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ABSTRACT

Robots are one of the most commonly used automated material handling equipment (MHE) in an 
industry, installed to perform a variety of hazardous and repetitive tasks, e.g., loading, unloading, 
pick-and-place operations, etc. The selection of an appropriate industrial robot is influenced by a 
number of subjective and objective factors that define its characteristics and working accuracy. As 
a result, robot selection can be regarded as a multi-criteria decision-making problem. In this article, 
a new hybrid MCDM model combining COPRAS and ARAS is developed to execute an industrial 
robot selection process based on three alternatives and five criteria. Fuzzy analytic hierarchy process 
is integrated to compute the parametric weights. It is discovered that Robot 3 and Robot 1 are coming 
out to be the best and worst alternative robots from this hybrid model. Finally, comparative analysis 
among eight other MCDM tools and sensitivity analysis are also performed to assess the stability 
and robustness of the developed hybrid model and other applied MCDM tools.
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INTRODUCTION

As time passed by, manufacturing concerns are mainly concentrating on the automated-driven systems 
within an industry. Automation helps to achieve the anticipated goals and can accomplish a tedious task 
repetitively without disruption. In today’s technological advancements, most industries are focusing on 
lowering production costs while increasing productivity by improving computerized-driven systems. 
According to Kulak (2005), “the material handling task accounts for 30-75% of the total cost of a 
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product, and efficient material handling can be responsible for 15-30% reduction in manufacturing 
system operations cost” (pp. 310). The robot is a type of computer-programmed automated material 
handling device mounted to accomplish several types of jobs like loading, unloading, welding, 
parts assembling, spray painting, picking and placing, etc. Hence, well-organized and efficient 
handling systems are required to increase material flow efficiency, productivity, system flexibility, 
improve facility utilization, minimization of lead time and labor cost (Karande and Chakraborty, 
2013). Improper selection of industrial robots not only hampers productivity but also puts a negative 
impression on the organization’s status. Therefore, appropriate robots should be selected to enhance 
production with the highest precision. There are many objective and subjective conflicting criteria are 
present that can influence the selection of a suitable robot (Mondal and Chakraborty, 2013). Despite 
the high capital investment, installing robots in industries has many benefits. For example, industrial 
robots can dramatically enhance the manufacturing organization’s efficiency and productivity, it can 
perform dangerous, complex and repetitive tasks with high accuracy. Bhangale et al. (2004) stated that 
“there are over 75 attributes that are to be considered while selecting a robot for a particular industrial 
application”. Athawale and Chakraborty (2011) outlined some of the essential variables to consider 
while picking an appropriate robot alternative, e.g. load-carrying capabilities, manipulator distance, 
durability, man-machine interface, cost, accuracy, etc. are some of these features. Decision-makers are 
having difficulty selecting the best robot choice because there are many competing robot performance 
qualities present, and MCDM coordination is the best solution to these kinds of difficulties.

Because of the advantages listed above, there is an urgent need to resolve this issue and offer the best 
robot option to be incorporated into an industry, while also providing some simple ideas to the industrial 
sectors before investing in the installation of automated machinery. When carrying out any robot selection 
process, the decision maker (DM) must examine many subjective and quantifiable factors, some of which 
are exploiting (beneficial) or diminishing (non-beneficial) (Rao, 2007). As a result, MCDM techniques 
are the ideal optimization tools for executing these types of situations with multiple competing criteria. 
An example of a robot assortment MCDM problem is offered in this research article and evaluated using 
the newly developed COPRAS-ARAS hybrid MCDM methodology. Several researchers have previously 
tackled the current robot selection problem using various MCDM strategies (Rao, 2007). Nonetheless, 
the authors of this paper found all of those studies to be contradictory and inconsistent, implying that 
there is room for improvement by employing additional viable MCDM methods and comparing the 
results to the prior ones. According to Lit et al. (2002), “The best way to handle the material is not 
always clear. In some cases, the requirements are satisfied by several different methods. For this reason, 
the selection of MHE is a critical stage in the facilities planning or the construction of assembly lines. 
As several parameters must be considered, some are crucial, and others are more sensitive to design. 
Therefore, the developer must be given an interactive method, allowing him to easily track the effects 
of his decisions on the solutions proposed” (p. 331).

MCDM has been used as an effective decision-making technique for several decades. Numerous 
scholars are always working in this field to improve the MCDM techniques and overcome the 
shortcomings of prior systems. Even many researchers also developed some new innovative MCDM 
models for making strategic decisions more precisely and accurately. Day by day, MCDM methods 
are becoming increasingly popular as a result of their intrinsic ability to evaluate and judge various 
alternatives, and old traditional MCDM techniques are also becoming obsolete at the same time. A 
single MCDM tool is insufficient for making an acceptable decision in any complicated decision-
making scenario (Karande et al., 2016). Therefore, two or more MCDM models need to be merged to 
form a hybrid model for taking decisions more effectively. The basic purpose of any hybrid technique 
is to combine the benefits of two or more MCDM tools into a single model. At the same time, it also 
helps to overcome the drawbacks of one model by another. In this current research work, the authors 
took the initiative to combine COPRAS (Zavadskas et al., 2001) and ARAS (Zavadskas and Turskis, 
2010) due to their divergent merits, which are thoroughly elucidated in the following section and 
parallelly endeavored to get rid of the weaknesses of these two models. These two MCDM tools are 
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accompanied by plentiful issues that could be severe in obtaining robust decisions. The disadvantages 
of the COPRAS method can be described as follows (Kraujalienė, 2019). a) The devoted ranks may 
differ from those obtained using other methods, b) COPRAS is a sensitive tool, and the results could 
be affected by a minor change in the data. Similarly, ARAS can only employ beneficial qualities. 
Thus, cost criteria must first be turned into beneficial elements for ARAS operation, which may lead 
to contradictory and inconsistent outcomes. COPRAS thankfully corrects this shortcoming, since 
COPRAS has the property to treat positive and negative parameters separately (Mousavi-Nasab and 
Sotoudeh-Anvari, 2017). More formally, it is COPRAS’s superiority over ARAS, but at the same 
time, ARAS is more robust and has more stability than COPRAS in the case of parameter weight 
variation. These explanations supported the conclusion that both of these techniques have their own 
merits and drawbacks, some of which can be abolished by combining them into one hybrid technique. 
Generally, COPRAS is a less effective and inferior tool than ARAS and its disadvantages are also 
more awful than ARAS. Hence, COPRAS’s performance needs to be improved and at the same time, 
some of the weaknesses of these two methods can be eliminated. Thus, by combining these two 
tools and incorporating some of the critical features of both COPRAS and ARAS, the present hybrid 
model is established to overcome some of the drawbacks. This hybrid model can yield more pertinent 
results than these independent methods. More specifically, the COPRAS MCDM’s steadiness and 
performance can be actively enhanced by integrating ARAS with it. The advantages of this newly 
developed COPRAS-ARAS hybrid model can be explained as follows.

•	 To improve ranking efficiency, the concept of optimal alternatives is applied.
•	 The quantitative utility degree is one of the most important components of this hybrid paradigm that is 

estimated by comparing it to the ideally best variant, which effectively aids in prioritizing alternatives.
•	 This fusion model is straightforward, requires less computational time, and employs a clear and 

logical scientific approach.
•	 The capability of this fusion model to treat maximum and least criteria individually is the most 

important feature which removes irregularity. As a consequence, it can generate outcomes that 
are devoid of paradoxes.

In addition to the numerous known MCDM methodologies, the authors of this work propose 
combining COPRAS and ARAS due to their major benefits over other MCDM tools. First and 
foremost, let us discuss COPRAS MCDM. COPRAS is used to rank alternatives using a variety of 
characteristics, including the effectiveness degree of the alternative options and the allied criterion 
weights (Ayrim et al., 2018). The optimal option in COPRAS is determined by considering both ideal 
and unideal solutions (Das et al., 2012; Ayrim et al., 2018). These operating principles illustrate that the 
COPRAS approach is an important MCDM strategy and a powerful decision-making tool. COPRAS 
grades alternatives based on the influence of cost and benefit type criteria via a single assessment 
framework, according to Ayrim et al. (2018) “COPRAS differs from other MCDM techniques in 
that it takes into account the alternative’s utility degree, which expresses as a percentage the amount 
to which one alternative is superior or inferior to the other alternatives utilized for assessment and 
comparison” (Chatterjee et al., 2011). This information can assist the DM in making a suitable 
decision (Mulliner et al., 2013). Furthermore, new research specifies that COPRAS-assisted decisions 
are less biased and more efficient than WSM and TOPSIS decisions (Goswami and Behera, 2021a; 
Simanaviciene and Ustinovicius, 2012). Still, it is also true that COPRAS can be less stable than 
WSM in data variation (Kraujalienė, 2019). In addition, COPRAS also has numerous leads over other 
MCDM tools, including a straightforward and apparent method, significantly less processing time, 
and a probability of graphical clarification is high. (Das et al., 2012; Ayrim et al., 2018).

On the other hand, ARAS is liable for rating a restricted number of decision options, each of which 
must be assessed contemporarily in terms of several decision attributes and it does not require any 
complex mathematical processes. The main advantage of using ARAS MCDM, it effectively helps in 
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prioritizing the alternatives by computing the alternatives’ degree of utility compared to the ideal one. 
Therefore, when this approach is employed, evaluating and rating alternatives becomes considerably 
easier (Zavadskas and Turskis, 2010). Moreover, Zavadskas and Turskis (2010) also stated that “When 
the attempt is taken to rank various alternatives and find ways to improve alternative projects, the ratio 
with an ideal alternative concept can be used.” Each MCDM technique has its own merits and demerits. 
Despite having many drawbacks, the authors of this research felt forced to combine COPRAS and ARAS 
since the arguments provided were so strong and compelling. Due to the accretion of the benefits and 
major qualities of these two MCDM methods, the author of this paper feels that the generated fusion 
model will be much more resilient and robust (Goswami and Behera, 2021a).

