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ABSTRACT

Economic load dispatch is to operate thermal generators economically with fulfilling load demand. 
This economic dispatch problem becomes highly complex and non-linear after considering various 
operating constraints like valve-point loading effect, generator operating constraints, and prohibited 
operating zone. The recently developed physics law-based artificial electric field algorithm has been 
applied to solve highly complex and non-linear ELD problems. The exploration and exploitation 
strategy of the algorithm helps to avoid local optimum value, and to get global optimum value in 
less computation time. The AEFA method has been applied to 10, 13, 15, 40, and large 110 thermal 
generators to validate the effectiveness of the proposed algorithm. The results obtained by the proposed 
algorithm have been compared with other recently developed algorithms.

Keywords
Artificial Electric Field Algorithm, Economic Load Dispatch, Prohibited zone, Soft Computing, Valve point 
loading effect

1. INTRODUCTION

In recent scenarios, the electrical energy market has become liberal and highly competitive because 
of increasing load demand. Economic load dispatch (ELD)s beneficial in the operation and planning 
of power system management (Soni et al., 2020). ELD is used to maintain the economy of the 
power system by reducing production costs and increasing reliability by maximizing the capability 
of the thermal unit (Soni & Pandya, 2018). The main aim of ELD is to predict variables for sharing 
all load to make the system economical by considering equal and unequal constraints. In practical 
ELD problems, other constraints should consider, like valve point effect, ramp rate, and prohibited 
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operating zones(POZ). This ELD problem is initially solved by some classical methods like quadratic 
programming (Shah et al., 2019), Dynamic Programming, Linear Programming, gradient method, 
Lagrangian relaxation, and Hopfield framework (Dieu & Schegner, 2012). The main issue with this 
method is that they are susceptible to starting points and mostly converge and diverge at a local 
optimum solution. The solution to the ELD problem by DP technique makes large dimensions that 
require more computational efforts. These methods are not feasible due to nonlinear characteristics like 
ramp rate limits, discontinue POZ, and non-smooth cost function. Therefore, classical calculus-based 
methods are not used. To overcome these drawbacks, robust and reliable techniques are developed. 
Hence, some new optimization techniques like artificial intelligence (AI) were found to overcome the 
disadvantages of classical techniques. Hopfield neural network (HNN) is an example of an AI-based 
algorithm used to solve non-convex and non-differentiable ELD optimization problems. However, 
they require a large number of iterations to reach global optima. Hence, it takes more time to reach 
the solution (Bhattacharjee & Patel, 2020).

In recent times, A new population based modern intelligent heuristic and stochastic optimization 
methods is proposed like Backtracking search algorithm (BSA), search group optimization (SGO), 
hybrid version particle swarm optimization with mutation (HPSO) (Jiang et al., 2014), Bacterial forge 
optimization (BFO), artificial bee colony (ABC), Evolutionary programming (EP) (Bhattacharjee et 
al., 2022), lightning flash algorithm (LFA), Kinetic gas molecule optimization (KGMO) (Basu, 2016), 
Improved genetic algorithm with mutation (IGA MU), sine cosine algorithm (SCA) (Verma et al., 1 
C.E.), A full mixed-integer linear programming (FMILP), A modified symbiotic organisms search 
(MSOS), Differential evaluation with multi population (MPDE), swarm base optimization (SBO) 
(Article et al., 2018), Civilized swarm optimization (CSO) (Narang et al., 2017), Modified cuckoo 
search algorithm (MCSA), Emended salp swarm algorithm (ESSA) (Bhattacharjee & Patel, 2020), 
Ant Direction Hybrid Differential Evolution (ADHDE) (Priyadarshi et al., 2020), Jaya Algorithm 
With Self-Adaptive Multi-Population (Jaya SML) (Yu et al., 2019), evolutionary approach for 
particle swarm optimization (EPSO) (Kamboj et al., 2016), conglomerated ion-motion and crisscross 
search optimizer (C-MIMO-CSOO), Water cycle algorithm (WCA) (Elhameed & El-Fergany, 
2017), Two-phase mixed integer programming (TPMIP) (Wu et al., 2016), Rooted tree optimization 
(RTO), Exchange market algorithm (EMA) (Ghorbani & Babaei, 2016), Phasor particle swarm 
optimization (PPSO) (Gholamghasemi et al., 2019), Density-Enhanced Multi-objective Evolutionary 
Approach (DMOA) (Ji et al., 2021), Particle swarm inspired optimization (PARPSO), Improved 
PSOG (IODPSO-G), Improved PSOL (IODPSO-L) (Dou et al., 2020), chaotic bat algorithm (CBA) 
(Adarsh et al., 2016), Crow search algorithm (CSA), immune algorithm (IA EDP), Turbulent Flow of 
Water-based Optimization (TFWO) (Ghasemi et al., 2020), oppositional invasive weed optimization 
(OIWO), Ameliorated grey wolf optimization (AGWO). A teaching-learning-based optimization 
(TLBO) was proposed to solve the heat and power dispatch problem. It divides the search agents into 
the teaching and learning phases. Thus, the main drawback of the TLBO method is that it requires 
more memory space and consumes more time. Modified TLBO named quasi oppositional TLBO 
(QOTLBO) is proposed in (YANG et al., 2014). The OHSA algorithm used opposite numbers to 
improve the convergence rate. Gandomi and Alavi have proposed a krill herd algorithm (KHA) in 
(Kaur et al., 2021), which was also successfully applied to solve the ELD problems. Oppositional 
real coded chemical reaction optimization (ORCCRO) has a special ability to solve the non-linear 
and non-quadratic equations with a smoother transition. Oppositional KHA was proposed to solve 
the ELD problem in small, medium, and large power systems.

