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ABSTRACT

Robust optimization over time can effectively solve the problem of frequent solution switching in 
dynamic environments. In order to improve the search performance of dynamic robust optimization 
algorithm, a dynamic robust particle swarm optimization algorithm based on hybrid strategy (HS-
DRPSO) is proposed in this paper. Based on the particle swarm optimization, the HS-DRPSO 
combines differential evolution algorithm and brainstorms an optimization algorithm to improve the 
search ability. Moreover, a dynamic selection strategy is employed to realize the selection of different 
search methods in the proposed algorithm. Compared with the other two dynamic robust optimization 
algorithms on five dynamic standard test functions, the results show that the overall performance of 
the proposed algorithm is better than other comparison algorithms.
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INTRODUCTION

Optimization problems are subject to change in response to the dynamics and uncertainty of the 
environment, leading to what are known as dynamic optimization problems (DOPs) (Jin & Branke, 
2005). Most of the current research in this area has focused on tracking moving optimization (TMO) 
(Parrott & Li, 2006; Chen et al., 2023; Falahiazar et al., 2022), which involves an algorithm that seeks 
to identify a new optimal solution after each environmental modification. Despite its effectiveness in 
addressing dynamic optimization problems, this approach may present some limitations in practical 
applications. Firstly, it may face challenges in quickly identifying the optimal solution in each dynamic 
environment within a limited timeframe. Secondly, even if it manages to identify the optimal solution 
in the new environment, it will require a considerable amount of computational resources.
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Based on the aforementioned considerations, Yu et al. (2010) introduced the concept of robust 
optimization over time (ROOT) with the primary aim of discovering a set of robust solutions that 
can adapt to multiple dynamic environments both in the present and future. Following this, Jin et al. 
(2012) proposed a framework for tackling dynamic robust problems, which involves an optimizer, a 
database containing historical information, an approximator, and a predictor. Along with robustness, 
the ROOT approach also takes into account switching costs, which was considered in literature (Huang 
et al., 2017) that proposed dynamic robust optimization algorithm (robust optimization over time 
considering switching cost, ROOT/SC).

However, the ROOT/SC algorithm has two limitations: 1) the search dimensions cannot be 
expanded sufficiently, leading to considerable practical restrictions; 2) the feasible solutions from 
non-dominated solution sets cannot be sought using the algorithm. To address these problems, Huang 
et al. (2020) proposed a more efficient dynamic robust multi-objective algorithm named ROOT/SCII 
(improved ROOT/SC), which incorporates minimizing switching costs as an additional objective by 
weighing the robustness of the high-dimensional decision space and switching costs. Yazdani et al. 
(2019) applied multiple swarm methods to the ROOT problem, using multi-swarm PSO to identify 
and track optimal values while collecting information about peaks in the decision space over time, 
which was used to select the next robust solution. Moreover, most dynamic robust algorithms employ 
prediction models to solve ROOT problems; however, the accuracy of such models in practical 
applications is dependent on the availability of data. In addition, for dynamic problems with high-
dimensional search spaces and high change frequencies, a large amount of data is often required to 
obtain accurate predictions. Consequently, Yazdani et al. (2017) proposed a new ROOT framework 
that eliminates the original predictor in ROOT (Jin et al., 2012) and substitutes the prediction of 
future fitness values with the prediction of future behavior of peaks, using the behavioral information 
of peaks to predict robust feasible solutions that satisfy the future dynamic environment when the 
resulting feasible solution does not satisfy the dynamic environment.

It has been demonstrated that the effectiveness of search engines is crucial to addressing dynamic 
robust problems. To further enhance the ability to solve such problems, this article proposes a dynamic 
robust optimization of particle swarm optimization algorithm based on a hybrid strategy (HS-DRPSO). 
In the HS-DRPSO algorithm, the two variation strategies of the differential evolution algorithm, i.e., 
“DE/rand/1” and “DE/best/1,” are first combined with the particle swarm algorithm in each search 
period using a weight dynamic adjustment strategy. The population is then clustered, and the variation 
strategy of the brainstorming algorithm is used to select the central variation of the clusters to generate 
new individuals in the population and improve population diversity. By comparing the results with 
two other dynamic robust optimization algorithms across five dynamic standard test functions, it is 
demonstrated that the proposed algorithm’s overall performance is superior.