The primary purpose of this research is to integrate ARAS with COPRAS, which results in the 
formation of a combined COPRAS-ARAS hybrid MCDM system applied for tackling a real-world 
industrial robot selection MCDM problem while seeking to eliminate the flaws of the COPRAS 
method in order to increase its effectiveness and efficiency. The main goal is to provide the best 
robot solution among three options for industrialized applications. A completely new hybrid model 
combining COPRAS and ARAS is developed, and the criteria weights are evaluated using FAHP 
(Zadeh, 1965; Saaty, 1980) to execute the whole process. Five conflicting criteria are considered in 
this work, out of which, three are objective (quantitative) criteria, i.e., purchasing cost (PC), load-
carrying capacity (LC), and repeatability error (RE). At the same time, the other two, i.e., man-machine 
interface (MMI) and programming flexibility (PF), are the subjective (qualitative) criteria. Further, 
the ranking obtained from this hybrid model of COPRAS-ARAS is also cross-verified and validated 
using eight other MCDM techniques and sensitivity analysis.

LITERATURE REVIEW

For the past few years, MCDM has served as an efficient tool in solving numerous decision-making 
problems in a wide range of areas. Many researchers have demonstrated its versatility by implementing 
it in a variety of sectors such as manufacturing (Chatterjee and Chakraborty, 2013), finance (Anyaeche 
et al., 2017), environment (Yenugula et al., 2023; Yenugula et al., 2024), transportation and health 
(Sumrit, 2020), for executing complex problems with efficient solutions. Since this study is about 
industrial robot selection, below are some examples of recent successful MCDM implementations in 
this field. Chatterjee et al. (2010) used compromise and outranking methods VIKOR and ELECTRE 
II to solve an industrial robot selection problem. While solving an industrial robot selection problem, 
Athawale and Chakraborty (2011) investigated the ranking performance of ten well-known MCDM 
methods. Despite providing nearly identical alternative rankings, WPM, GRA, and TOPSIS outperformed 
the rest by a small margin. They also came to the conclusion that choosing proper MCDM tools has 
negligible importance over choosing suitable attributes and alternatives. Mondal and Chakraborty (2013) 
classified the best robots using four DEA models. Azimi et al. (2014) used the polygon area MADM 
method for the selection of industrial robots. Karande et al. (2016) investigated the ranking abilities 
of six major MCDM approaches while analyzing industrial robot selection difficulties. Bairagi et al. 
(2018) suggested a new multiplicative multiple criterion analysis models for executing a robot selection 
problem. Kamble and Patil (2018) selected the best alternative robot using the TOPSIS method. Sharaf 
(2018) solved a robot selection problem using a new decision-making approach based on an ellipsoid 
algorithm. Wang et al. (2018) established a DSS model that uses TODIM and the cloud model to handle 
robot selection problems with ambiguous linguistic information. Banerjee et al. (2020) proposed a novel 
MCDM approach for the ranking and selection of industrial robots. To identify the prominent material-
handling mobile robot, AHP, and modified GRA were used by Kumar and Raj (2020). Rashid et al. 
(2021) integrated the generalized IVF trapezoidal F-BWM method with extended VIKOR and extended 
TOPSIS to select optimal industrial robots using fuzzy information while considering subjective and 
objective criteria. Table 1 summarizes some of the additional works of literature on the topic of robot 
selection issues using various MCDM models.
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Beyond these mentioned works, ARAS and COPRAS approaches have a wide range of 
applications in a variety of sectors for making strategic judgments. The following section highlights 
some of the existing research involving ARAS, FAHP, and COPRAS MCDM models. Afful-Dadzie 
et al. (2016) proposed a hybrid FAHP-PROMETHEE framework to develop aid decision-making 
programs. Dhiman et al. (2019) used an MCDM method for selecting the optimal alternatives based 
on three sets of unfavorable criteria to operate a hybrid wind farm. They used COPRAS, TOPSIS, 
and SAW to determine the best option. Goswami and Mitra (2020) applied AHP-ARAS and AHP-
COPRAS MCDM methodologies to select the best mobile model. Ighravwe and Oke (2019) established 
an integrated F-COPRAS and SWARA approach for ranking the technician’s selection factors. Jocic 
et al. (2020) proposed a cohesive method for selecting e-learning courses based on the symmetry 
principles and MCDM concept. The PIPRECIA method is used to determine criteria weights, and 
the IVT F-ARAS method is employed to classify e-learning courses. Khatwani et al. (2015) assessed 
search channels for internet information using the FAHP-TOPSIS MCDM hybrid system. Matic et 
al. (2019) developed a new MCDM hybrid system to select and assess suppliers for a construction 
company in a sustainable supply chain based on 21 criteria. FUCOM is used to determine the criteria 
weight values. A new rough COPRAS MCDM has been developed to assess the alternatives, which 
was later verified and confirmed by other MCDM tools like ARAS, WASPAS, WSM, and MABAC. 

Table 1. Documented literatures highlighting the applicability of several MCDM approaches for industrial robot selection

References Year MCDM Tools Used Number of Criteria 
and Alternatives

Particular Application Area

Criteria Alternatives

Shahrabi (2014) 2014 Fuzzy AHP, Fuzzy 
TOPSIS 8 3 Robot selection for a metal cutting 

workshop of a truck factory

Khandekar and 
Chakraborty (2015) 2015 Fuzzy Axiomatic 

Design (FAD) 9 7
Selection of robots for carrying out 
light assembly activities efficiently 

in a manufacturing industry

Parameshwaran et 
al. (2015) 2015 Fuzzy Delphi, FAHP, 

FTOPSIS, F-VIKOR 8 3
Robot selection for teaching 

purpose in mechatronics 
engineering department

Ghorabaee (2016) 2016 Interval type-2 fuzzy 
sets, VIKOR 7 8 Selection industrial robots for an 

auto company

Xue et al. (2016) 2016 Hesitant fuzzy 2-tuple 
linguistic QUALIFLEX 6 3 Robot selection for a 

manufacturing company

Yazdani et al. (2017) 2017 MOORA, COPRAS 5 7 Not specified

Liu et al. (2018) 2018
Interval‐valued 

Pythagorean fuzzy, 
QFD, QUALIFLEX

7 3
Selection of a welding robot for 
a Chinese auto manufacturing 

company

Zhou et al. (2018) 2018 Fuzzy AHP, VIKOR 7 3 Selection of mobile robots in 
healthcare industry

Gundogdu and 
Kahraman (2020) 2020 Spherical fuzzy AHP 4 4 Not specified

Nasrollahi et al. 
(2020) 2020 Fuzzy BWM, 

PROMETHEE 12 4 Not specified

Hornakova et al. 
(2021) 2021 AHP 7 3 Selection of material handling 

system

Rashid et al. (2021) 2021 BWM, EDAS 4 5 Not specified

Source: Author(s) own elaboration
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Mishra et al. (2020) introduced and incorporated SWARA and COPRAS methodologies to choose 
the best possible bioenergy production technology alternatives.

Salabun et al. (2020) conducted a comparative analysis of four MCDM tools: COPRAS, TOPSIS, 
VIKOR, and PROMETHEE II. They created a complex benchmarking model by considering additional 
dimensions during simulation experiments and incorporated various normalization techniques and 
weighing methods. Shao et al. (2019) proposed a hybrid MCDM system to improve the quality of the 
information system for research. Rough-numbered COPRAS is used to evaluate the performance of 
Chinese university research information systems. Singh et al. (2019) used ARAS and TOPSIS techniques 
to select the best optimum conditions to generate prolific high-quality holes. Valipour et al. (2017) 
presented an Iranian case study, where they introduced a SWARA-COPRAS hybrid risk assessment 
framework in a deep-base excavation project. A case study on the selection of staff in a manufacturing 
company was conducted by Yalcin and Pehlivan (2019) using fuzzy CODAS combined with hesitant 
fuzzy envelopes based on comparative linguistic expressions (CLEs). A sensitivity study was conducted 
to show that the ranking results were stable and valid. The obtained rankings have also been compared 
with different fuzzy MCDM, including F-WASPAS, F-COPRAS, F-EDAS, F-ARAS, and F-TOPSIS. 
Table 2 also depicts some of the further FAHP, ARAS, and COPRAS-assisted decision-making concerns.

Research Gaps and Novelty: It is obvious from the earlier works that time-consuming traditional 
tools like PROMETHEE, TOPSIS, ELECTRE, and VIKOR as well as other complex MCDM systems 
are routinely employed to find the optimal robot options. Conventional MCDM tools are typically 
inefficient and require extensive mathematical analysis. As a result, a simple integrated MCDM system 
that produces fair and reasonable outcomes within a quick computation period is urgently needed. 
Even though the COPRAS and ARAS are two of the most extensively utilized prevalent MCDM tools 
in decision-making history, very few published research studies are present that employ these two 
methods together to evaluate an industrial robot selection problem. Furthermore, the hybrid MCDM 
concept has received very less attention and is rarely investigated by most academics. Although a 
few hybrid fusion models have been devised in recent years, they are either difficult to understand 
or unfriendly to users. None of the previous scholars ever attempted to integrate two straightforward 
and commonly used MCDM methods like COPRAS and ARAS. Therefore, the authors set out to 
create a simple and systematic FAHP-integrated COPRAS-ARAS hybrid MCDM system to solve 
this robot selection issue. In addition to this, the ongoing analysis is primarily based on the previous 
work conducted by Rao (2007), in which the author employed six MCDM tools to rate the three 
alternatives, but unfortunately, Rao (2007) failed to produce a stable alternative ranking as can be 
observed in Table 14. The applied methods proposed different rankings and contradictory outcomes. 
Hence, this research also serves the purpose of resolving the existing research flaws by Rao (2007) 
and producing a stable ranking using an updated hybrid MCDM system.

The authors of this study took the initiative to blend COPRAS and ARAS to create a novel hybrid 
model, which had never been done previously. As a result, this article serves the following functions.

•	 A novel hybrid model is developed by merging ARAS and COPRAS.
•	 Using this COPRAS-ARAS hybrid model, a suitable industrial robot is proposed among three different 

possibilities based on five criteria, whereas FAHP is employed to estimate the parametric weights.
•	 To deal with the errors associated with the previous analysis designed by Rao (2007) and to 

generate a consistent ranking throughout the analysis.
•	 Eight additional MCDM tools namely, MULTIMOORA, COPRAS, WPM, MOORA, TOPSIS, 

WSM, ARAS, and WASPAS are ranked alongside and compared with the hybrid model’s ranking.
•	 Three stages of sensitivity analysis are carried out to validate the outcomes of the methodologies applied.