However, these heuristic methods have poor results for different sets of problems. Some of these 
algorithms have corrupted local and global search at the final stage of optimization. Some methods 
have good capability to find global search, but they have less capability to find local search. Thus a 
strong optimization technique is needed to overcome these disadvantages.

This paper uses a new algorithm called the Artificial electric field algorithm (AEFA) (Anita 
& Yadav, 2019). The solution does not stick at the local optimum point in complex optimization 
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problems and gives diverse solutions for the complex ELD problem. The idea of the AEFA algorithm 
is based on Coulomb’s law of electrostatic force and Newton’s law of motion, that the charged 
particle in an isolated system of charges exerts an electrostatic force (attraction or repulsion) on each 
other charged particles and moves in space such that the electrostatic potential energy of the system 
becomes minimum. The proposed AEFA method is applied to various test systems with ramp rate 
limits, valve point effect, and POZ to prove this algorithm’s usefulness. The results are compared 
with other existing methods in this paper.

The organization of the presented paper is as follows: Section 2 gives information on problem 
formulation. Section 3 gives a brief introduction to the AEFA algorithm. Section 4 gives information 
on AEFA applied to ELD. Section 5 gives simulations and results. And Section 6 gives the conclusion 
and validation of this algorithm, followed by references.

2. PROBLEM FORMULATION

The ELD is important in the optimization of power system management. The objective function and 
constraint are taken into consideration as follows.

2.1 Objective Function
The ELD is used to minimize total fuel cost with equal and unequal constraints. The full cost function 
in ELD is as follows.

Total fuelcost min F i
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There is a ripple effect of entering steam at the valve in the turbine. Thus, the valve point effect 
makes the system more practical and flexible. It makes objective cost function as a summation of 
quadratic and sinusoidal functions.
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2.2 Constraints
The active power generation ion in each unit should be less than or equal to the maximum permitted 
active power and greater than or equal to the minimum allowed active power. It is expressed as

P P P
i i i
min max£ £ i=1,2,3,..,N	 (4)
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The total generated power must fulfill total load demand and transmission losses; this is known 
as equality or real power balance constraint of ELD problem,

i

N

i D Loss
P P P

=
∑ = +
1

i=1,2,3,…,N	 (5)

Transmission loss is calculated using Kron’s loss formula or B-matrix loss coefficients formula 
which is expressed as,
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Due to presence of vibration in shift bearing and faults in the boiler or feed pump, The units have 
POZ in input-output characteristics. For safe operation of the generator, each unit must not operate 
in prohibited operating zones, expressed mathematically as:
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The operating range of each unit is limited by ramp rate limit by considering the unit’s operation 
repeatedly between specific operational zone. The change in power generation of each unit should 
be within a limit, the upper limit is known as the upper ramp rate limit (URL), and the lower limit is 
known as the down ramp rate limit (DRRi). It is expressed mathematically as

max () min ()P P
i

min

i i

maxi i i i0 0( )( ) 	 (8)

Calculation of slack generator is one of the essential parts of ELD problem formulations. If N 
is the total number of generators, then initially calculate (N–1) the number of power generations 
randomly based on equations (1) to (6). The remaining generator (say Nth) is called the slack generator, 
and its power generation is given by

P P P P
N D Loss i

N

i
= + −

=

−

∑ 1

1
	 (9)

Transmission loss Ploss calculated from (6) are modified and given as
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3. ARTIFICIAL ELECTRIC FIELD ALGORITHM (AEFA)

AEFA is based on the coulomb’s law of electrostatic force. It says that an electrostatic force (repulsion 
or attraction) between two charged particles is directly proportional to the product of their charges 
and inversely proportional to the square of the distance between them. Search agents are viewed as 
charged particles, and their costs calculate their strength in this algorithm. These particles move in 
space due to electrostatic force between them.

