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ABSTRACT

In this paper, a key node mining algorithm of entropy-CRITIC combined weighted GRA-TOPSIS 
method is proposed, which is based on the network structure features. First, the method obtained 
multi-dimensional data of students’ identities, seating relationships, social relationships, and so on to 
build a database. Then, the seating similarity among students was used to construct the in-class social 
networks and analyze the structural characteristics of them. Finally, the CRITIC and entropy weight 
method was introduced for obtaining the combined weight values and the GRA-TOPSIS multi-decision 
fusion algorithm to mine the key student nodes that have negative impact. The experiments showed that 
the algorithm of this paper can evaluate students objectively based on their classroom social networks, 
providing technical support for process-oriented comprehensive quality education evaluation.
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INTROdUCTION

The smart classroom provides more diversified, massive, real-time, and valuable data for educational 
big data in the smart teaching scene, as well as data for research of the in-class social network composed 
of students seats, interactive behaviors, etc. (Chen & Zhang, 2020). Studies related to in-class social 
networks are trying to go beyond the traditional methods of obtaining data through questionnaires 
and psychometric tests, which are not easily accessible and have subjective biases (Grunspan et al., 
2014; Li & Stone, 2018; Van Rijsewijk et al., 2018). Wei and Yang (2012) used OpenCV and a skin 
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color detector to identify students in the classroom, used linear regression to identify student seats, 
and constructed an in-class social network based on the co-occurrence of the corresponding students 
sitting in neighboring seats. Pei et al. (2018) modeled an in-class social network by capturing student 
photos before class using the AdaBoost algorithm for face detection and recognition, and then utilized 
the center projection principle and linear fitting algorithms to locate the position of students in the 
classroom. Beardsley et al. (2019) designed an online classroom orchestration tool, ClassMood App, 
to collect student data. However, the networks built by existing construction methods are mostly 
static networks, which cannot reflect changes in multiple areas, such as students’ seats and status, 
for intelligent teaching process-based education evaluation.

Based on the in-class social network, many studies have found correlations between the network 
features and student academic achievement, motivation, and student friendships. Pulgar (2021) 
noted that students with high network centrality not only have higher levels of class prestige and 
popularity, but also have many social connections with classmates and thus enjoy the advantages of 
information and collaboration. Buchenroth-Martin et al. (2017) studied the interactions of students 
in an evolutionary biology class and used social network analysis to find that factors such as student 
network centrality, gender, and attendance influenced student classroom performance.

However, most of the existing network analyses are static and holistic, and there is no study of 
individual students’ processes. At the same time, students are highly susceptible to the influence of 
peers around them in the classroom, and this subtle influence is often reflected in students’ classroom 
learning status and academic performance (Raca & Dillenbourg, 2013; Raca et al., 2013). Therefore, 
the researchers analyze the structural characteristics of the classroom network and discover the key 
nodes. The results of such analysis will reshape the student learning process in terms of feedback, 
personalization, and probabilistic prediction, which will allow educators to understand the student 
learning process, improve the effectiveness of classroom instruction, and predict student learning trends.

Based on the above analyses, this paper proposes a dynamic construction method of an in-class 
social network for real classroom environment scenarios. The authors adopt the Entropy-CRITIC 
combined weighted GRA-TOPSIS (EC-GTOPSIS) algorithm based on the combination of network 
characteristics to rank the student nodes of the in-class social network, and comprehensively analyze 
the relationship and evolution trend of ranking results with student friend nomination, negative friend 
nomination, and academic performance. The authors then mine student nodes with negative impacts. 
These are defined as student nodes with poor learning effects for the students themselves in the 
classroom setting, and a strong negative impact on those around them. Thus, this paper provides a novel 
perspective for teachers to evaluate students’ learning processes. It offers the following contributions:

1.  Construction of an in-class social network using the dynamics of student classroom seating 
similarity to better reveal what underlies student seating relationships and reflect subjective 
trends in student seating choices.