RELATED WORK

Dynamic Optimization
A dynamic optimization problem refers to a sequence of optimization problems where the objective 
function varies with time or environment (Jin et al., 2005). Its mathematical representation is expressed 
as follows (Cruz et al., 2011):

F max f   ( , ) ( , ) . . ( )x t x t s t x X t S= ∈ ⊆ 	 (1)

where f represents the objective function, a function of time t and decision variables x; S denotes the 
search space and X(t) represents the set of decision variables at time t.
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Dynamic Robust Optimization Performance Evaluation Index
The crux of dynamic robust optimization is to discover adaptable and resilient solutions that can 
perform well across multiple dynamic environments. To effectively appraise the performance of 
robust solutions, this paper proposes using two evaluation metrics, namely survival time and average 
fitness value, as introduced in the literature (Jin et al., 2005). The survival time is defined as follows:

f x t f x i t h t l
s h

, , max , ,η η( ) = ∪ ( ) ≥ ∀ ≤ ≤ +{ }{ }0 	 (2)

where x denotes the feasible solution; fh(x) denotes the fitness value corresponding to the h-th moment; 
η  denotes the set threshold; l denotes the number of times that the fitness value lasts no less than 
the threshold since the t moment; and fs denotes the maximum number of time steps that the individual 
x at the t-th moment can satisfy the threshold in the future.

The expression for the average fitness values is given as follows:

f x t T
T

f x
a h t

t T

h
, ,( ) = ( )

=

+ −

∑
1 1

	 (3)

where T represents the time window value, and fa represents the average value of the individual x 
within the time window T.

In order to assess the efficiency of the algorithm presented in this paper, we utilize the performance 
evaluation metrics for dynamic robust optimization algorithms found in the literature (Fu et al., 2013). 
These metrics are expressed in equation (4):

Z
P

f
I j

P

j
=

=∑
1

1
	 (4)

where fj represents the robustness of the solution obtained by the algorithm in the j-th environment 
and P represents the total number of environment types.

In addition, to provide a more comprehensive evaluation of the robustness of the proposed 
algorithm, this paper employs an evaluation index based on the fitness function value proposed in 
the literature (Yang et al., 2020), as shown in the following equation:

G x g x g x
robustness funvalue( ) = ( )+ ( ) 	 (5)

where grobustness(x) represents the normalized robust function value of the resulting solution. If the 
survival time obtained in equation (2) or the average fitness obtained in equation (3) is greater than 
0, grobustness(x) = 1; otherwise, it equals 0. gfunvalue(x) is the result of L2 parametric normalization of the 
optimal function value of the resulting solution.

Basic Particle Swarm Optimization Algorithm
Particle Swarm Optimization (PSO) is a global search algorithm based on population, which involves 
velocity and position updates using the following formulas (Yang et al., 2020):

v e v e c r pbest e x e c r gbest e x
id id id id d id
+( ) = ( )+ ( )− ( )( )+ ( )−1

1 1 2 2
ω ee( )( ) 	 (6)
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x e x e v e
id id id
+( ) = ( )+ +( )1 1 	 (7)

where ω  is the inertia weight, e represents the current iteration number, vid(e) denotes the speed of 
particle i in the d-th dimensional component at the e-th iteration, xid(e) denotes the position of particle 
i in the d-th dimensional component at the e-th iteration, c1 and c2 are learning factors, r1 and r2 are 
random numbers in the (0, 1) interval, pbestid the the component of historical optimal position of 
particle i in the d-th dimension, and gbestd denotes the component of position of the global extremum 
gbest. in the d-th dimensional.