This robot selection problem is retrieved from prior literature and re-evaluated to reduce the 
vagueness and uncertainty connected with the previous study while finding the criteria weights using 
the FAHP weighted estimation technique. Although Rao (2007) previously handled this particular 
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decision-making problem by using numerous MCDM techniques, those analyses were found to 
be inconsistent and unstable, leading the authors to explore the same topic in this paper. The most 
serious flaw in Rao’s (2007) research is that it employs the traditional AHP method to generate the 
criteria weights, which is an ineffective tool for dealing with uncertain situations. Therefore, the fuzzy 
concept is used in this study to take into account the vague and indefinite information, to prescribe 
a more precise and realistic solution to the problem. This study aimed to fill up the research gap and 
correct flaws in the results of Rao’s preceding experiment (2007).

It is evident from the discussed literature that AHP is a widely used MCDM tool for estimating 
criteria weights in various research fields. However, because human preference is blemished by 
ambiguity, uncertainty, and vagueness in most practical situations, DMs find it harder to assign 
accurate numerical values for comparing decisions explicitly (Liu and Zhang, 2011; Ouma et al., 
2017). Hence, the DM would have difficulty expressing the strength of his preferences and confidence 

Table 2. Past literatures involving the applications of FAHP, ARAS and COPRAS in different fields

References Year MCDM Models Used Applicable Area

Environment Weighting Tool Ranking Tool

Sakthivel et al. 
(2013) 2013 Fuzzy sets AHP PROMETHEE, 

GRA
Selection of suitable car for an 

automotive industry

Adali and Isik 
(2016) 2016 Crisp values AHP ARAS, COPRAS Selection of air-conditioner

Ozbek and Erol 
(2017) 2017 Crisp values Equal weights ARAS, COPRAS Rating of factoring companies

Barak and 
Dahooei (2018) 2018 Fuzzy sets DEA

ARAS, 
MULTIMOORA, 

TOPSIS, COPRAS, 
SAW, VIKOR

Evaluation of airlines safety in 
aviation sector

Chatterjee et al. 
(2018) 2018 Grey 

numbers DEMATEL ARAS, TOPSIS, 
COPRAS

Green Supply Chain 
Management Performance 

Evaluation

Dursun and Arslan 
(2018) 2018 2-tuple fuzzy 

sets QFD COPRAS
Assessment of washing 

liquid for a Turkish detergent 
manufacturer

Radovic et al. 
(2018) 2018 Rough sets SWARA

ARAS, WASPAS, 
MABAC, EDAS, 

SAW

Performance measurement of 
transportation companies

Kumari and 
Mishra (2020) 2020 Intuitionistic 

fuzzy sets

Divergence 
measure and 

Entropy
COPRAS Green supplier selection for a 

manufacturing company

Ozdogan et al. 
(2020) 2020 Fuzzy sets AHP TOPSIS

Prioritizing mayors for better 
enhancement of municipal 

services in Turkey

Rani et al. (2020) 2020 Hesitant 
fuzzy sets SWARA COPRAS Sustainable supplier selection 

for a trading firm in India

Yildirim and 
Mercangoz (2020) 2020

Combined 
fuzzy and 

grey numbers
AHP ARAS Logistics performance index 

evaluation of OECD countries

Yildizbasi and 
Unlu (2020) 2020 Fuzzy sets AHP TOPSIS Using Industry 4.0 to assess 

the performance of three SMEs

Source: Author(s) own elaboration
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in pair-wise comparison judgments in the traditional AHP method (Ouma et al., 2017). As a result, 
it has been argued that AHP is ineffective when applied to ambiguously or vague real-life problems 
involving uncertainty, insecurity, and subjectivity (Deng, 1999). Conventional AHP tools cannot 
effectively handle problems with such elusive, imprecise, and incomplete information, mainly when 
the problem includes both qualitative and quantitative factors, as in this case. The fuzzy set concept 
can be used to deal with uncertainty, imprecision, and subjectivity in decision-making processes. By 
quantifying and representing incomplete information using a membership grade function, the fuzzy 
concept formalizes human behavior’s subjective and imprecise nature (Zadeh, 1965). The benefit of 
fuzzy-based pair-wise comparison is that it permits DMs to be more flexible in their decisions. It is 
achieved by varying degrees of fuzzification (Ouma et al., 2017).

Furthermore, suppose the expert is unsure about the extent to which decisions are important. 
Therefore, FTS can overlap the criteria preferences expressed by a membership function, and interval 
decisions are provided as an expression of the fuzzy membership function (Kordi, 2012). Fuzzy pair-
wise comparison perception can be integrated with AHP to accommodate ambiguity in professionals’ 
heuristics and account for judgment subjectivity (Mikhailov, 2003). DM’s levels of confidence and 
risk-taking attitudes should be considered (Ouma et al., 2017). For the reasons stated FAHP is found 
suitable for this analysis to estimate the parametric weights. Overall, this research work is unusual 
in that it addresses an industrial robot selection problem for the first time utilizing a newly designed 
hybrid MCDM tool that combines COPRAS and ARAS MCDM methodologies, while concurrently 
satisfying the research gaps and eliminating contradictions from past publications.

Designing of the Decision-Making Framework
Designing a MCDM research framework entails synthesizing current knowledge and identifying 
critical factors for building a comprehensive structure. The following procedures can be taken to 
design the research framework for the ongoing MCDM analysis.

Step 1 	 (Defining of Research Objectives): The first stage is to specify the research goals for the 
given problem. The fundamental purpose of this research can be defined as the construction 
of a novel COPRAS-ARAS hybrid MCDM model for selecting an appropriate industrial robot 
among three choices based on five competing criteria.

Step 2 	 (Formation of an Expert Committee): A committee is formed comprising 6 expert members 
having high expertise in the field. The panel members include the present authors (2 authors) and 
4 experts from different industries having high exposure to the field of robotics. The authors have 
invited 4 industrial professionals to take part in this survey and ask them to provide their judgments 
on the performance of attributes. The invited experts have high knowledge and more than 15 years 
of industrial experience. All the details about the panel board members are presented in Table 3.

Table 3. Details of the panel expert members

Experts Industry Designation Experience

Expert 1 Manufacturing Vice-president 18

Expert 2 Healthcare Chief medical supervisor 22

Expert 3 Robotics AI scientist 20

Expert 4 Transportation General manager 16

Author 1 Academician Researcher 5

Author 2 Academician Professor 15

Source: Author(s) own elaboration
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Step 3 	 (Conducting Brainstorming Session): Several brainstorming sessions have been conducted 
to identify the essential parameters influencing the appropriate selection of robots for industrial 
purposes. Reputed international databases like Scopus and Web of Science (WoS) are mostly used 
to perform a thorough evaluation of previously published papers. International peer-reviewed 
journals with high Impact Factor (IF) like Symmetry (IF: 2940), Robotics and Computer-Intergrated 
Manufacturing (IF: 10.103), International Journal of Industrial Engineering Computations (IF: 
3.271), Fuzzy Sets and Systems (IF: 4.462), International Journal of Production Research (IF: 9.018), 
Expert Systems with Applications (8.665) are mainly followed to adopt some ideas for the current 
analysis. Some specific keywords have been used to search the leading databases like ‘industrial 
robot selection’, ‘MCDM applications’, ‘robot selection using MCDM’, ‘industrial applications of 
MCDM’, ‘hybrid MCDM’, etc. These keywords result in 24,700 published articles from the Scopus 
database, making it difficult for the DM’s to sort out the important ones. As a result, several filters 
were used to remove the articles that were unnecessary from the list. Finally, the panel experts 
came up with 150 articles that have been studied thoroughly to identify the important parameters 
that adversely affect industrial robot selection. Furthermore, the research papers published in high 
IF journals in recent five years have been only referred to. Particularly, one article by Rao (2007) 
grab the author’s attention and they found several flaws that lack the research outcomes.

Step 4 	 (Define Decision Criteria): Five important criteria have been finally specified that are used 
to evaluate three alternative robots. These criteria were deemed by the expert members to be highly 
relevant to the research objectives and strongly reflect the performance of the alternatives. Both 
quantitative and qualitative criteria have been considered here for analyzing the performance of 
the robot alternatives.

Step 5 	 (Selection of Evaluation Methods): Various MCDM methods used previously by past 
researchers have been reviewed. The committee members found that the prior works mainly adopt 
outdated traditional tools that are incompetent in producing effective decisions. After conducting 
rigorous in-depth research of some MCDM models, the experts discovered that COPRAS and 
ARAS are stronger and provide substantial benefits when compared to other methodologies. 
Additionally, these two evaluation techniques are also appropriate based on the nature of the 
decision problem, the available data, and the preferences of the decision-makers.

Step 6 	 (Considering Decisions Under Uncertainty): Decision-making processes often involve 
uncertainties, and thus the fuzzy concept is introduced to handle the vague and ambiguous 
condition associated with the ongoing robot selection problem.

Step 7 	 (Conducting Sensitivity Analysis): Three stages of sensitivity analysis were performed 
to assess the robustness of the models used. Sensitivity analysis allows professionals to detect 
variations in the output results for any changes made in the input data.

Step 8 	 (Validate the Applicability of the Hybrid Model): The final result produced by the hybrid 
model is also validated by comparing it with results obtained from eight other MCDM models.

Step 9 	 (Document and Communicate the Framework): The MCDM research framework is 
documented in a clear and concise manner. Detailed explanations of each component, the 
relationships between them, and the decision-making process are well explained. The framework is 
effectively communicated to ensure its adoption and understanding by researchers and practitioners.

MATERIALS AND METHODS

Rao (2007) first considered this robot section problem and applied GTMA, WSM, WPM, TOPSIS, 
and modified TOPSIS to analyze the best robot while considering three alternatives and five selection 
criteria. Among these five criteria, LC, MMI, and PF are the beneficial criteria (maximum), whereas 
PC and RE are the non-beneficial (minimum) criteria. The identical robot selection dilemma is 
addressed once again in this context. An appropriate robot has to be chosen for food packaging 
purposes in the Indian food and beverage processing industry. Tenders from three reputable robot 
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manufacturing companies have been requested for the case study and the three alternative robots are 
designated as RB1, RB2, and RB3 to protect the company’s identity. To rank the robot options, a 
new hybrid MCDM model integrating COPRAS and ARAS is built, while the five-factor weights 
are re-evaluated using FAHP. To prove the ability of this new COPRAS-ARAS combined model, the 
outcome result from this hybrid technique is also cross-checked using eight other MCDM tools and 
also validated through three stages of sensitivity analysis. Figure 1 depicts the overall framework of 
the entire investigation using a flowchart approach.

