo, Y., Pan, Z., & Heflin, J. (2005). LUBM: A benchmark for OWL knowledge base systems. Journal of Web 
Semantics, 3(2-3), 158–182. doi:10.1016/j.websem.2005.06.005

Harris, S., & Gibbins, N. (2003). 3store: efficient bulk RDF storage. Proceedings of the First International 
Workshop on Practical and Scalable Semantic Systems, 1-15.

Harris, S., Lamb, N., & Shadbolt, N. (2009). 4store: the design and implementation of a clustered RDF store. 
Proceedings of the 5th International Workshop on Scalable Semantic Web Knowledge Base Systems, 94-109.

Harth, A., Umbrich, J., Hogan, A., & Decker, S. (2007). YARS2: a federated repository for querying graph 
structured data from the Web. Proceedings of the 6th International Semantic Web Conference, 211-224. 
doi:10.1007/978-3-540-76298-0_16

Khadilkar, V., Kantarcioglu, M., Thuraisingham, B. M., & Castagna, P. (2012). Jena-HBase: a distributed, scalable 
and efficient RDF triple store. Proceedings of the 2012 International Semantic Web Conference.

Khanduja, V., & Chkraverty, S. (2019). A generic watermarking model for object relational databases. Multimedia 
Tools and Applications, 78(19), 28111–28135. doi:10.1007/s11042-019-07932-3

Levandoski, J. J., & Mokbel, M. F. (2009). RDF data-centric storage. Proceedings of the 2009 IEEE International 
Conference on Web Services, 911-918. doi:10.1109/ICWS.2009.49

Ma, R., Jia, X., Cheng, J., & Angryk, R. A. (2016). SPARQL queries on RDF with fuzzy constraints and 
preferences. Journal of Intelligent & Fuzzy Systems, 30(1), 183–195. doi:10.3233/IFS-151745

Ma, Z., Capretz, M. A. M., & Yan, L. (2016). Storing massive Resource Description Framework (RDF) data: A 
survey. The Knowledge Engineering Review, 31(4), 391–413. doi:10.1017/S0269888916000217

Ma, Z., Lin, X., Yan, L., & Zhao, Z. (2018). RDF keyword search by query computation. Journal of Database 
Management, 29(4), 1–27. doi:10.4018/JDM.2018100101

Michel, F., Faron-Zucker, C. & Montagnat, J. (2019). Bridging the Semantic Web and NoSQL worlds: generic 
SPARQL query translation and application to MongoDB. Transactions on Large-Scale Data- and Knowledge-
Centered Systems, 40, 125-165.

Naacke, H., & Curé, O. (2020). Triag, a framework based on triangles of RDF triples. Proceedings of The 
International Workshop on Semantic Big Data, 1-6. doi:10.1145/3391274.3393634

Neumann, T., & Weikum, G. (2010). The RDF-3X engine for scalable management of RDF data. The VLDB 
Journal, 19(1), 91–113. doi:10.1007/s00778-009-0165-y

Pan, Z., & Heflin, J. (2003). DLDB: extending relational databases to support semantic Web queries. Proceedings 
of the First International Workshop on Practical and Scalable Semantic Systems, 109-113.

Rodriguez-Muro, M., & Rezk, M. (2015). Efficient SPARQL-to-SQL with R2RML mappings. Journal of Web 
Semantics, 33, 141–169. doi:10.1016/j.websem.2015.03.001

Rubio-Largo, A., Vanneschi, L., Castelli, M., & Vega-Rodríguez, M. A. (2017). Using biological knowledge for 
multiple sequence aligner decision making. Information Sciences, 420, 278–298. doi:10.1016/j.ins.2017.08.069

Shen, K., Hu, S., & Tzeng, G. (2017). Financial modeling and improvement planning for the life insurance 
industry by using a rough knowledge based hybrid MCDM model. Information Sciences, 375, 296–313. 
doi:10.1016/j.ins.2016.09.055

Smiatacz, M. (2018). Normalization of face illumination using basic knowledge and information extracted from 
a single image. Information Sciences, 469, 14–29. doi:10.1016/j.ins.2018.08.034