Hence the position of charge gives the solution to the problem. A charged particle with the 
greatest charge attracts other lower charges by attraction force and moving in space.

A system of N-charged particles in d-dimensional search space is considered. The position of 
the ith particle in the d-dimensional search space be Xi= (x x x

i i i
d1 2, ,....., ) for i =1,2,3,….., N, where 

x
i
d  is the position of the ith particle in dth dimension. The following equation gives the position of the 

ith particle at any time t: 
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For the best fitness value, overall particle Pbest=Xbest. At any time t, the force acting between the 
charges i and j are:
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Where R t
ij ( )  is the Euclidian distance between particles i and j and is given by the following equation:
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K(t) is a coulomb’s constant which is a function of the number of maximum iteration, and 
calculated as follows:
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Where K0 and α are initial value and parameter respectively. The current iteration and the maximum 
number of iterations are called iteration and max iteration. If N is a total number of charges, the total 
electric force on the ith charge by all other charges at any time t is:

F t rand F t
i
d

j j i

N

ij
d( ) = ( )
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() (15),	

Where rand() is a random number between 0 and1. The electric field of the ith particle at any time t is:
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The acceleration of charge is given by newton’s second law of motion (F=ma) and using the 
equation (16):
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The velocity and the position of the particle are updated as follows:
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The flow chart of AEFA algorithm is shown in Fig. 1.

4. AEFA ALGORITHM IN ELD PROBLEM

The steps for the AEFA algorithm for solving ELD problems are discussed below.

Step1:Restrict the search space. Put a lower and upper bound limit on each decision variable.
Step2: Initialization of various parameters. The initial value of position and velocity of each particle 

should be selected such that each candidate solution is feasible.

X=Xi=[X1, X2, X3,……, XPopsize]	

For the ELD problem, search agent matrix as active power generation.

[Pij] = [Pi1, Pi2, Pi3, ….., Pim]=Xi	

Step3: The transmission loss PLi is calculated by the B coefficient matrix for each Pi.
Step4:Calculate the fitness value of each Pi.
Step5: Store non-dominated solution as archive data.
Step6:Memory of each particle should be initialized where the local optimum solution Pbest is stored 

by equation (11).
Step7:Increase the number of generations.
Step8:Calculate and store the local best, local worst, the force between particles, and acceleration of 

particles by equation (12) to (14). Find the global best and global worst values from fuzzified regions.
Step9: The global best particle has the largest charge value and attracts the other particle to its 

direction using equation (15).
Step10:Update the velocity of each particle by equation (18) to get a feasible solution.
Step11:Check all constraints to ensure a feasible solution.
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Step12:If stopping criteria are satisfied, then go to step 13. Otherwise, go to step7.
Step13:Output as the feasible solution to the ELD problem.

5. SIMULATIONS AND RESULTS

In this paper, to prove the effectiveness of the recently developed AEFA algorithm, it is used to solve 
nonlinear and complex ELD problems considering transmission losses, POZ, and ramp rate limit. 
MATLAB-2017b software used to simulate ELD problem and validated in 1.7GHz intel core,4 GB 
RAM personal computer. The AEFA algorithm is applied to five different test systems with varying 
levels of complexity to verify its efficiency and feasibility, as detailed in Table 1.

5.1 Test Case -1
A test system with ten generating units and a power demand of 2700 MW is analyzed in this case. 
Multi-fuel options and valve point loading effect are both considered. Transmission losses are 
neglected. Required input data are taken from (Arumugam et al., 2019). Obtained minimum fuel cost 
is 623.8812 $/hr which is superior than other existing techniques like BSA (Bhattacharjee, 2018), 
SGO (Bhattacharjee & Patel, 2019), HPSO (Das et al., 2021), IGA_MU (Barisal, 2013). Obtained 
results are much better than existing techniques, as shown in table-3. The output of each generator 
is shown in table 2. Convergence characteristics are shown in figure 2.