2.  Proposal of a multi-decision fusion algorithm for negative node mining within the in-class social 
network, which can not only select nodes with a negative impact in classroom, but also reflect 
the future trends of students.

The remaining parts of this paper are organized as follows: Section 2 introduces the related 
research work. Section 3 describes the construction method of the in-class social network. Section 
4 describes the key node mining algorithm of the in-class social network based on EC-GTOPSIS. 
Section 5 shows and analyzes the experimental results. Section 6 concludes the paper and looks ahead.

BACKGROUNd

Recent studies using graph theory and social network analysis (SNA) methods to analyze classroom 
data provide the ideas and theoretical basis for our research. Putnik et al. (2016) used student interaction 



International Journal of Information and Communication Technology Education
Volume 19 • Issue 1

3

data to construct networks, correlated them with students’ academic performance using SNA, and 
found a strong positive correlation between students’ centrality and academic performance. Sui and 
Hua (2015), using the SNA method, found that male students in the experimental class had problems 
with disharmony, looseness, and contradiction, and their close relationships and average grades were 
much poorer than those of female students. Zwolak et al. (2017) used network analysis to find that the 
higher the network centrality of students, the higher the probability they will persist in that field of study. 
Williams et al. (2019) found that students’ future academic performance could be predicted by their 
social network centrality, and the predictions were higher than the GPA prediction methods often used.

In addition, a few studies have examined interactions among students in classroom settings. 
Gomes (2019) found that students’ absenteeism not only has a negative impact on themselves but 
may also pull down the performance of others in the same educational setting. Using an intelligent 
seat selection and check-in system coupled with electronic campus cards, Huang et al. (2022), with 
the help of spatial statistical analysis, found a strong correlation between social relationships and 
seating distribution, with well-connected students tending to sit together, and students with close 
social relationships tending to sit in groups. Gao et al. (2022) used wearable physiological sensors 
to research how individual and group classroom seating affects students’ engagement and found that 
students who sit together tend to have a high degree of physiological synchrony and are more likely 
to have similar learning engagement. Minami and Ohura (2020) used the distance between students’ 
seats as a measure of their friendship relationships and found student groups. Dokuka et al. (2015) 
used a stochastic actor-oriented model (SAOM) to analyze students’ social networks and found that 
students tend to choose classmates with similar academic achievements as their friends.

In summary, SNA has been widely used in the field of educational big data, but most of the studies are 
holistic. There remains a large gap in the research on individual student learning mining and its influence. 
Therefore, the researchers have constructed an in-class social network based on students’ class seating 
relationships and have used a multi-decision fusion approach to tap into the significant negative nodes within 
the intra-class social network. This allows teachers to keep abreast of social relationships among students, to 
keep track of students with potentially high negative impact, and to provide timely interventions for individual 
students, thus optimizing the learning climate of the class and improving overall academic performance.

dyNAMIC CONSTRUCTION OF SOCIAL NETWORKS IN THE CLASSROOM

In this chapter, the researchers introduce the dataset used and describe the student identification, seat 
positioning, student head-up and head-down status identification methods, and the mothed of constructing 
in-class social network algorithms based on the dynamics of student classroom seating similarity.

Introduction of the database
The dataset used in this paper comes from the smart classroom data of a course taken by freshman 
students at a university. The dataset contains video image data of the thirty-two lessons, basic 
information data of a total of sixty-eight students in the class (gender, dormitory number, and class 
committee tenure), student academic achievement data, a list of students’ friend nominations, and a list 
of students’ nominations of those individuals that have a negative impact on them (friend nominations 
and negative friend nominations). The student nomination data were collected by a questionnaire 
administered to students at the end of the course. In addition, to validate the key student nodes mined 
in this paper, the first-year GPAs of the students were obtained after six months.

data Acquisition
In this paper, MTCNN (Zhang et al., 2020) and FaceNet network (Schroff et al., 2015) are used to 
detect and recognize student faces in the classroom. The input smart classroom image data is first 
sampled at time T intervals, and face detection is performed on the sampled frame images using 
MTCNN. Then, the normalized single-face region images are inputted into the face-recognition model 
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to extract single-face image features. Finally, the recognition results of face images are obtained by 
a pre-trained classifier to determine student identity information.