Song, D., Schilder, F., Hertz, S., Saltini, G., Smiley, C., Nivarthi, P., Hazai, O., Landau, D., Zaharkin, M., Zielund, 
T., Molina-Salgado, H., Brew, C., & Bennett, D. (2019). Building and querying an enterprise knowledge graph. 
IEEE Transactions on Services Computing, 12(3), 356–369. doi:10.1109/TSC.2017.2711600

http://dx.doi.org/10.1109/MS.2018.227105428
http://dx.doi.org/10.1016/j.bdr.2020.100161
http://dx.doi.org/10.1016/j.websem.2005.06.005
http://dx.doi.org/10.1007/978-3-540-76298-0_16
http://dx.doi.org/10.1007/s11042-019-07932-3
http://dx.doi.org/10.1109/ICWS.2009.49
http://dx.doi.org/10.3233/IFS-151745
http://dx.doi.org/10.1017/S0269888916000217
http://dx.doi.org/10.4018/JDM.2018100101
http://dx.doi.org/10.1145/3391274.3393634
http://dx.doi.org/10.1007/s00778-009-0165-y
http://dx.doi.org/10.1016/j.websem.2015.03.001
http://dx.doi.org/10.1016/j.ins.2017.08.069
http://dx.doi.org/10.1016/j.ins.2016.09.055
http://dx.doi.org/10.1016/j.ins.2018.08.034
http://dx.doi.org/10.1109/TSC.2017.2711600


Journal of Database Management
Volume 35 • Issue 1

32

Ruizhe Ma is currently an assistant professor in the Richard A. Miner School of Computer & Information Sciences 
at the University of Massachusetts Lowell, USA. She received her PhD degree from the Department of Computer 
Science at Georgia State University. Dr. Ma’s research focuses on data mining, machine learning, big data analytics, 
graph mining, and K-12 education.

Stefani, E., & Hoxha, K. (2018). Implementing triple-stores using NoSQL databases. Proceedings of the 3rd 
International Conference on Recent Trends and Applications in Computer Science and Information Technology, 
86-92.

Wilkinson, K., Sayers, C., Kuno, H. A., & Reynolds, D. (2003). Efficient RDF storage and retrieval in Jena2. 
Proceedings of the 2003 Semantic Web and Databases Workshop, 131-150.

Wu, G., Li, J. Z., Hu, J. Q., & Wang, K. H. (2009). System π: A native RDF repository based on the hypergraph 
representation for RDF data model. Journal of Computer Science and Technology, 24(4), 652–664. doi:10.1007/
s11390-009-9265-9

Xiong, C., Power, R., & Callan, J. (2017). Explicit semantic ranking for academic search via knowledge 
graph embedding. Proceedings of the 26th International Conference on World Wide Web, 1271-1279. 
doi:10.1145/3038912.3052558

Zhang, F., Ma, Z. M., & Li, W. J. (2015). Storing OWL ontologies in object-oriented databases. Knowledge-
Based Systems, 76(1), 240–255. doi:10.1016/j.knosys.2014.12.020

Zheng, W., Cheng, H., Yu, J. X., Zou, L., & Zhao, K. (2019). Interactive natural language question answering 
over knowledge graphs. Information Sciences, 481, 141–159. doi:10.1016/j.ins.2018.12.032

Zhou, G. (2017). Graph-based knowledge reuse for supporting knowledge-driven decision-making in new 
product development. International Journal of Production Research, 55(23), 7187–7203. doi:10.1080/00207
543.2017.1351643

ENDNOTES

1 	 http://sparqlcity.com/
2 	 https://www.marklogic.com/
3 	 http://clarkparsia.com/
4 	 http://www.cs.ox.ac.uk/isg/tools/RDFox/
5 	 https://docs.sesam.io/rdf-support.html
6 	 http://dslam.cs.umd.edu/swstore/index.html
7 	 https://jena.apache.org/
8 	 https://www.w3.org/TR/json-ld/
9 	 https://swat.cse.lehigh.edu/projects/lubm/
10 	 https://www.w3.org/TR/sparql11-query/

http://dx.doi.org/10.1007/s11390-009-9265-9
http://dx.doi.org/10.1007/s11390-009-9265-9
http://dx.doi.org/10.1145/3038912.3052558
http://dx.doi.org/10.1016/j.knosys.2014.12.020
http://dx.doi.org/10.1016/j.ins.2018.12.032
http://dx.doi.org/10.1080/00207543.2017.1351643
http://dx.doi.org/10.1080/00207543.2017.1351643
http://sparqlcity.com/
https://www.marklogic.com/
http://clarkparsia.com/
http://www.cs.ox.ac.uk/isg/tools/RDFox/
https://docs.sesam.io/rdf-support.html
http://dslam.cs.umd.edu/swstore/index.html
https://jena.apache.org/
https://www.w3.org/TR/json-ld/
https://swat.cse.lehigh.edu/projects/lubm/
https://www.w3.org/TR/sparql11-query/