Brainstorming Variation Strategy
Brainstorm Optimization (BSO) is a novel population-based optimization algorithm introduced by 
Shi in 2011 (Shi, 2011). The key concept of BSO is to mimic the human brainstorming process by 
treating each member of the population as a potential solution to the problem at hand. In each iteration, 
a k-means clustering algorithm is applied to cluster all individuals into several groups. Then, one 
of these groups is chosen at random according to probability, and the center of the chosen group is 
updated by adding perturbations based on the following equation:

 y x e N

e sig
E e

k
r

id id
= + ( )∗ ( )

( ) = × −
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


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,
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	 (8)

where xid represents the positional component of the i-th individual to be mutated in d dimensions, 
yid represents the positional component of the i-th individual to be generated in d dimensions, N(μ,σ2) 
represents a Gaussian random number with μ as the mean and σ as the variance, ξ e( )  represents the 
coefficient of variation at the e-th iteration, Emax represents the maximum number of iterations, k is 
a factor that regulates the slope of the sig function and controls the convergence rate of the algorithm, 
and rand() represents a random number between 0 and 1.

Upon selecting one individual from each of the two classes, the algorithm uses a probability 
value to determine which individuals to fuse together in order to create the individual to be mutated. 
The formula for fusing the two selected individuals is as follows:

y rand x rand x
newd i d i d
= + −( )() * ()

1 2
1 	 (9)

where x
i d1

 and x
i d2

 are the individuals selected from the two classes, and ynewd are the offspring 
individuals resulting from the fusion of the two individuals.

DESCRIPTION OF DYNAMIC ROBUST OPTIMIZATION ALGORITHM 
BASED ON HYBRID STRATEGY OF PARTICLE SWARM ALGORITHM

Hybrid Differential Variation Strategy
The fundamental particle swarm optimization algorithm updates the velocity and position of each 
particle based on the global optimum and historical optimum, which increases convergence speed 
but may cause the particles to become stuck in local optima during the search process. To address 
this issue and balance the algorithm’s global search ability and local exploitation ability within the 
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solution space, we incorporate a weighting factor and combine two differential evolutionary variation 
strategies, DE/rand/1 and DE/best/1, following Zhang et al. (2017). The former strategy uses random 
individuals for strong global breadth search ability, whereas the latter is guided by the population’s 
historical optimum for stronger local exploration ability. The two strategies are merged using weighting 
factors as shown in equation (10):

x x K x x x K x x
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	 (10)

where x
l
e+1  denotes the mutated new individuals corresponding to the i-th individual of population 

xe at the e-th iteration; K is the mutation control parameter, where Kmax is set to 0.7 and Kmin is set to 
0.5; l1, l2, l3, l4, l5 are mutually different three random numbers taken from the range of [1, 2, ..., N], 
and none of them is equal to i; β is a monotonically decreasing function with the number of iterations. 
The first period emphasizes the DE/rand/1 variation strategy for global search, while the later period 
emphasizes the DE/best/1 strategy for local exploitation, thus enhancing the population’s search 
performance.

Particle Swarm Optimization Algorithm Based on Brainstorming Algorithm
While the PSO algorithm exhibits a strong global search capability, it is prone to the issues of 
prematurely converging to local optima and losing diversity in the later stages of evolution. To address 
this problem, we suppose to augment the PSO algorithm with a brainstorming variation strategy that 
applies BSO variation to individuals within the population. Moreover, the step size of the variation 
operator is inversely proportional to the number of population iterations, thereby further enhancing 
the efficiency of the algorithm update process. The specific steps of the proposed brainstorming 
variation-based particle swarm algorithm (Algorithm 1) are outlined below:

Algorithm 1: Particle Swarm Optimization Algorithm Based on Brainstorming Algorithm

Inputs: velocity-position; probability parameter P1
;