Fuzzy Analytic Hierarchy Process (FAHP)
In 1980, Thomas L. Saaty (1980) first invented the traditional AHP method, which was later extended 
by incorporating the fuzzy concept (Zadeh, 1965) to develop a new method called FAHP (Buckley, 
1985; Chang, 1996) in order to improve consistency and eliminate the errors associated with traditional 
AHP. Van-Laarhoven and Pedrycz (1983) conducted the first FAHP analysis in 1983, followed by 
Buckley (1985) in 1985. Buckley (1985) pioneered an innovative geometric mean method for 
determining the fuzzy weights in 1985, and Chang (1996) contributed the extent analysis method for 
evaluating the fuzzy weights in 1996. Buckley’s geometric mean method (Buckley, 1985) is approved 
in this article, and the current analysis employs triangular fuzzy number (TFN) shown in Figure 2. 
FAHP starts with a relative importance matrix (B = ni ´  nj), shown in Table 4. A committee was 
formed, consisting of various specialist individuals such as CEOs of well-known robot manufacturing 
companies, researchers, and scientists. The specialist members have over 15 years of field experience 
and vast expertise in the field of robotics. Following a major brainstorming session, the decision-
makers (DM) made a consistent choice and presented their own perspectives on the pair-wise 
comparisons among the five parameters given in Table 4.

The relative importance matrix in Table 4 is created according to Saaty’s nine-pair linguistic 
scale (Saaty, 1980) shown in Table 5. By comparing the five criteria among each other, the TFNs of 
their respective crisp values depicted in Table 4 are adjusted according to Figure 3. Table 5 represents 
Saaty’s scale and their respective TFNs. The consistency of the relative importance matrix is also 
checked following the 6 steps discussed further, and the consistency ratio (CR) is found to be 0.00457 
(4.57%), which is well within the limit i.e., less than 10%. All the terminologies closely related to 
the consistency checking namely, Eigen Vector (EV), average consistency (λmax), Consistency Index 
(CI) and CR are evaluated in Table 6 using Equation (11) to Equation (15).

Equation (1) expresses the membership function µ
N

(x) of a triangular fuzzy number N  = (a, 
b, c) depicted in Figure 2.

µ
N

(x) = 

0������������������������� �

������������� �

for x a

fora

<
−
−

≤
x a

b a
xx b

forb x c

forothe

≤

−
−

≤ ≤
c x

c b
������������� �

����������������� �0 rrwise











	 (1)

Where, a, b, c denotes the real numbers and a < b < c. Figure 2 shows the lower threshold limit as 
‘a’, the middle threshold limit as ‘b’ and the upper threshold limit as ‘c’. Figure 3 represents Saaty’s 
scale in terms of TFN.

Equation (2) to Equation (7) represents some of the essential operational laws and mathematical 
computation formulas of two triangular fuzzy numbers, say, N

1
  = (a1, b1, c1) and N

2
  = (a2, b2, c2).

N
1
 + N

2
 = (a1 + a2, b1 + b2, c1 + c2)	 (2)
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Figure 1. Flowchart representation of the complete robot selection decision-making analysis
Source: Author(s) own elaboration; created by Autocad 2007



International Journal of Decision Support System Technology
Volume 15 • Issue 1

12

Figure 2. Representation of fuzzy triangular numbers (TFNs)
(Source: Author(s) own elaboration; Created by Autocad 2007)

Figure 3. Representation of crisp numeric values by TFNs
(Source: Author(s) own elaboration; Created by Autocad 2007)

Table 4. Relative importance matrix

Criteria Comparison PC LC RE MMI PF

PC
Crisp values 1 5 1 7 5

TFN 1, 1, 2 4, 5, 6 1, 1, 2 6, 7, 8 4, 5, 6

LC
Crisp values 1/5 1 1/5 2 1

TFN 1/6, 1/5, 1/4 1, 1, 2 1/6, 1/5, 1/4 1, 2, 3 1, 1, 2

RE
Crisp values 1 5 1 7 5

TFN 1, 1, 2 4, 5, 6 1, 1, 2 6, 7, 8 4, 5, 6

MMI
Crisp values 1/7 1/2 1/7 1 1/2

TFN 1/8, 1/7, 1/6 1/3, 1/2, 1/1 1/8, 1/7, 1/6 1, 1, 2 1/3, 1/2, 1/1

PF
Crisp values 1/5 1 1/5 2 1

TFN 1/6, 1/5, 1/4 1, 1, 2 1/6, 1/5, 1/4 1, 2, 3 1, 1, 2

Source: Author(s) own elaboration; Panel board members
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N
1
 - N

2
 = (a1 - a2, b1 - b2, c1 - c2)	 (3)

N N
1 2
 ´ = (a1´  a2, b1´  b2, c1´  c2)	 (4)

N
1
 / N

2
 = (a1 / a2, b1 / b2, c1 / c2)	 (5)

λN
1
  = (λa1, λb1, λc1)	 (6)

N
1
1- = ( 1

1
c

, 1

1
b

, 1

1
a

)	 (7)

The aggregate of the decisions given by ‘d’ decision makers e.g., {(a1, b1, c1), (a2, b2, c2), (a3, b3, 
c3)….., (ad, bd, cd)}is given by the Equation (8) (Rostamzadeh et al., 2017).

Ā (N
1
 , N

2
 …., N

d
 ) = ( 1

1d
a

i

d

i
=
∑ , 1

1d
b

i

d

i
=
∑ , 1

1d
c

i

d

i
=
∑ )	 (8)

Where, ai > 0, bi > 0, ci > 0, di > 0, λ > 0 and i = 1,2…, d.
Before moving to the main Buckley analysis, the consistency of Table 4 need to be checked using 

the following steps as explained below.
The relative pair-wise comparisons among the chosen parameters presented in Table 4 follows the 
establishment of a matrix in the form of Equation (9).

B (ni´  nj) = 

b

b

b

b

b

b

b

b

b
i i

j

j

ij
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2

… …

…
…
…
…
…

























�� �� �� 	 (9)

Second step follows the normalization of matrix ‘B’ using Equation (10) to stabilize the performance 
data ‘bij’ of Table 4. However, ‘N

ij
A ’ represents the normalized (or stabilized) values.

N
ij
A = 

b

b

ij

i

n

ij=∑ 1

	 (10)

Table 5. Saaty’s scale and conversion of qualitative terms into quantitative values

Mode of Importance Saaty’s Scale Triangular Fuzzy 
Number (TFN) Qualitative Terms Quantitative 

Values TFNs

Equal importance 1 (1, 1, 2) Very high (VH) 9 (8, 9, 9)

Slight importance 3 (2, 3, 4) High (H) 8 (7, 8, 9)

Moderate importance 5 (4, 5, 6) Above average (AA) 7 (6, 7, 8)

Strong importance 7 (6, 7, 8) Average (A) 5 (4, 5, 6)

Extreme importance 9 (8, 9, 9) Below average (BA) 3 (2, 3, 4)

Intermediate values

2 (1, 2, 3) Low (L) 2 (1, 2, 3)

4 (3, 4, 5) Very low (VL) 1 (1, 1, 2)

6 (5, 6, 7)

8 (7, 8, 9)

Source: Author(s) own elaboration; Saaty (1980)
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Eigen (or priority) vector (EVi) of each criterion are calculated using Equation (11).

EVi = j

n

ij
AN

n
=∑ 1 	 (11)

Multiplying the pair-wise matrix ‘B’ with the EV matrix to get the consistency of each criterion 
designated as ‘CNi’ shown by Equation (12).

CN 

CN
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	 (12)

Compute the value of λmax following Equation (13).

λmax = i

n

i
CN

n
=∑ 1 	 (13)

The final step is to evaluate the CI and CR values using Equation (14) and Equation (15) that ultimately 
help the DM’s to take proper judgement whether Table 4 is consistent or not.

CI = 
»
max

n

n

−( )
−( )1

	 (14)

CR = CI
RI

	 (15)

‘n’ represents the number of criteria and ‘RI’ represents the randomly generated index whose value 
can be obtained from Table 6 based on the number of criteria.

Now, proceeding towards the next step to determine the fuzzy geometric mean values (G
i

 ) of 
each criterion using Equation (16).

Table 6. Computation for consistency checking

Criteria CN Consistency Check RI values

PC 5.03877 n 5 n RI n RI

LC 5.01008 λmax 5.02048 1 0 6 1.24

RE 5.03877 CI 0.00512 2 0 7 1.32

MMI 5.00472 RI 1.12 3 0.58 8 1.41

PF 5.01008 CR 0.00457 4 0.9 9 1.45

Sum 25.10241 Consistent Yes 5 1.12 10 1.49

Source: Author(s) own elaboration
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G
i

 = 
j

n

ij

n

N
=
∏










1

1

 	 (16)

Where, ‘G
i

 ’ is the geometric mean value of the ith row criterion and ‘N
ij
 ’ is the TFN of the ith row 

and jth column in Table 4. ‘n’ represents the number of criterion. In this case, n = 5. Table 7 displays 
the geometric mean values of the criteria.

The fuzzy weights (W
i

 ) of the parameters are now determined using the three steps outlined below.

To begin, compute the sum ( S ) of the geometric values (G
i

 ) of the criteria as shown in Equation 
(17). The calculation process is carried out according to the summation rule given by Equation 
(2). The sum ( S ) obtained is also a triangular fuzzy number.

S= 
i

m

i
G

=
∑
1

 = (G
1
 +G

2
 +G

3
 +….+G

m
 )	 (17)

B. 	 Secondly, using the inverse rule shown in Equation (7) to find the inverse sum.
Finally, the fuzzy criteria weights (W

i
 ) are computed by multiplying the inverse sum to each of the 

geometric value (G
i

 ) of the criteria as shown in Equation (18). The calculated fuzzy weights (

W
i

 ) are shown in Table 7.

W
i

 = G
i

´ G G G G
m1 2 3

1
   + + +… +( )

−

. 	 (18)

Where, (i = 1, 2…, m; j = 1, 2…, n). The TFNs are defuzzified using the center of gravity method 
(COG) (Samanta, 2018) to transform it into non-fuzzy numbers. As indicated in Table 7, the actual 
criteria (wj) weights are determined by normalizing these defuzzified values.