Figure 1. Flowchart of AEFA algorithm
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Table 1. Details of Test Systems

Case 1 2 3 4 5

No. of Generator Units 10 13 15 40 110

Input Data (Arumugam et 
al., 2019)

(Alkoffash et 
al., 2021)

(Ghorbani & Babaei, 
2016)

(Alkoffash et 
al., 2021)

(Hassan et 
al., 2021)

Total Demand (MW) 2700 2520 2630 10500 15000

Valve Point Loading Yes No No Yes No

Ramp Rate No No Yes No No

POZ No No Yes No No

Transmission Loss No Yes Yes No No

Multi-Fuel Option Yes No No No No

Table 2. Power output of 10 generator units for test case 1. (Power demand: 2700MW)

Unit Generator Output

Fuel Type AEFA BSA (Bhattacharjee, 2018) SGO (Bhattacharjee & Patel, 2019)

1 2 217.205383 218.5777 217.0407

2 1 212.159802 211.2153 211.8944

3 1 282.556704 279.5619 281.6792

4 3 239.955568 239.5024 238.2056

5 1 279.615562 279.9724 279.8321

6 3 239.929841 241.1174 239.2547

7 1 287.894902 289.7965 290.2798

8 3 239.551340 240.5785 240.2228

9 3 425.014566 426.8873 425.5958

10 1 276.116332 272.7907 275.9942

Fuel Cost($/hr.) 623.8812 623.9016 623.9170

Table 3. Comparison of a result obtained by AEFA and other techniques for test case 1

Method Minimum Fuel 
Cost($/hr.)

Maximum 
Fuel Cost($/hr.)

Average 
Fuel Cost ($/hr.)

Simulation 
Time

Number of hits 
to best solution

AEFA 623.8812 623.8812 623.8812 0.35 50

SGO (Bhattacharjee & 
Patel, 2019)

623.9170 625.5478 623.9170 0.51 49

HPSO(Das et al., 2021) 623.9588 624.2930 624.0816 NA NA

IGA-MU (Barisal, 2013) 624.5178 630.8705 625.8692 NA NA

BSA (Bhattacharjee, 2018) 623.9016 624.0838 623.9757 NA NA
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5.2 Test Case -2
13 generating unis are considered in this test system with multiple constraints. The power demand is 
2520MW. Transmission losses are considered here. Required input data is taken from (Alkoffash et 
al., 2021). The minimum cost and simulation time is obtained at 24512.60 $/hr. And 0.30 seconds, 
respectively. Obtained results are superior to other existing techniques. The number hits to best solution 
is 50. The output of each generator unit is shown in table 4. A comparison of Obtained results is 
shown in Table 5 convergence characteristic is shown in figure 3.

5.3 Test Case 3
In this system total 15 number of generator units are taken with multiple constraints. The POZ, ramp 
rate limit is considered here. Transmission losses are considered. Power demand is 2630MW. Required 
input data is taken from (Ghorbani & Babaei, 2016). Obtained minimum cost and simulation time 
is 32697.2819 $/hr. and 0.59 seconds respectively. Obtained results are superior than other existing 
techniques like ESSA (Alkoffash et al., 2021), Jaya SML (Yu et al., 2019) etc. The number hits to 
best solution is 49 out of 50 trials. Output of each generator unit is show in Table 6. A comparison 
of obtained results is shown in Table 7. Convergence characteristic is shown in figure 4.

5.4 Test Case 4
This system consist 40 generating units with power demand of 10500MW. Valve point loading 
effect is considered here. Transmission losses are ignored. This is non-convex optimization problem. 
Input data is taken from (Alkoffash et al., 2021). Obtained minimum cost is 121412.5355 $/hr and 
number of hits best solution 49 with simulation time 6 seconds. Obtained result is superior than 
existing techniques in terms of fuel cost, simulation time and no hits to best solution. Convergence 

Figure 2. Convergence characteristics for test case 1
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characteristic is shown in figure 5. Obtained results are shown in table 8. Comparison of obtained 
results are in table 9.

5.5 Test Case-5
In this case total 110 generating unit system is considered. Transmission loss is neglected here. 
Required input data are taken from (Hassan et al., 2021). Total Power demand is 15000 MW. 
Obtained results are shown in table 10. Comparison of obtained results are in table 11. Convergence 
characteristic is shown in figure 6.