Output: new population; 
1  Input the velocity position information of the particles in the  
   population and cluster the population into s classes using the 
   k-means algorithm;
2  Rank the individuals in each class using equation (5) and  
   select the best value as the center of the class; 
3  Randomly select the center of a class and determine with random  
   probability whether it is replaced by a new variant of  
   individuals generated; 
4  If new individuals need to be generated, the new mutant  
   individuals are generated as follows: A random number P

0
 

   between [0,1] is generated and compared with the probability  
   parameter P

1
 set in advance in the following manner:     

5  If P
0
< P

1
     

6  a random number P
a
 between [0,1] is generated and compared with 

   the probability parameter P
2
 set in advance:        

7  If P
a
< P

2
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8  Two individuals are randomly selected and fused according to  
   equation (8) to produce new individuals;     
9  else     
10 Randomly select the non-class-centered individual as the new individual; 
11 end
12 else  
13 A random number P

b
 between [0,1] is generated, and compared 

   with the probability parameter P
2
 set in advance:   

14 If P
b
< P

2
     

15 Two class-centered individuals are randomly selected and fused  
   to produce new individuals according to equation (9);     
16 else       
17 Two non-class-centered individuals are randomly selected and  
   fused to produce new individuals according to equation (9);          
18 end      
19 end
20 Compare the centers of the selected classes with the new mutant  
   individuals and retain the better ones; 
21 Update the population and perform Step 1 again until the  
   termination condition is satisfied. 
22 In this paper, the individual selection strategy described  
   in equation (5) is employed to dynamically determine the new  
   gbest. Additionally, the parameters c1 and c2 in the particle  
   swarm velocity update equation, as described in equation (6),  
   are adjusted by utilizing techniques from the literature (Xiao,  
   2017) in the following manner:

c
e

E1
2 05= +











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*
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π 	 (11)
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HS-DRPSO Algorithm Implementation Steps
Algorithm 2 presents the pseudo-code for the proposed dynamic robust particle swarm optimization 
algorithm based on the hybrid strategy in this paper.

Algorithm 2: HS-DRPSO

Inputs: population size np; maximum number of time windows Tmax
; 

maximum number of iterations E
max
;

Output: Robust solution sequence 
1  Random initialization of populations pop 
2  for t = 1: T

max
 do

3  for e =1: E
max
 do
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4  for i = 1:np do
5  Update the individuals xi according to equation (6) and update  
   the population pop; 
6  Differential variation was performed according to equation (10)  
   to obtain the population Apm;
7  Comparing individuals in pop and Apm according to the 
   individual evaluation strategy (equation (5)), retaining the  
   better individuals and updating them in pop;
8  end for
9  Using the k-means algorithm to cluster populations pop into s classes;
10 Use Algorithm 1 to brainstorm variants and update the  
   population pop;
11 According to equation (5), G(x) is obtained by combining the 
   evaluation of individuals in pop, and G(x) is arranged in 
   reverse order; 
12 Probability of selection of individual x: 
13 Random integer generation ς ∈ 


1,np , and random number r ∈ ( )0 1,  

14 If  p rς >  then

15 g g
best best
= −ζ

16 else
17 Return to Step 13 
18 end if
19 end for
20 end for
21 Output Robust Solution Sequence

ALGORITHM SIMULATION EXPERIMENTS

To demonstrate the efficacy of the proposed algorithm, it was empirically evaluated against the 
currently available dynamic robust correlation algorithm on five test functions, namely 1) ROOT, 
a time-domain robust optimization algorithm proposed by (Fu et al., 2015), and 2) DRPSO-DE, a 
hybrid particle swarm-based dynamic robust optimization algorithm proposed by (Yang et al., 2020).