Aiming at the student seat recognition in the classroom video, the researchers used a regression 
model to recognize the students’ seats. Firstly, the researchers marked the row of students in the video 
image of the first class, and then constructed a regression model to identify the rows of students in the 
subsequent class. In addition, the researchers used HeadPoseEstimate (Guo et al., 2020) to identify 
the students’ head posture in the video of the smart classroom, used a sampling interval of 5s to 
identify students’ head-up and head-down behaviors, and obtained the student classroom head-up 
rate by calculating the ratio of the number of head-ups to the total number of samples.

To facilitate subsequent experimental analysis, the researchers processed the student friend 
nomination list and negative friend nomination list in the dataset, respectively, and calculated the 
number of times each student was nominated as a friend or negative friend by other students, obtaining 
the number of student friend nominations and negative friend nominations.

dynamic Construction Method of In-Class Social Network
While students’ single-classroom seating relationships are contingent and random, this paper wants 
to respond to the interconnectedness among students from their classroom seating relationships. 
Therefore, the researchers innovatively used multiple classroom seating relationship networks to 
characterize student relationships, defined student classroom seating similarities, and used them as 
edge weights to construct in-class social networks.

Firstly, this paper constructs multiple undirected and unweighted classroom seating networks, as 
shown in Figure 1, based on the physical distance relationships of student seats in a classroom. Then, 
by drawing on the idea of Jaccard similarity, the in-class social network is constructed by defining 
student classroom seating similarities as the edge weights of student nodes.

The edge weights of two students’ in-class social networks (similarity of student seating) W
v vi j,

 
are calculated as follows:
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Figure 1. Schematic diagram of classroom seating network
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sitting in the first row and fifth column and student ID 219 sitting in the first row and sixth column 
shown in Figure 1 is calculated as:
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EC-GTOPSIS Node Mining Algorithm
In this paper, the researchers propose an EC-GTOPSIS algorithm, which integrates the information 
content, conflict, and difference of evaluation indicators through the combination weighting method, 
and uses a fusion of gray correlation analysis and TOPSIS to improve the problem of homogeneity in 
the traditional node importance assessment (Çelikbilek & Tüysüz, 2020; Hafezalkotob et al., 2019; 
Kuo et al., 2008; Xie et al., 2018; Yang et al., 2018). Firstly, the researchers obtain the structural 
characteristics of the in-class social network (weighted degree centrality, closeness centrality, authority 
centrality, and eigenvector centrality). Secondly, the researchers combine the entropy weight method 
and CRITIC objective valuation method to calculate the weight coefficient of structural characteristics. 
Finally, the researchers use the EC-GTOPSIS multi-decision fusion method to rank the student nodes, 
and to mine the key nodes in classroom.

Feature Selection and Normalization
First, the node characteristics within the in-class social network are selected and normalized, and the 
node weighted degree centrality, closeness centrality, authority centrality, and eigenvector centrality in 
the network are selected to form a feature vector matrix V . The weighted degree centrality visually 
reflects the connectivity of student nodes with other nodes, the closeness centrality reflects the geometric 
centrality of student nodes, the authority centrality indicates the connectivity value of student nodes, 
and the eigenvector centrality shows the importance of the potential value of student nodes:
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where n  is the number of student nodes, m  is the number of centralities, and v f
i j( )  is the value of 

the centrality index f j( )  of the student node v
i
.

Then, each centrality indicator is normalized to calculate X x
ij

= 

 , and since all the indicators 

selected here are positive, the formula is shown in Eq. (3):
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Combined Weight Method
This paper combines the entropy weighting method and the CRITIC objective weighting method 
to form the combined weight. The entropy weighting method is based on information entropy 
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theory and calculates the weight of each centrality by calculating its information entropy—the 
smaller the information entropy, the greater the contribution of the centrality to the decision-
making of the plan, and correspondingly, the higher its weight. The CRITIC objective weighting 
method is a method of assigning objective values based on data volatility. The idea is to compare 
the strength and conflict of the centrality. The strength of comparison is represented by the 
standard deviation of the centrality. The larger the standard deviation of the centrality, the 
greater the volatility, and the higher the weight of the assignment. The conflict is represented 
by the correlation coefficient of the centrality. The larger the correlation coefficient between 
the centrality indicators, the smaller the conflict, and the lower the weight of the assignment. 
The specific steps are as follows.