Table 7. Determination of criteria weights

Criteria Fuzzy Geometric Mean Values (Gi
 ) Fuzzy Weights (Wi

 ) Defuzzification Actual Weights (wj)

PC 2.4915, 2.8094, 4.0953 0.2342, 0.3916, 0.6563 0.4273 0.38948

LC 0.4884, 0.6034, 0.9441 0.0459, 0.0841, 0.1513 0.0938 0.08550

RE 2.4915, 2.8094, 4.0953 0.2342, 0.3916, 0.6563 0.4273 0.38948

MMI 0.2805, 0.3480, 0.5610 0.0264, 0.0485, 0.0899 0.0549 0.05004

PF 0.4884, 0.6034, 0.9441 0.0459, 0.0841, 0.1513 0.0938 0.08550

Sum Gi
 6.2403, 7.1736, 10.6398 Total 1.0971 1

Inverse 
sum

1

10 6398.
, 
1

7 1736.
, 
1

6 2403.
Source: Author(s) own elaboration
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COPRAS-ARAS Hybrid MCDM Model
Zavadskas et al. (2001) were the first to use the COPRAS technique to access building life cycles, 
which takes into account the effect of beneficial and cost criteria individually to estimate the relative 
effects of the alternatives. The ARAS technique, on the other hand, assessed the degree of utility of 
each alternative in relation to the optimal best choice (Zavadskas and Turskis, 2020). Zavadskas and 
Turskis (2020) created it in 2010 to assess the microclimate in office environments. In this hybrid 
model of COPRAS and ARAS, both these concepts are combined to reflect the benefits of these two 
separate MCDM tools. This method starts with the creation of an assessment (decision or evaluation) 
matrix (mi ´  nj) using Equation (19). The proposed evaluation matrix is portrayed in Table 8.

E (mi´  nj) = 

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

m m m

n

n

n

11

21

31

1

12

22

32

2

13

23

33

3

1

2

3

… … …

…
…
…
…
…
…

� � � �

ee
mn





























	 (19)

In this ongoing MCDM analysis, PC, LC, and RE are the objective measures, and MMI and PF are 
the subjective measures. The values of the three objective elements are derived from Rao’s (2007) earlier 
article, and four decision-makers from the committee supplied their own perspectives on the remaining two 
subjective factors shown in Table 8. According to the scale in Table 5, the qualitative linguistic phrases for 
MMI and PF are transformed into their respective quantitative measurements and TFNs depicted in Table 9.

The fuzzy decisions made by the four decision-makers for the two subjective criteria, MMI and 
PF are aggregated using Equation (8) and presented in Table 9. Finally, the fuzzy weights of the MMI 
and PF parameters are again defuzzified using the COG approach to yield the crisp numeric values 
shown in Table 9. As a result, the final performance values of the three robot choices are produced 
and the ultimate decision matrix is displayed in Table 10.

In Table 10, ‘Robot 0’ (or RB) represents the ideal robot alternative created by taking into account 
the ideal values of each criterion, i.e., the least values for the minimum (non-beneficial) criteria and 
the highest values for the maximum (beneficial) criteria. Now, conducting the linear normalization 
using Equation (20) and Table 11 shows the normalized scores.

Nij = 
e

e

ij

i

m

ij=∑ 1

	 (20)

‘eij’ and ‘Nij’ are the assessment score and normalized score of the jth criteria and ith alternatives 
respectively.

Table 8. Evaluation matrix

Alternatives PC in 1000$ LC in kg RE in mm MMI PF

DM1 DM2 DM3 DM4 DM1 DM2 DM3 DM4

RB1 73 48 0.15 A AA AA H H AA A VH

RB2 71 46 0.18 AA H A A VH H VH AA

RB3 75 51 0.14 BA L BA VL H AA H A

(ource: Author(s) own elaboration; Rao (2007); Panel board members
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Table 9. MMI and PF conversion analysis into precise numerical numbers

Alternative Decision Maker 1 Decision Maker 2 Aggregated Fuzzy Weights

MMI PF MMI PF MMI PF

RB1
5 8 7 7

5.75, 6.75, 7.75 6.25, 7.25, 8
4,5,6 7,8,9 6,7,8 6,7,8

RB2
7 9 8 8

5.25, 6.25, 7.25 7.25, 8.25, 8.75
6,7,8 8,9,9 7,8,9 7,8,9

RB3
3 8 2 7

1.5, 2.25, 3.25 6, 7, 8
2,3,4 7,8,9 1,2,3 6,7,8

Alternative
Decision Maker 3 Decision Maker 4 Defuzzified Weights

MMI PF MMI PF MMI PF

RB1
7 5 8 9

6.75 7.16667
6,7,8 4,5,6 7,8,9 8,9,9

RB2
5 9 5 7

6.25 8.08334
4,5,6 8,9,9 4,5,6 6,7,8

RB3
3 8 1 5

2.33333 7
2,3,4 7,8,9 1,1,2 4,5,6

Source: Author(s) own elaboration

Table 10. Reconstructed assessment matrix

Nature of Criteria (-) (+) (-) (+) (+)

Robot 0 (Ideal alternative) (RB) 71 51 0.14 6.75 8.08334

Alternatives PC in 1000$ LC in kg RE in mm MMI PF

RB1 73 48 0.15 6.75 7.16667

RB2 71 46 0.18 6.25 8.08334

RB3 75 51 0.14 2.33333 7

Source: Author(s) own elaboration; Rao (2007)

Table 11. Normalized matrix

Notations w1 w2 w3 w4 w5

Weights (wj) 0.38948 0.08550 0.38948 0.05004 0.08550

Alternatives PC LC RE MMI PF

RB 0.24483 0.26020 0.22951 0.30566 0.26648

RB1 0.25172 0.24490 0.24590 0.30566 0.23626

RB2 0.24483 0.23469 0.29508 0.28302 0.26648

RB3 0.25862 0.26020 0.22951 0.10566 0.23077

Source: Author(s) own elaboration
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Now the weighted values (Cij) and the relative significances (Ri) of each alternative are evaluated 
using Equation (21) and Equation (22), respectively, and shown in Table 12.

Cij = Nij´  wj	 (21)

Ri = S+i + 
S S
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‘wj’ represents the weight of jth criterion and ‘Ri’ is the relative significances of the ith alternative. 
‘Cij’ is the weighted score of the jth criteria and ith alternatives.

‘S+i’ and ‘S-i’ in Equation (22) reflect the addition of the weighted values of maximum and 
minimum criteria, which may be found using Equation (23) and Equation (24) respectively. ‘S-min’ 
is the smallest of S-i values.
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‘C+ij’ and ‘C-ij’ denotes the weighted values of maximum and minimum criteria.
Finally, using Equation (25), each alternative’s quantitative utility degree (QUi) is calculated, 

and the ranking of the three robot alternatives is provided in Table 12.

QUi = 
R

R
i

0

	 (25)

Where, (i = 1, 2…., m; j = 1, 2…., n). ‘R0’ is the relative significances of the ideal robot alternative 
(RB) indicated in Table 12.

RESULTS AND VALIDATION

The robot options are ranked according to declining QUi values, as indicated in Table 12. This section 
includes the comparative analysis and validation to demonstrate the accuracy and stability of the 
recommended methodologies.

Table 12. Ranking of robots by COPRAS-ARAS hybrid model

Alternatives PC LC RE MMI PF Ri QUi Rank

RB 0.09536 0.02225 0.08939 0.01530 0.02278 0.26513 = R0 - -

RB1 0.09804 0.02094 0.09577 0.01530 0.02020 0.25165 0.94917 1

RB2 0.09536 0.02007 0.11493 0.01416 0.02278 0.23694 0.89368 3

RB3 0.10073 0.02225 0.08939 0.00529 0.01973 0.24628 0.92891 2

Source: Author(s) own elaboration



International Journal of Decision Support System Technology
Volume 15 • Issue 1

19

Comparative Analysis Among Various MCDM Models
The recommended ranking using COPRAS-ARAS hybrid model is compared with the other MCDM 
tools to check the accuracy of the proposed model. TOPSIS, MULTIMOORA, ARAS, WASPAS, 
MOORA, WPM, COPRAS, and WSM are eight other MCDM tools that were further used to determine 
the three alternative robot ranks using the same FAHP parameter weights as given in Table 13. The 
derived rankings from the eight distinct methodologies are compared with the hybrid model ranking 
in Table 14, and a comparison with Rao’s (2007) previously presented rankings is also performed. 
Table 13 features the following expressions for different methodologies used.
S
i
+ (PIS) = Positive Ideal Solution

WP
i
 = Weighted product

S
i
- (NIS) = Negative Ideal Solution

J
i
 = Joint generalized criterion

RC
i
 = Relative closeness co-efficient

R
i
 = Relative significances

y
i
 = Weighted performance

U
i
COPRAS = Quantitative utility

U
i
MULTIMOORA = Utility values

V
i
 = Optimality values

WS
i
 = Weighted sum

U
i
ARAS = Degree of utility

Table 13 displays the robot ranks achieved using various methodologies. It is clear that all of 
the MCDM methodologies produce the same ranking, demonstrating the robustness of the current 
MCDM study. All of the MCDM approaches indicated that robot 1 is the best option, whereas robot 2 
is the worst. Moreover, the ranks among the applied models hold a strong Spearman rank correlation 
coefficient of one (SRCC = 1). Table 14 compares the current rankings obtained from various MCDM 
approaches with the results of previous researchers. Table 14 also specifies the final robot alternatives 
ranking using Borda and Copeland’s voting method.