Test Functions
To validate the efficacy of the proposed algorithm, we conducted tests using the modify Moving 
Peaks Benchmark (mMPB) function and four test functions (T1f1, T2f1, T3f1, and T4f1) generated by 
the CEC2009 dynamic rotating peaks standard generator. The mMPB test function is derived from 
the Moving peak Problems (MPB), where the height, width, and position of each wave peak change 
with the environment. The mMPB test function is expressed using equation (13):

F x t H W x C

H H height se
m M t

m
t
m

t
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t
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where M represents the total number of peaks, H W C
t
m

t
m

t
m, ,  respectively represent the height, width, 

and peak center point location of the m-th peak at time t, v
t
m  represents the movement of the m-th 

peak position at time t, N(0,1) represents a Gaussian distribution of random numbers with a mean 
value of 0 and variance of 1, and the max function is used to determine the highest peak value of the 
M peaks as the function value.

The expressions of the test functions for T1f1, T2f1, T3f1, and T4f1 are in the same form as shown 
in equation (14):
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where x
d

 represents the component of the particle in the d-th dimension, while C
td
m  denotes the 

component in the d-th dimension at the location of the m-th peak at the current time. The functions 
T1f1, T2f1, T3f1, and T4f1 are transformed in a manner consistent with the method described in (Yang 
et al., 2020).

Experimental Parameter Setting
Test Function Parameter Setting
To facilitate comparison, the test function parameters for all algorithms were set to the same values 
as the standard algorithm parameters. The specifics of the parameter settings for the modified moving 
peak test function and the dynamic rotation peak test function can be found in Table 1.

Algorithm Parameter Setting
Both the proposed algorithm and the comparison algorithm were run independently for 30 iterations. 
The time windows T were varied between 2, 4, and 6, and the thresholds η1 for the mMPB function 
were set to 40, 45, and 50, while the thresholds η2 for the dynamic rotation peak function were set to 

Table 1. Test function parameter setting

Parameters mMPB Dynamic Rotation Peak

Change frequency G 2500 3000

Number of peaks M 5 10

Dimension of decision variables D 2 10

Initial height 50 50

Initial width 6 5

Width range [1,12] [1,10]

Height range [30,70] [10,100]

Height_severity [1,10] 5

Width_severity [1,10] 0.5

Search Scope [0,50] [-5,5]
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10, 15, and 20. The remaining algorithm parameters were set according to the following specifications 
in Table 2.

Analysis of Experimental Results
To evaluate the performance of the algorithms presented in this paper, they were tested and compared 
on the mMPB function and the dynamic rotation peak function, with the results displayed in Tables 
3 and 4. Wilcoxon rank sum statistics were used at a significance level of 5% to assess the statistical 
significance of the obtained results. The mean of the 30 outcomes was selected for comparing the 
algorithm’s performance, while the variance was employed for comparing the algorithm’s stability, 
with the variance value given in parentheses. The best results from the experiments are highlighted in 
bold in the table. The symbols “-,” “+” and “≈” indicate whether the HS-DRPSO algorithm proposed 
in this paper is “inferior,” “superior” and “equivalent” to other proposed algorithms. The final statistical 
score determines the performance of the proposed algorithm, and the more “+” symbols there are, 
the greater the algorithm’s significant performance advantage.

As shown in Table 3, it is evident that HS-DRPSO outperforms Fu and DRPSO-DE for most 
thresholds of the mMPB function. With regards to survival time, Wilcoxon statistics indicate that 
HS-DRPSO significantly outperforms the comparison algorithm at thresholds η1 of 40 and 45. While 
at a threshold η1 of 50, HS-DRPSO achieves improved but statistically insignificant results, similar to 
the comparison algorithm. As for the average fitness value, when the time window T is set as 2 and 6, 
the results obtained by HS-DRPSO are improved but not significantly different from the comparison 
algorithm. When the time window T is set as 4, the performance of HS-DRPSO is slightly worse 
than DRPSO-DE, but the difference is not statistically significant. Therefore, the experimental results 
demonstrate that HS-DRPSO is capable of achieving a more robust solution for the mMPB function.