CRITIC Objective Weight Calculation Method

First, the standard deviation S
j
 and conflict coefficient R

j
 are calculated from the normative centrality 

index X  from Eq. (3):
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 is the Pearson correlation coefficient between the centralities.
Secondly, the variability and conflict of centrality indicators are fused to determine the objective 

weight w
j
c  of CRITIC:
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Information Entropy Weight Calculation Method

First, the information entropy E
j

 is calculated according to the normalized node centrality obtained 
by Eq. (3), and then the objective weights w

j
e  are determined by the information entropy:
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Combination Weight Determination Method
The combination weight will be based on the ideal point theory (Qiangqiang et al., 2015); that is, the 
vector objective function will be combined with the deviation from the ideal point of the problem 
being considered, combining the entropy weights and the CRITIC objective weights.

The objective weights w w w w we e e e
n
e= ( )1 2 3

, , , ,�  determined based on entropy weighted method, 

and the objective weights w w w w wc c c c
n
c= ( )1 2 3

, , , ,�  calculated by CRITIC are combined to obtain 

the total weight value w w w w w
n1 1 2 3

= ( ), , , ,� . Meanwhile, the ideal value of each centrality indicator 
is defined as x j n

j
* , , , ,=( )1 2 3� , and the ideal solution of the system is defined as 

A w x w x w x w x
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The smaller the distance dis
i
, the closer the resulting figure is to the ideal solution. To minimize 

the deviation of the weight values of the combined assignment, the following nonlinear programming 
model can be constructed:
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According to the Lagrange multiplier method, the optimization problem above can be solved, 
and the result is:
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Therefore, the combination weight coefficient can be calculated by Eq. (12):
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Student Node Ranking
In this paper, the researchers use the GTOPSIS method to rank the nodes of in-class social networks. 
GTOPSIS measures the relevance between nodes mainly based on the similarity or dissimilarity of 
the development trends among their features and improves the relative proximity of the solution to 
the optimal solution in the traditional TOPSIS method (Zhang et al., 2021). The specific operational 
steps are as follows:

1.  Based on the centrality matrix X  obtained from Eq. (3) and the combined weight matrix W  
obtained from Eq. (12), construct the weighted normalization matrix Z z
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= 
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2.  Determine the positive and negative ideal solutions of each centrality index Z Z+ −, :
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3.  Calculate the distance of node centrality from the ideal solution d+  and the distance from the 
negative ideal solution d− :
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4.  Calculate the gray correlation coefficient matrix between the centrality of each node and the 
positive and negative ideal solutions G+ , G− :
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where ρ ∈ 

0 1,  is the resolution coefficient, and the larger its value, the greater the resolution factor. 

The experiment shows that the correlation coefficient reflects the maximum amount of node 
information when its value is 0.5.

5.  Calculate the gray correlation coefficients between the centrality of each node and the positive 
and negative ideal solutions g

i
+ , g

i
− :
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6.  Calculate the relative proximity Q
i
+ , Q

i
− , after quantizing the distance calculated by Eq. (16) 

and the gray correlation calculated by Eq. (20):
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where α β+ = 1 , 0 1≤ ≤α , 0 1≤ ≤β , α  and β  are used to balance the scoring weights of the 
scenarios by gray correlation analysis and TOPSIS, and it is experimentally proven that the best 
results are achieved when their values are taken as 0.5. Q

i
+  and Q

i
−  reflect the distance between each 

node and the ideal value from both positive and negative sides.
Then, the relative proximity of nodes N

i
 is calculated by Eq. (24):

N
Q
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i

i i

=
+

+

+ −
 (24)

Finally, the nodes are sorted in descending order according to the value of the N
i
. The larger 

the relative proximity, the closer the node is to the core of the network.