Table 13. Robot rankings using eight other MCDM algorithms

Alternatives TOPSIS MOORA MULTIMOORA

Si
+ (PIS) Si

- (NIS) RCi Rank yi Rank Ui
MULTIMOORA Rank

RB1 0.01697 0.04918 0.74344 1 -0.30668 1 1.39437 1

RB2 0.05737 0.02510 0.30437 3 -0.34192 3 1.31660 3

RB3 0.02731 0.05731 0.67724 2 -0.31991 2 1.34825 2

Alternatives
WSM WPM WASPAS

WSi Rank WPi Rank Ji Rank

RB1 0.94864 1 0.94822 1 0.94843 1

RB2 0.90136 3 0.89534 3 0.89835 3

RB3 0.93503 2 0.91686 2 0.92594 2

Alternatives
COPRAS

Alternatives
ARAS

Ri Ui
COPRAS Rank Vi Ui

ARAS Rank

RB1 0.34268 100 1 Robot 0 0.26465 = V0 - -

RB2 0.32291 94.231 3 RB1 0.25104 0.94857 1

RB3 0.33441 97.589 2 RB2 0.23802 0.89935 3

Rmax 0.34268 RB3 RB3 0.93062 2

(Source: Author(s) own elaboration)
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Table 14 shows that the prior rankings offered by Rao (2007) lack consistency, as the best and worst 
robot choices differ for different techniques. Rao (2007) found robot 2 as the best alternative to GTMA 
and TOPSIS methods, but the same robot 2 came out to be the worst choice by the rest of the methods. 
The same thing happens in the case of robot 3 as well. Robot 3 got all the first, second, and third positions 
at least once by different techniques. As shown in Table 14, all three robot alternatives were ranked first at 
least once by anyone of the MCDM tools. So, confusion still exists regarding the best and worst choices. 
Therefore, Rao (2007) entirely fails to meet the primary goal of identifying the best and worst robot among 
these three options. On the other hand, the current rankings prove its stability and consistency as all the 
methods suggested the same ranking order i.e., robot 1 and robot 2 are the best and the worst options 
respectively. There is no confusion regarding the best and worst robot choices. The research gaps that 
exist in the previous study by Rao (2007) are thus met. Consequently, the ranking prescribed by the hybrid 
model is genuine, and its output agrees with the majority of the results provided by various MCDM tools.

As a whole, the rating from the hybrid model COPRAS-ARAS is compared against eight different 
MCDM tools to determine whether the hybrid model is producing the correct ranking or not. It has 
been found in Table 14 that all the applied approaches yield the same findings, indicating that the newly 
constructed hybrid model is giving accurate results. Furthermore, the same output in all circumstances 
indicates that the overall analysis is consistent and generates a stable ranking. As we can observe from 
Table 14 that the previous analysis by Rao (2007) shows different rankings by different methods lead 
to confusion regarding the best and the worst choices since different methods pick different robot 
alternatives as the best and worst. This is one of the research gaps that the authors have identified and 
tried to establish a hybrid MCDM system capable of producing trustworthy and consistent findings. 

Table 14. Ranking comparisons of several MCDM approaches

Present Rankings

MCDM Tools RB1 RB2 RB3

COPRAS-ARAS hybrid model 1 3 2

TOPSIS 1 3 2

MOORA 1 3 2

MULTIMOORA 1 3 2

WSM 1 3 2

WPM 1 3 2

WASPAS 1 3 2

COPRAS 1 3 2

ARAS 1 3 2

Final ranking by Borda and Copeland method 1 3 2

Previously Proposed Rankings

References MCDM Tools RB1 RB2 RB3

Rao [6]

GTMA 2 1 3

WSM 2 3 1

WPM 2 3 1

AHP and its versions 2 3 1

TOPSIS 2 1 3

Modified TOPSIS 1 3 2

Source: Author(s) own elaboration; Rao (2007)
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Similarly, no such misunderstanding arises in the current research because all the adopted tools propose 
the same consistent ranking throughout, demonstrating the robustness of the entire study. The final 
preference ranking order of the robot alternatives can be sequentially placed as follows.

Robot 1 < Robot 3 < Robot 2

Sensitivity Analysis
Sensitivity analysis is used to demonstrate the consequences of changes in the input parameters provided 
by the MCDM models and to evaluate the model’s sensitivity (Karande et al., 2016). Sensitivity analysis 
permits a) identification of the most volatile input factors that produce the critical performance variance., 
b) to examine of the decision-making model’s stability and robustness, and c) to determine the range of 
input parameter values for which the model produces consistent results (Karande et al., 2016). Zavadskas 
et al. (2006) reported in their article, “the MCDM method’s output is modified by two input parameters, 
criteria weights, and performance data”. As a result, sensitivity analysis is performed to investigate the 
impact of different criteria weights on the final ranking. It allows decision-makers to investigate the 
capability of MCDM techniques in discovering the least sensitive solution, minimizing ambiguity in 
selection concerns, and ostensible performance trading (Karande et al., 2016). Therefore, three phases 
of sensitivity tests are carried out in this study to investigate the effect of varying criteria weights on the 
alternative ranking achieved using various MCDM approaches (Goswami et al., 2021).

Single Dimensional Weight Sensitivity Analysis
In this single-dimensional strategy, the weight fluctuates within a practical range for the most important 
criterion, and the weights of the remaining parameters are modified equally to meet the additional 

weight constraint., i.e., 
j

n

j
w

=
∑
1

 = 1. The weights ratio does not remain constant due to the non-

proportional deviation of parameter weights, resulting in a distinct combination of new weights. 
Typically, the criterion having the highest weight value is considered the most important criterion 
since it has the largest influence on the alternative ranking. It is critical to identify the potential range 
within which the weight of the chosen criterion can be modified since this technique is based on the 
concept of weight additivity and parametric weights cannot be negative. Thus, the maximum allowable 
weight of the given parameter is limited. In this case, the weight of the most significant parameter 
can be maximum increased to wj* and reduced to a minimum of 0 (Karande et al., 2016; Goswami 
et al., 2021). Equation (26) can be used to calculate the value of wj*.

wj* = [wj
max + (n-1) ´wj

min]	 (26)

In this case, there is a tie between PC and RE parameters. Both of them are acquiring the highest 
weightage. So, let’s first consider PC as the critical parameter with the highest weightage of 0.38948. 
Using Equation (26), the value of wj* is determined to be 0.58965, and the PC weights are now 
modified to be within a reasonable range of 0 ≤ wPC ≤ 0.58965 as shown in Table 15. Therefore, 
the highest possible value of wPC is limited to 0.58965, since the lowest parameter weight i.e., MMI 
criterion, would be negative above that limit.

Similarly, if RE is considered to be an essential parameter, the same thing occurs. This sensitivity 
analysis takes into account both scenarios. Table 15 displays 14 new sets of parameter weights, and Figure 4 
to Figure 12 depicts the effect on alternative rankings due to weight variation in both cases, i.e., PC and RE.

From the graph profiles depicted in Figure 4 to Figure 12, it is clear that the alternative rankings 
are somehow affected due to the variation of important parameters’ weightage. Some tools show 
minor variations, while some illustrate substantial drastic changes in the rankings. Let’s clear out 
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some important points one by one. To begin, if the question is raised about the essential criterion 
for this present decision-making problem among these two parameters, i.e., PC and RE, then the 
answer would be repeatability (RE). Although both the factors have the same importance (weight), 
i.e., 0.38948, RE is more critical than PC. There is a strong reason for making such a statement 
because Karande et al. (2016) stated that “the criterion with the highest weight means that it has the 
greatest effect on the alternative ranking to be viewed as the most important criterion”. So, here, in 
this case, it can be noticed from the graph profiles that, on varying the weights of the RE parameter, 

Table 15. New sets of criteria weights

Variation of PC Parameter Variation of RE Parameter

PC LC RE MMI PF PC LC RE MMI PF

Set 1 0 0.18287 0.48685 0.14741 0.18287 0.48685 0.18287 0 0.14741 0.18287

Set 2 0.05 0.17037 0.47435 0.13491 0.17037 0.47435 0.17037 0.05 0.13491 0.17037

Set 3 0.1 0.15787 0.46185 0.12241 0.15787 0.46185 0.15787 0.1 0.12241 0.15787

Set 4 0.15 0.14537 0.44935 0.10991 0.14537 0.44935 0.14537 0.15 0.10991 0.14537

Set 5 0.2 0.13287 0.43685 0.09741 0.13287 0.43685 0.13287 0.2 0.09741 0.13287

Set 6 0.25 0.12037 0.42435 0.08491 0.12037 0.42435 0.12037 0.25 0.08491 0.12037

Set 7 0.3 0.10787 0.41185 0.07241 0.10787 0.41185 0.10787 0.3 0.07241 0.10787

Set 8 0.35 0.09537 0.39935 0.05991 0.09537 0.39935 0.09537 0.35 0.05991 0.09537

Set 9 0.38948 0.08550 0.38948 0.05004 0.08550 0.38948 0.08550 0.38948 0.05004 0.08550

Set 10 0.4 0.08287 0.38685 0.04741 0.08287 0.38685 0.08287 0.4 0.04741 0.08287

Set 11 0.45 0.07037 0.37435 0.03491 0.07037 0.37435 0.07037 0.45 0.03491 0.07037

Set 12 0.5 0.05787 0.36185 0.02241 0.05787 0.36185 0.05787 0.5 0.02241 0.05787

Set 13 0.55 0.04537 0.34935 0.00991 0.04537 0.34935 0.04537 0.55 0.00991 0.04537

Set 14 0.58965 0.03546 0.33944 0 0.03546 0.33944 0.03546 0.58965 0 0.03546

Source: Author(s) own elaboration

Figure 4. COPRAS-ARAS hybrid MCDM model
Source: Author(s) own elaboration; Created using MS Word 2010
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the alternative ranking shows dramatic changes in all cases for the adopted MCDM techniques than 
the PC parameter variation. In contrast, in PC parameter weight variation, all the tools show more 
stability in alternative ranking. As a result, it can be stated that repeatability has the highest impact 
on the alternative rating and thus can be termed as the critical parameter. At the same time, it is also 
true that purchasing cost (PC) is the most robust parameter than RE since its weight variation didn’t 
significantly affect the rankings.

Secondly, let us discuss the robustness of the applied MCDM tools. The graph profiles presented 
in Figure 4(a) to Figure 12(a) reveal that the COPRAS-ARAS hybrid model exhibits relatively small 
alteration in ranks during PC parameter fluctuation, and the contour is comparable to MOORA, 
WSM, and ARAS, whereas, the other five tools exhibit substantial ranking variations. In the case of 
RE variation, all the profiles are practically the same as shown in Figure 4(b) to Figure 12(b), but 
the hybrid model variation is identical to WASPAS, ARAS, MULTIMOORA, COPRAS, WPM, and 
MOORA. As a result, it is possible to conclude that the newly constructed hybrid model is stable 

Figure 5. TOPSIS
Source: Author(s) own elaboration; Created using MS Word 2010

Figure 6. MOORA
Source: Author(s) own elaboration; Created using MS Word 2010
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and strong enough to compete with other existing MCDM tools. Furthermore, the hybrid model also 
reflects equivalent characteristics as the other eight employed methodologies, which can be observed 
by the similar variation of graphical presentations. Before proceeding to the next point, let us first 
provide a brief overview of weight stability intervals. The local stability (LS) interval represents the 
range of weight variation over which the first-ranked alternative proposed by one method can only 
maintain its rank in the first position. The global stability (GS) interval, on the other hand, represents 
the weight range variation during which the total alternative ranking proposed by one method remains 
constant. Finally, the final rank-based stability (FRS) interval is the range within which the final 
proposed alternative ranking, i.e., RB1 – RB3 – RB2 (in this case), remains constant. Therefore, LS 
and GS are used to determine stability and robustness, while FRS is used to govern the efficiency and 
performance of the MCDM tools. In this present situation, the GS and FRS intervals are the same 
because the final suggested rank is the same as supplied by all of the applied MCDM methodologies.