Table 4. Power output of 13 generator units for test case 1. (Power demand: 2520MW)

Unit Generator Output

AEFA SCA (Bhattacharjee & 
Patel, 2018)

F-MILP (Hamilton et 
al., 2020)

1 628.318383 628.3179 628.318530

2 299.199400 299.1992 299.199300

3 297.446434 297.4468 299.199300

4 159.732553 159.7327 159.733100

5 159.732964 159.7327 159.733100

6 159.732834 159.7328 159.733100

7 159.733055 159.7331 159.733100

8 159.733178 159.7325 159.733100

9 159.732636 159.7328 159.733100

10 77.399699 77.3995 77.399912

11 114.799604 114.7993 113.49589

12 92.399434 92.3997 92.399912

13 92.399553 92.4000 92.399912

Total Power Generate (MW) 2560.35 2559.8000 2560.811356

Total Loss (MW) 40.35 39.8000 40.811358

Fuel Cost($/hr.) 24512.60656 24512.6085 24,515.2258

Table 5. Comparison of result obtained by AEFA and other techniques for test case 2

Method Minimum 
Fuel Cost

Maximum 
Fuel Cost

Average 
Fuel Cost

Simulation 
Time(s)

Number of hits 
to best solution

AEFA 24512.60656 24512.60656 24512.60656 0.30 50

F-MILP (Hamilton et al., 2020) 24,515.2258 NA NA 4.24 NA

MSOS (Secui, 2016) 24,515.2258 24,515.2258 24,515.2258 2.6535 NA

ORCCRO (Bhattacharjee et al., 2014) 24513.91 24513.91 24513.91 0.04 50

MCSA (Chandrasekaran et al., 2014) 24514.8756 24514.8756 24514.8756 12.80 NA

SCA 24512.6085 24512.6085 24512.6085 0.041 50

MPDE (Li et al., 2019) 24514.8756 24514.8756 24514.8756 5 NA
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Figure 3. Convergence characteristics for test case 2

Table 6. Schedule of generation for test case 3 with 15 generator and power demand 2630 MW

Unit Power Output

AEFA ESSA (Alkoffash et al., 2021) Jaya SML (Yu et al., 2019)

1 455.000000 454.9995 454.9999

2 380.000000 379.9996 380.0000

3 130.000000 130.0000 130.0000

4 130.000000 130.0000 130.0000

5 170.000000 170.0000 170.0000

6 460.000000 460.0000 460.0000

7 430.000000 430.0000 430.0000

8 71.429057 70.1478 71.4456

9 58.596432 60.2593 59.3587

10 160.000000 159.9599 160.0000

11 80.000000 79.9996 79.9997

12 80.000000 79.9999 80.0000

13 25.000000 25.0007 25.0000

14 15.000000 15.0000 15.0000

15 15.000000 15.0009 15.0000

Total Power Generated (MW) 2660 2660.8039

Total Loss (MW) 30.3679 30.8039

Fuel Cost ($/hr.) 32697.2819 32701.21 32706.3587
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Table 6. Schedule of generation for test case 3 with 15 generator and power demand 2630 MW

Unit Power Output

AEFA ESSA (Alkoffash et al., 2021) Jaya SML (Yu et al., 2019)

1 455.000000 454.9995 454.9999

2 380.000000 379.9996 380.0000

3 130.000000 130.0000 130.0000

4 130.000000 130.0000 130.0000

5 170.000000 170.0000 170.0000

6 460.000000 460.0000 460.0000

7 430.000000 430.0000 430.0000

8 71.429057 70.1478 71.4456

9 58.596432 60.2593 59.3587

10 160.000000 159.9599 160.0000

11 80.000000 79.9996 79.9997

12 80.000000 79.9999 80.0000

13 25.000000 25.0007 25.0000

14 15.000000 15.0000 15.0000

15 15.000000 15.0009 15.0000

Total Power Generated (MW) 2660 2660.8039

Total Loss (MW) 30.3679 30.8039

Fuel Cost ($/hr.) 32697.2819 32701.21 32706.3587

Table 7. Comparison of result obtained by AEFA and other techniques for test case 3

Method Minimum 
Fuel Cost

Maximum 
Fuel Cost

Average 
Fuel Cost

Simulation 
Time(s)

Number of hits 
to best solution 
(50 trials)