EXPERIMENTAL RESULTS ANd ANALySIS

Experimental Process
The researchers propose an EC-GTOPSIS negative nodes mining algorithm based on the node 
characteristics of in-class social networks. First, the researchers construct in-class social networks 
based on the student classroom seating similarities. Then, the structural characteristics of the in-class 
social network are analyzed, and the student nodes are sorted and grouped by EC-GTOPSIS multi-
decision fusion method. The negative nodes are mined by combining information such as academic 
performance, friendships, and negative friend nominations of student nodes. Finally, the effectiveness 
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of the algorithm proposed in this paper is verified by SIR Epidemic experiments and comparative 
validation experiments. The overall block diagram is shown in Figure 2.

Construction and Characteristic Analysis of In-Class Social Network
Since in-class social networks are constructed based on the similarity of students’ seating relationships 
at different times in the same space, classroom video data from three to eight classes are selected for 
in-class social network construction in this paper, and part of the display is shown in Figure 3. As 
the number of classes used increases, the connection density between nodes increases significantly, 
and the number of triads in the network becomes greater.

At the same time, the researchers analyze the structural characteristics of the in-class social 
network, and the main structural characteristics are shown in Table 1. As the number of classes used 
in the network increases, its average network degree, average weighted degree, and network density 
gradually increase, while the network diameter gradually decreases. The node degree reflects the 
connection of nodes to other nodes within the in-class social network, and the larger the value, the 
more connections exist between nodes and other nodes in the network. The weighted degree further 
reflects how closely the node is connected to other nodes based on the node degree. The clustering 
coefficient is a quantitative representation of the probability that the neighboring student nodes are 
neighbors of each other, and to some extent it reflects the sparsity of students’ seats in class. The 
smaller the average clustering coefficient, the more sparsely students are seated in the classroom. 
Network density reflects the degree of completion of the in-class social network, and the higher the 
value, the stronger the overall network connectivity.

Mining and Analysis of Key Student Nodes
In this section, in-class social networks are constructed using eight classes, and the EC-GTOPSIS 
multi-decision algorithm is used to rank and group student nodes. Then, the researchers analyze the 
relations between the node ranking results of this class social network and academic performance, 
friend nomination, classroom interaction behavior, and negative friend nomination; and then mine 
the key nodes with negative effects. Finally, the researchers verify the findings of this chapter by 
conducting an experimental comparison using students’ first-year GPAs and class committee tenures.

Based on the network, node centrality calculations are performed, and several representative centralities 
are extracted (weighted degree centrality, closeness centrality, authority centrality, and eigenvector centrality). 
The EC-GTOPSIS algorithm is then used to rank the nodes. The results are partially shown in Table 2.

Figure 2. Block diagram of EC-GTOPSIS
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Figure 3. Schematic diagram of in-class social network with different number of classes

Table 1. Structural characteristics of in-class social networks constituted by different numbers of classes

Number of Classes Used 3 4 5 6 7 8

Network average degree 14.303 17.394 19.559 22.676 25.412 27.735

Average weighted degree 7.155 9.395 11.076 13.634 16.405 18.931

Network density 0.22 0.268 0.292 0.338 0.379 0.414

Average cluster coefficient 0.584 0.569 0.572 0.573 0.593 0.599

Network diameter 5 3 3 3 3 3

Minimum degree 2 3 5 5 5 5
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Finally, the student nodes in the network are divided into seven groups according to the ranking 
results, and then the differences in academic performance, number of friend nominations, classroom 
interaction behaviors, and number of negative friend nominations are calculated and compared for 
each group, as shown in Table 3 and Figure 4.