From Table 4, it is evident that HS-DRPSO surpasses the comparison algorithm in terms of the 
performance of the dynamic rotation peak test function. According to Wilcoxon statistics, only in the 

Table 2. Algorithm parameter setting

Parameter Value Parameter Value

Population size np 50 Probability parameter P1 0.8

Inertia weight ω 0.729844 Probability parameter P2 0.2

Max environment number L 200 Sig lope factor k 20

Evaluate the number of time Windows Tmax 150 Mutation control parameter Kmax 0.7

Clustering number s 4 Mutation control parameter Kmin 0.5

Table 3. Comparison of algorithm results on mMPB test function

Test 
Questions Threshold Fu DRPSO-DE HS-DRPSO

mMPB

η1=40 2.73E+00(7.38E-02)+ 3.15E+00(5.06E-02)+ 3.33E+00(5.01E-02)

η1=45 2.30E+00(5.27E-02)+ 2.40E+00(4.62E-02)+ 2.49E+00(4.29E-02)

η1=50 1.72E+00(3.76E-02)≈ 1.71E+00(2.78E-02)≈ 1.74E+00(2.97E-02)

T=2 5.25E+01(2.52E-01)+ 5.41E+01(1.33E+00)≈ 5.46E+01(1.47E-01)

T =4 4.20E+01(4.39E-01)+ 4.61E+01(2.45E-01)- 4.52E+01(2.57E-01)

T =6 3.29E+01(6.99E-01)+ 3.83E+01(2.82E-01)≈ 3.86E+01(2.79E-01)

Wilcoxon +/-/≈ 5/0/1 2/1/3
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T3f1 function, when the time window T is 2, the maximum fitness value obtained by the algorithm is 
slightly worse than Fu, but the difference is not significant and is similar to the results of DRPSO-
DE. However, for the other three test functions, HS-DRPSO shows a significant advantage in both 
maximizing the survival time and the average fitness value. The key factor behind this advantage is 
the variational strategy of HS-DRPSO, which enhances the search performance of the algorithm and 
makes it more adaptable to the intricate dynamic rotation peak testing environment.

To visually represent the dynamic performance of the proposed HS-DRPSO algorithm, line 
graphs are plotted to show the robust solutions found by the algorithm on 150 moments, as depicted in 
Figures 1 to 5. Upon observation of Figures 2 to 5, it becomes evident that the algorithm outperforms 
the comparison algorithms significantly, especially on T1f1, T2f1, T3f1 and T4f1. Only on T3f1, when the 
time window T is 2, the algorithm’s performance is marginally worse than that of Fu. Furthermore, as 
the survival time threshold η1 and η2 of each test function, and the time window threshold T increases, 
the robustness performance of the solution decreases, owing to the higher quality requirements of 
the robust solution.

As shown in Tables 4, one can see that the HS-DRPSO has better performance at the most 
thresholds of the mMPB function and is significantly better than the compared algorithms of the 

Table 4. Comparison of algorithm results on dynamic rotating peak test functions

Test 
Questions Threshold Fu DRPSO-DE HS-DRPSO

T1f1

η2=10 9.20E-02(3.62E-02)+ 2.67E-01(4.89E-02)+ 1.41E+00(4.57E-02)

η2=15 4.67E-03(3.50E-03)+ 2.04E-01(3.05E-02)+ 1.13E+00(3.10E-01)

η2=20 1.78E-03(2.94E-03)+ 1.67E-02(1.11E-02)+ 1.03E+00(4.30E-02)

T =2 7.33E+00(6.99E-02)+ 9.93E+00(1.27E-01)+ 1.72E+01(1.84E+00)

T =4 7.14E+00(7.44E-02)+ 8.70E+00(8.85E-02)+ 1.10E+01(1.21E-01)

T =6 7.04E+00(6.76E-02)+ 8.27E+00(7.41E-02)+ 9.11E+00(5.34E-02)

T2f1

η2=10 3.26E+00(2.01E-01)+ 3.92E+00(3.72E-01)+ 4.28E+00(3.83E-01)

η2=15 6.35E-01(6.69E-02)+ 5.46E-01(8.19E-02)+ 1.71E+00(3.50E-01)