Figure 7. MULTIMOORA
Source: Author(s) own elaboration; Created using MS Word 2010

Figure 8. WSM
Source: Author(s) own elaboration; Created using MS Word 2010
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From the weight stability intervals provided in Table 16, it is observed that the hybrid model, 
MOORA, ARAS, TOPSIS, and WSM methods gradually lose their stability as the PC variation slowly 
moves towards the higher order beyond 0.45. Whereas the remaining methods particularly, WPM 
and MULTIMOORA, gain their stability within the intervals 0.25 and 0.5. Similarly, COPRAS and 
WASPAS indicate some ranking changes in the lower and upper regions, but both approaches exhibit 
some consistency within the interval of 0.05 to 0.5. However, when the RE parameter is varied, all of 
the approaches are sensitive and show a similar consistent ranking within the GS interval of 0.3 to 0.45. 
When comparing both LS and GS intervals during PC and RE parameter variation simultaneously, Table 
16 shows that hybrid COPRAS-ARAS, MOORA, and ARAS have attained the maximum LS and GS in 
both scenarios, indicating that these three MCDM models are the most robust among the group. On the 
other hand, WPM and MULTIMOORA are the most sensitive methods in the group, with the smallest 
GS intervals during PC parameter variation, and WSM is the most sensitive with the smallest GS interval 
during RE parameter variation. Now, the most critical question is whether the main objective of this 

Figure 9. WPM
Source: Author(s) own elaboration; Created using MS Word 2010

Figure 10. WASPAS
Source: Author(s) own elaboration; Created using MS Word 2010
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article has been met or not. Specifically, whether the newly developed hybrid model performed well? 
Whether it has improved the performance of the COPRAS method and met our expectations? In this 
context, it is worth noting that the hybrid model suggested an alternative ranking that is more stable than 
the solo COPRAS technique and exactly matches the other eight MCDM-assisted rankings displayed in 
Table 14. Table 16 shows that during PC weights variation, the hybrid model’s GS and FRS intervals are 
more significant than COPRAS, demonstrating its good performance and stability over solo COPRAS. 
Still, it is also true that COPRAS’s ultimate ranking is the same as others but it slightly lags behind the 
hybrid model and ARAS in terms of robustness. From the final ranking to the sensitivity analysis and 
the weight stability intervals, ARAS behaves ideally the same as the hybrid model, demonstrating that 
solo ARAS is also more resilient than COPRAS and other techniques. Overall, the developed hybrid 
model performed well in contrast to existing MCDM tools, and combining ARAS with COPRAS also 
increases the strength and stability of the solo COPRAS technique to some extent.

Figure 11. COPRAS
Source: Author(s) own elaboration; Created using MS Word 2010

Figure 12. ARAS
Source: Author(s) own elaboration; Created using MS Word 2010
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Cost Factor Sensitivity Analysis
In this stage of sensitivity analysis, the cost element (in this case, purchasing cost) is modified over 
a range of values to observe the differences in rankings given by the specific model. Bhattacharya 
et al. (2005) developed a scientific method for combining cost-factor components with the model’s 
overall weight scores. The subjective and objective factor measures are the two key components 
in this analysis, where, objective factor measure (OFM) of the alternatives are computed using 
Equation (27). OFM values are then used in Equation (28) to get the alternative’s selection index 
(SI) (Bhattacharya et al., 2005).

OFMi = 1

1

1PC PC
i i

m

i=

−∑












	 (27)

SIi = [xSFMi + (1-x)OFMi]	 (28)

Where, i = 1, 2…, m. The notations given in Equation (27) and Equation (28) can be defined as follows.
OFMi

 = Objective factor measure
SI

i
 = Selection index

PC
i
 = Objective factor cost (Purchasing cost)

Table 16. Weight stability intervals of the applied MCDM methods

MCDM Tools PC Parameter Variation Graphs RE Parameter Variation Graphs

Local Stability 
(LS)

Global Stability 
(GS)

Local Stability 
(LS)

Global Stability 
(GS)

Hybrid COPRAS-ARAS 0 ≤ wPC ≤ 0.5 0 ≤ wPC ≤ 0.5 0.1 ≤ wPC ≤ 0.45 0.35 ≤ wPC ≤ 0.45

TOPSIS 0 ≤ wPC ≤ 0.45 0 ≤ wPC ≤ 0.45 0.1 ≤ wPC ≤ 0.4 0.3 ≤ wPC ≤ 0.4

MOORA 0 ≤ wPC ≤ 0.5 0 ≤ wPC ≤ 0.5 0.1 ≤ wPC ≤ 0.45 0.35 ≤ wPC ≤ 0.45

MULTIMOORA 0 ≤ wPC ≤ 0.5 0.25 ≤ wPC ≤ 0.5 0.1 ≤ wPC ≤ 0.45 0.35 ≤ wPC ≤ 0.45

WSM 0 ≤ wPC ≤ 0.5 0 ≤ wPC ≤ 0.5 0.1 ≤ wPC ≤ 0.4 0.35 ≤ wPC ≤ 0.4

WPM 0 ≤ wPC ≤ 0.5 0.25 ≤ wPC ≤ 0.5 0.1 ≤ wPC ≤ 0.45 0.35 ≤ wPC ≤ 0.45

WASPAS 0 ≤ wPC ≤ 0.5 0.1 ≤ wPC ≤ 0.5 0.1 ≤ wPC ≤ 0.45 0.35 ≤ wPC ≤ 0.45

COPRAS 0 ≤ wPC ≤ 0.5 0.05 ≤ wPC ≤ 0.5 0.1 ≤ wPC ≤ 0.45 0.35 ≤ wPC ≤ 0.45

ARAS 0 ≤ wPC ≤ 0.5 0 ≤ wPC ≤ 0.5 0.1 ≤ wPC ≤ 0.45 0.35 ≤ wPC ≤ 0.45

Final Rank-Based Stability (FRS) Final Rank-Based Stability (FRS)

Hybrid COPRAS-ARAS 0 ≤ wPC ≤ 0.5 0.35 ≤ wPC ≤ 0.45

TOPSIS 0 ≤ wPC ≤ 0.45 0.3 ≤ wPC ≤ 0.4

MOORA 0 ≤ wPC ≤ 0.5 0.35 ≤ wPC ≤ 0.45

MULTIMOORA 0.25 ≤ wPC ≤ 0.5 0.35 ≤ wPC ≤ 0.45

WSM 0 ≤ wPC ≤ 0.5 0.35 ≤ wPC ≤ 0.4

WPM 0.25 ≤ wPC ≤ 0.5 0.35 ≤ wPC ≤ 0.45

WASPAS 0.1 ≤ wPC ≤ 0.5 0.35 ≤ wPC ≤ 0.45

COPRAS 0.05 ≤ wPC ≤ 0.5 0.35 ≤ wPC ≤ 0.45

ARAS 0 ≤ wPC ≤ 0.5 0.35 ≤ wPC ≤ 0.45

Source: Author(s) own elaboration
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x = Weight of the objective decision factor
m = Number of alternatives (m = 4, in this case) 
SFM

i
 = Subjective factor measure

Purchasing costs are taken as PCi values provided in Table 8, whereas SFMi are the final overall 
weighted score values based on which the alternative rankings are prescribed. The final scores provided 
in Table 12 for the hybrid model and Table 13 for the eight alternate tools should be treated as the 
SFMi scores respectively. In this current situation, the objective decision weight factor ‘x’ values 
are varied within a range of 0 ≤ x ≤ 1 at an interval of 0.05. The alteration in the selection index 
for each alternative is noted and plotted in graphical form at each point of the ‘x’ value to measure 
the sensitivity of the constructed model. This mathematical approach has been used to analyze the 
sensitivity of all nine accepted models and the resultant graphs for each of the MCDM tools are 
shown in Figure 13. For larger values of ‘x’, immediate consideration of the decision weight factor 
can considerably dominate subjective measures. Simultaneously, lower values of ‘x’ dominate the 
cost component with lower SFMi priority values and vice versa (Bhattacharya et al., 2005).

Figure 13. Cost sensitivity analysis graphs
Source: Author(s) own elaboration; Created using MS Word 2010
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Sensitivity Analysis Using Weight Replacement Strategy
In this sensitivity analysis type, the criteria weights are rearranged into the highest conceivable 
combinations and rankings are created for each scenario to determine the sensitivity of the applied 
models. The five criteria weights (w1 w2 w3 w4 w5) can be reshuffled into 120 possible combinations 
following the rule 5! = 5 ´  4 ´  3 ´  2 ´  1 = 120 highlighted in Table 17. Robot rankings were 
received for each of the 120 weight combinations in each model case and plotted in the form of the 
graph shown in Figure 14 to observe the ranking deviations.

CONCLUSION

This article aimed to investigate an industrial robot selection problem using a newly built FAHP-
embedded COPRAS-ARAS hybrid MCDM system and remarkably improve the earlier proposed 
rankings by reducing the intricacy and ambiguity linked with the prevailing literature. At the same 

Table 17. possible combinations of five criteria weights

Sl. 
No.

Combinations Sl. 
No.

Combinations Sl. 
No.

Combinations Sl. 
No.

Combinations Sl. 
No.