The experiment concludes the following points: (i) The two lowest-ranked groups are the 
invisible negative nodes, who are on the edge of the networks and at risk of failing their final 
exams. They have extremely low academic performance and classroom interaction counts, and 
extremely high negative friend nominations. Their low number of classroom interactions meant 
that they did not significantly disturb others in class, yet their negative friend nominations far 
exceeded those of the other groups, suggesting that students with negative effects in the classroom 
environment are not only students with explicit disturbance behaviors, but also students who are 
likely to be on the edge of the classroom, less motivated in class, or even exhibit serious truancy 
and absence behaviors. (ii) The second group are the key nodes that are in the center of the network 
and have a strong dominant negative influence in the classroom. Their academic performance is 

Table 2. Nodes ranking results

ID Weighted 
Degree

Closeness 
Centrality

Authority 
Centrality

Eigenvector 
Centrality

Relative 
Proximity

Ranking 
Results

0134 29.317 0.710 0.183 0.966 0.806 1

0121 30.493 0.710 0.174 0.919 0.806 2

0130 27.299 0.732 0.189 1.000 0.801 3

0132 31.696 0.683 0.173 0.913 0.794 4

0128 33.124 0.670 0.168 0.886 0.785 5

…… …… …… …… …… …… ……

0102 8.303 0.542 0.050 0.263 0.313 64

0227 10.185 0.522 0.036 0.197 0.299 65

0228 6.141 0.542 0.040 0.217 0.281 66

0129 6.518 0.493 0.035 0.185 0.244 67

0218 1.894 0.477 0.015 0.079 0.164 68

Table 3. Average basic situation in seven groups

Sort Academic 
Performance

Classroom 
Interactions

Number 
of Friend 

Nominations

Classroom 
Head-Up Rate

Number of 
Negative Friend 

Nominations

Top 1–10 74.896 19.9 5.5 0.552 0.2

Top 11–20 70.194 21.1 5.7 0.372 0.4

Top 21–30 71.359 18 4.7 0.485 0.3

Top 31–40 73.334 18.4 4.5 0.492 0.2

Top 41–50 70.466 8 4.6 0.514 0.1

Top 51–59 58.984 4.778 3 0.395 0.444

Top 60–68 63.631 4.778 3.889 0.355 0.556

Note. The values in the table are the average of each group of students.
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average, and they have a lower head-up rate in class but the highest friend nominations, indicating 
that this group of students have better social resources. A comparison with the second group 
and the sixth group reveals that they are similar in terms of classroom head-up rate and the 
number of negative friend nominations, but the second group have a higher network centrality 
than the sixth group of students, while performing better academically. (iii) The first group are 
the positive nodes that were very active with driving the classroom atmosphere. They have the 
highest academic performance scores, the highest classroom head-up rate, low negative friend 
nominations and high friend nominations, and are the top students who have excellent grades, 
are focused in class, and have many friends.

To further verify the above findings, the researchers conducted an experiment using the first-year 
GPAs and class committee tenures of all students in the class, as shown in Figure 5. The experiment 
shows that the overall trend of first-year GPA is decreasing and consistent with the academic 
performance of the course, and the first group still performs the best throughout the academic year, 
while the last two groups perform the worst. The last group, despite barely passing the course test, 
performed the worst on exams throughout the school year; and up to one-third of them served on class 
committees, which likely contributed to their levels of friend nominations. Nonetheless, there are 
students who felt they had a negative influence during the class (as many as 67% of the class members 
in the last group were nominated as negative friends). At the same time, the class committee tenure 
strongly verifies the conclusion that the second group are the nodes of dominant negative influence 
in the classroom. Up to 50% of the students in this group serve on the class committee, and they have 
far more friend nominations than others, which indicates that they have far more social resources and 
influence than the other groups of students.