η2=20 2.29E-01(3.29E-02)+ 1.34E-01(2.14E-02)+ 5.83E-01(4.09E-01)

T =2 1.26E+01(7.49E-02)+ 1.27E+01(9.88E-02)+ 2.78E+01(4.61E+00)

T =4 1.26E+01(8.45E-02)+ 1.27E+01(6.86E-02)+ 1.88E+01(1.84E+00)

T =6 1.26E+01(8.53E-02)+ 1.28E+01(8.80E-02)+ 1.60E+01(8.03E-02)

T3f1

η2=10 5.48E+00(5.93E-01)+ 5.90E+00(8.75E-01)+ 9.52E+00(1.21E+00)

η2=15 3.41E-01(7.58E-02)+ 4.98E-01(1.45E-01)+ 6.60E-01(8.45E-02)

η2=20 6.36E-02(1.95E-02)+ 1.06E-01(2.20E-02)+ 1.71E+00(7.63E-02)

T =2 1.12E+01(7.03E-02)- 1.07E+01(7.04E-02)≈ 1.08E+01(4.43E-02)

T =4 1.06E+01(7.67E-02)+ 1.08E+01(7.67E-02)+ 1.43E+01(7.87E-02)

T =6 1.07E+01(5.45E-02)+ 1.09E+01(8.52E-02)+ 1.44E+01(1.14E-01)

T4f1

η2=10 1.10E+00(3.01E-02)+ 1.06E+00(2.27E-02)+ 1.12E+00(2.33E-02)

η2=15 9.94E-01(7.45E-03)+ 4.89E-01(3.91E-02)+ 1.00E+00(6.89E-03)

η2=20 9.26E-01(1.72E-02)+ 6.58E-02(1.75E-02)+ 9.68E-01(9.97E-03)

T =2 1.73E+01(3.75E-01)+ 1.10E+01(1.09E-01)+ 1.94E+01(2.50E-01)

T =4 8.67E+00(9.34E-02)+ 8.91E+00(7.67E-02)+ 1.08E+01(1.17E-01)

T =6 8.03E+00(6.14E-02)+ 8.25E+00(6.27E-02)+ 9.50E+00(1.17E-01)

Wilcoxon +/-/≈ 23/1/0 23/0/1
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survival time. In addition, for the dynamic rotation peak test function, the HS-DRPSO has obvious 
advantages in both the survival time and the average fitness value. Moreover, Figures 1-5 further 
show the advantages of the proposed HS-DRPSO. Thus, the overall performance of HS-DRPSO 
is substantially better than the algorithms proposed in the literature (Fu et al., 2015) and literature 
(Yang et al., 2020), providing evidence that HS-DRPSO is an effective algorithm for solving dynamic 
robust problems.

CONCLUSION

To enhance the search performance of dynamic robust optimization algorithms, we present the 
HS-DRPSO algorithm that utilizes a hybrid approach, incorporating differential evolution and 

Figure 1. Performance of robust solution under mMPB function

Figure 2. Performance of robust solution under T1f1 function
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brainstorming variation strategies. This algorithm dynamically combines the two variation strategies 
of the differential evolution algorithm with the particle swarm algorithm to improve global search 
ability in the early stages and local search ability in the later stages, while the variation strategy of 
the brainstorming algorithm is employed to mutate individuals in the population during iteration to 
further improve the algorithm’s diversity. Experimental comparisons with two other dynamic robust 
solution algorithms on five dynamic standard test functions demonstrate the effectiveness of the 
proposed algorithm, which outperforms the comparison algorithms overall.

Since the accuracy of model prediction has a significant impact on the performance of 
dynamic robust optimization algorithms, future work can focus on improving the prediction 

Figure 3. Performance of robust solution under T2f1 function

Figure 4. Performance of robust solutions under T3f1 function
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capabilities by using more advanced machine learning methods and on applying the proposed 
method to real-word applications.
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