Combinations

Sub-Group 1 Sub-Group 2 Sub-Group 3 Sub-Group 4 Sub-Group 5

1. w1w2w3w4w5 25. w2w1w3w4w5 49. w3w1w2w4w5 73. w4w1w2w3w5 97. w5w1w2w3w4

2. w1w2w3w5w4 26. w2w1w3w5w4 50. w3w1w2w5w4 74. w4w1w2w5w3 98. w5w1w2w4w3

3. w1w2w4w3w5 27. w2w1w4w3w5 51. w3w1w4w1w5 75. w4w1w3w2w5 99. w5w1w3w2w4

4. w1w2w4w5w3 28. w2w1w4w5w3 52. w3w1w4w5w1 76. w4w1w3w5w2 100. w5w1w3w4w2

5. w1w2w5w3w4 29. w2w1w5w3w4 53. w3w1w5w2w4 77. w4w1w5w2w3 101. w5w1w4w2w3

6. w1w2w5w4w3 30. w2w1w5w4w3 54. w3w1w5w4w2 78. w4w1w5w3w2 102. w5w1w4w3w2

7. w1w3w2w4w5 31. w2w3w1w4w5 55. w3w2w1w4w5 79. w4w2w1w3w5 103. w5w2w1w3w4

8. w1w3w2w5w4 32. w2w3w1w5w4 56. w3w2w1w5w4 80. w4w2w1w5w3 104. w5w2w1w4w3

9. w1w3w4w2w5 33. w2w3w4w1w5 57. w3w2w4w1w5 81. w4w2w3w1w5 105. w5w2w3w1w4

10. w1w3w4w5w2 34. w2w3w4w5w1 58. w3w2w4w5w1 82. w4w2w3w5w1 106. w5w2w3w4w1

11. w1w3w5w2w4 35. w2w3w5w1w4 59. w3w2w5w1w4 83. w4w2w5w1w3 107. w5w2w4w1w3

12. w1w3w5w4w2 36. w2w3w5w4w1 60. w3w2w5w4w1 84. w4w2w5w3w1 108. w5w2w4w3w1

13. w1w4w2w3w5 37. w2w4w1w3w5 61. w3w4w1w2w5 85. w4w3w1w2w5 109. w5w3w1w2w4

14. w1w4w2w5w3 38. w2w4w1w5w3 62. w3w4w1w5w2 86. w4w3w1w5w2 110. w5w3w1w4w2

15. w1w4w3w2w5 39. w2w4w3w1w5 63. w3w4w2w1w5 87. w4w3w2w1w5 111. w5w3w2w1w4

16. w1w4w3w5w2 40. w2w4w3w5w1 64. w3w4w2w5w1 88. w4w3w2w5w1 112. w5w3w2w4w1

17. w1w4w5w2w3 41. w2w4w5w1w3 65. w3w4w5w1w2 89. w4w3w5w1w2 113. w5w3w4w1w2

18. w1w4w5w3w2 42. w2w4w5w3w1 66. w3w4w5w2w1 90. w4w3w5w2w1 114. w5w3w4w2w1

19. w1w5w2w3w4 43. w2w5w1w3w4 67. w3w5w1w2w4 91. w4w5w1w2w3 115. w5w4w1w2w3

20. w1w5w2w4w3 44. w2w5w1w4w3 68. w3w5w1w4w2 92. w4w5w1w3w2 116. w5w4w1w3w2

21. w1w5w3w2w4 45. w2w5w3w1w4 69. w3w5w2w1w4 93. w4w5w2w1w3 117. w5w4w2w1w3

22. w1w5w3w4w2 46. w2w5w3w4w1 70. w3w5w2w4w1 94. w4w5w2w3w1 118. w5w4w2w3w1

23. w1w5w4w2w3 47. w2w5w4w1w3 71. w3w5w4w1w2 95. w4w5w3w1w2 119. w5w4w3w1w2

24. w1w5w4w3w2 48. w2w5w4w3w1 72. w3w5w4w2w1 96. w4w5w3w2w1 120. w5w4w3w2w1

Source: Author(s) own elaboration
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time, it helps to improve the single COPRAS MCDM’s performance, efficacy, and stability. Based on 
this fundamental analysis, it is possible to conclude that robot 1 is the best choice among these three 
alternatives. However, robot 3 also seems to be a formidable competitor to robot 1. Any one of them 
can be a good choice, but robot 1 is slightly ahead of robot 3. Robot 2 should be discarded because 
it is the worst option according to all of the approaches. Aside from these, the main contribution of 
this work and the important concluding remarks might be summarized as follows.

•	 The newly designed hybrid MCDM system allows for the efficient and appropriate selection of 
the optimal robot choice for an enterprise.

Figure 14. Weight replacement sensitivity analysis graphs
Source: Author(s) own elaboration; Created using MS Word 2010
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•	 The created hybrid model demonstrates to be an extremely effective decision-making tool, as its 
final ranking matches all of the other applied methods. It also eventually improves the performance 
of the solo COPRAS tool by demonstrating its stability and consistency, consequently, the main 
purpose of this investigation is achieved.

•	 The previously recommended rankings were unstable as noted in the results and discussion 
section. As a result, the new evaluation is more rigorous, and robust and provides a legitimate 
ranking order, vastly upgrading the previous literature.

•	 The hybrid MCDM method suggested here is a simple, cohesive, and systematic technique that 
can be simply integrated into any decision-making analysis.

•	 Implementing fuzzy ideas into decision-making problems can produce more reliable results 
while also reducing the vagueness of solo AHP tools.

•	 This study may provide some recommendations to the factories and manufacturing firms thinking 
about adopting an automated material handling system in their business. Decision-makers can 
utilize this hybrid technique to select a certain type of material handling equipment accurately.

Furthermore, the alternative ranking proposed by the COPRAS-ARAS hybrid method is entirely 
genuine and yields accurate results. During validation, its ranking matches with the majority of other 
MCDM methods, and it also demonstrates good stability and consistency during weight variation. 
Hence, this hybrid model can solve different decision-making problems in various fields. As a result, 
this newly developed hybrid model can make significant contributions to the field of decision-making.

Limitations
The ongoing research is based on approximation and quantitative calculations. This study does not 
ensure that no other robots in the market are superior to the recommended one, rather, it merely 
shows that Robot 1 is the best option among the three options studied for this analysis. This article 
simply covers one general notion and attempts to dispel any doubts that may occur while selecting 
a suitable robot. Furthermore, criteria weights have a very high significance in MCDM concern, 
and any alterations in weightage value can alter the performance outcomes. As a result, additional 
weight estimation algorithms such as CRITIC, SMART, BWM, SWARA, entropy, and others may 
produce different weight values, thus altering the final ranks. Assume subjective approaches such as 
SMART, BWM, AHP, SWARA, etc. are applied. In that instance, subjective tools may result in biased 
conclusions because the relative significance matrix is entirely based on DM’s judgmental views. 
As a result, some discrepancies and prejudice are linked with the weights generated by subjective 
approaches. Furthermore, the following robot selection problem is based on a small set of fundamental 
criteria and alternatives. Nonetheless, additional robots and factors may be examined, causing the 
findings to deviate (Goswami & Behera, 2021b).

Managerial Implications
Robot selection using MCDM empowers managers to make well-informed decisions, improve 
operational efficiency, mitigate risks, align stakeholders, and strategically position their organizations 
for success in the evolving landscape of automation and robotics. This article can have several 
managerial implications. Here are some key implications to consider.

•	 Enhanced Decision-Making Process: MCDM techniques provide a structured framework for 
evaluating and comparing different robots based on multiple criteria. Managers can use these 
methods to systematically assess and rank robots based on their performance, features, costs, 
and other relevant factors. This helps in making informed decisions and reduces the risk of 
subjective biases.

•	 Improved Efficiency and Effectiveness: MCDM allows managers to consider multiple criteria 
simultaneously, enabling them to identify robots that best align with their specific operational 
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requirements. By selecting the most suitable robot, organizations can enhance their operational 
efficiency, productivity, and overall performance. This leads to cost savings, increased throughput, 
and improved quality of outputs.

•	 Optimal Resource Allocation: Robot selection often involves assessing various factors such 
as cost, maintenance requirements, reliability, and compatibility with existing infrastructure. 
MCDM methods enable managers to prioritize these criteria based on their relative importance 
and make decisions accordingly. This helps in allocating resources effectively and efficiently, 
optimizing investments in robotics technology.

•	 Risk Mitigation: Introducing robots into operations carries certain risks, such as technical 
failures, compatibility issues, and disruptions to existing workflows. MCDM provides a systematic 
approach to assess and mitigate these risks by considering criteria related to robot reliability, 
compatibility, and adaptability. Managers can select robots with robust performance records and 
those that align well with their existing systems, reducing the likelihood of potential disruptions.

•	 Stakeholder Alignment: Involving multiple stakeholders, such as operations managers, 
technicians, and end-users, is crucial when selecting robots. MCDM facilitates stakeholder 
engagement by providing a transparent and objective evaluation process. By considering the 
preferences and requirements of various stakeholders, managers can foster alignment and 
consensus, increasing the likelihood of successful robot implementation.

•	 Long-Term Strategic Planning: Robot selection using MCDM methods encourages managers 
to think strategically and consider long-term implications. They can evaluate robots based on 
their technological capabilities, scalability, and potential for future upgrades. This enables 
organizations to invest in robots that not only meet their immediate needs but also align with 
their long-term growth strategies and technological advancements.

•	 Competitive Advantage: The careful selection of robots through MCDM can contribute to 
gaining a competitive edge. By choosing the most suitable robots, organizations can differentiate 
themselves by offering superior products or services, reducing costs, and improving customer 
satisfaction. This strategic advantage can help organizations stay ahead in the market and adapt 
to changing customer demands.

Future Scope
The succeeding arguments can be examined in the context of future research.

•	 Other tools for estimating weight, both subjectively and objectively like CRITIC, SWARA, 
MEREC, SMART, BWM, etc., can be used to analyze the criteria weights, and discrepancies in 
alternative rankings can be recorded.

•	 To improve the precision and reliability of the selection process, more robot alternatives and 
criteria might be evaluated.

•	 The same robot assortment problem can be analyzed using a variety of prospective MCDM 
methods e.g., CoCoSo, EDAS, PROMETHEE, PIV, CODAS, etc., and the resulting rankings 
can be compared to the existing results.

•	 Other promising and efficient MCDM methods can be combined to create some new robust 
hybrid models.

•	 Finally, this newly designed COPRAS-ARAS hybrid model can be used in a wide range of 
applications. It may be the financial sector, manufacturing industries, transportation, health, and 
education, to broaden and investigate the capabilities of this innovative hybrid model.
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