Figure 4. Seven groups of academic performance, classroom interaction, classroom student head-up rate, average number of 
negative friend nominations, and number of friend nominations line chart
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SIR Epidemic Model Experiments and Comparative Validation Experiments
To further verify the effectiveness of the proposed EC-GTOPSIS algorithm in identifying key nodes 
within in-class social networks, this section uses the SIR epidemic model to simulate the spread 
of information within in-class social networks and compares it with the Entropy-weighted GRA-
TOPSIS (E-GTOPSIS), the CRITIC-weighted GRA-TOPSIS (C-GTOPSIS), and the Entropy-CRITIC 
combined weighted TOPSIS (EC-TOPSIS) algorithms. In the experiment, the top-ranked node in the 
algorithm was taken as the initial source of propagation, with a network infection probability of 0.2, 
an immunity probability of 0.05, and a weighted network propagation threshold of 1.2. The average 
propagation rate of infected nodes in the network was calculated over 1000 propagation experiments 
and compared with the number of iterations, as shown in Figure 6.

As shown in the Figure 6, although the EC-GTOPSIS algorithm was very close to the EC-TOPSIS 
algorithm in the initial stage of the propagation, and could not exceed the EC-TOPSIS algorithm 
in the middle stage of the propagation, the algorithm had the highest propagation rate for its sorted 
nodes when the propagation reached stability.

As the main purpose of constructing the in-class social network is to mine students with negative 
impacts, it is difficult to demonstrate the superiority of the algorithm solely from the perspective 
of the infectious disease simulation experiment. Therefore, the academic performance and the first-
year GPAs of the student nodes ranked by the four algorithms will be compared to demonstrate 
the effectiveness of the proposed algorithm in identifying key negative nodes. The results of the 
experimental comparison are shown in Table 4.

As seen in Table 4, the four multi-criteria fusion algorithms can effectively rank and group 
student nodes, and there is a significant downward trend in the academic performance of student nodes 
between groups. Comparing the academic performance and first-year GPAs of Group 1 with Groups 

Figure 5. Line chart of GAPs and class assignments in the first year among seven groups
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6 and 7 students, it is found that although the seventh group of students ranked by the EC-GTOPSIS 
algorithm performed slightly worse in the final exam scores than those ranked by the C-GTOPSIS 
algorithm, as a whole, students grouped by the EC-GTOPSIS algorithm had the greatest difference 
in final exam scores between the first and last two groups, which could better distinguish student 
nodes. Moreover, students in Groups 6 and 7 under the EC-GTOPSIS algorithm not only performed 
much worse than other student nodes in academic performance for the course, but also had the worst 
overall exam performance in their first year.

CONCLUSION

In this paper, to improve the traditional single empirical student evaluation model and transform it 
into a process-based evaluation grounded in an in-class social network, the researchers propose a 
dynamic in-class social network construction method established out of student seating similarity, 
and an EC-GTOPTSIS multi-decision fusion method created from the combined weights of network 

Figure 6. Comparison chart of propagation rates of SIR infectious disease models

Table 4. Results of comparison of the academic performance and first-year GPA of four algorithms

Group
Academic Performance First-Year GPA

EC-GTOPSIS C-GTOPSIS E-GTOPSIS EC-TOPSIS EC-GTOPSIS C-GTOPSIS E-GTOPSIS EC-TOPSIS

1 74.90 67.83 71.02 74.90 78.08 79.07 76.44 78.08

2 70.19 77.04 74.07 70.19 76.99 78.06 78.63 76.99

3 71.36 65.61 72.70 69.62 75.60 70.50 75.09 75.72

4 72.14 64.37 71.39 74.08 78.04 72.28 78.14 77.91

5 70.47 70.63 67.92 71.84 79.32 76.26 77.86 78.17

6 58.98 74.24 61.98 59.65 72.05 80.08 72.61 73.44

7 63.63 62.86 63.47 63.63 68.71 72.71 69.77 68.71

Note. Groups 1 to 7 represent the serial number of the seven groups of students classified by the corresponding algorithm.
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characteristics to mine the key nodes within the in-class social network. It is proved through 
experiments that the method can mine the student nodes with positive influence, explicit negative 
influence, and invisible negative influence within the in-class social network. In the future, it will be 
further combined with student behavior data such as students’ postures and expressions, and teachers’ 
knowledge points that allow mining of their inner connections, thus not only further improving the 
student evaluation system, but also providing ideas for the improvement of teachers’ evaluation systems.
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