AEFA 32697.2819 32697.7845 32697.2918 0.59 49

SGO (Bhattacharjee & Patel, 2019) 32697.2819 32698.1574 32697.3344 0.75 47

BSA (Bhattacharjee, 2018) 32704.4504 32704.5816 32704.4721 NA NA

ESSA (Alkoffash et al., 2021) 32701.21 32701.22 32701.22 NA NA

SSA (Bhattacharjee & Patel, 2020) 32702.43 32911.32 32785.45 NA NA

C-MIMO CSOO (Zakian & Kaveh, 2018) 32701.21 32701.22 32701.2102 NA NA

Jaya SML (Yu et al., 2019) 32706.3578 32707.2925 32706.6774 5.14 NA

WCA (Elhameed & El-Fergany, 2017) 32704.44 32704.51 32704.50 NA NA

TPMIP (Wu et al., 2016) 33013.98 NA NA NA NA

RTO (Labbi et al., 2016) 32701.81 32715.18 32704.53 NA NA

EMA (Ghorbani & Babaei, 2016) 32704.45 32704.45 32704.45 NA NA

TLBO (Bhattacharjee et al., 2014) 32770.72 33073.88 32819.74 NA NA
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Figure 4. Convergence characteristics for test case 3

Table 8. Schedule of generation for test case 4 with 40 generator and power demand 6000MW

Unit
Power Output

Unit
Power Output

AEFA PPSO (Gholamghasemi 
et al., 2019) AEFA PPSO (Gholamghasemi 

et al., 2019)

1 110.799825 110.7998 22 523.279370 523.2794

2 110.799825 110.7998 23 523.279370 523.2794

3 97.399913 97.3999 24 523.279370 523.2794

4 179.733100 179.7331 25 523.279370 523.2794

5 87.799905 87.7999 26 523.279370 523.2794

6 140.000000 140.0000 27 10.000000 10.0000

7 259.599650 259.5997 28 10.000000 10.0000

8 284.599650 284.5997 29 10.000000 10.0000

9 284.599650 284.5997 30 87.799905 87.7999

10 130.000000 130.0000 31 190.000000 190.0000

11 94.000000 94.0000 32 190.000000 190.0000

12 94.000000 94.0000 33 190.000000 190.0000

13 214.759790 214.7598 34 164.799825 164.7998

14 394.279370 394.2794 35 200.000000 194.3973

15 394.279370 394.2794 36 194.397778 200.0000

16 394.279370 394.2794 37 110.000000 110.000000

17 489.279370 489.2794 38 110.000000 110.000000

18 489.279370 489.2794 39 110.000000 110.000000

19 511.279370 511.2794 40 511.279370 511.2794

20 511.279370 511.2794 Total Power Generated (MW) 400500

21 523.279370 523.2794 Fuel Cost ($/hr.) 121,412.5421
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5.6 Result Summary

In Test Case 1, average and minimum fuel costs are 623.8812 $/hr. and 623.8812 $/hr. respectively 
which is better than other existing techniques like BSA (Bhattacharjee, 2018), SGO (Bhattacharjee 

Table 9. Comparison of result obtained by AEO and other techniques for test case 4

Method Minimum 
Fuel Cost($/
hr.)

Maximum 
Fuel Cost($/
hr.)

Average 
Fuel Cost($/
hr.)

Simulation 
Time 
(sec.)

Number of hits 
to best Solution 
(50 trials)

AEFA 121412.5355 121413.4123 121412.5530 6 49

DMOA (Kushwaha et al., 2018) 121412.5443 NA 121420.8076 66.42 NA

PPSO (Gholamghasemi et al., 2019) 121412.5421 121413.9525 121412.5890 NA NA

MPDE (Li et al., 2019) 121412.5355 121414.6185 121412.6188 NA NA

PARPSO (Azizivahed et al., 2020) 122256.3000 NA 122634.0000 NA NA

IODPSO-G (Hamedi, 2013) 121414.93 121426.42 121416.54 17.75 NA

IODPSO-L (Selvakumar & 
Thanushkodi, 2007)

121420.98 121431.62 121424.62 18.69 NA

CBA (Lu et al., 2010) 121412.5468 121436.1500 121418.9826 NA NA

CSA (Basak et al., 2022) 121425.6100 NA NA NA NA

IA_EDP (Aragón et al., 2015) 121436.9729 121648.4401 121492.7018 NA NA

Figure 5. Convergence characteristics for test case 4
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Table 10. Schedule of generation for test case 5 with 110 generator and power demand 15000MW

Unit Power Output Unit Power Output Unit Power Output

1 2.4000 38 70.0000 75 90.0000

2 2.4000 39 100.0000 76 50.0000

3 2.4000 40 120.0000 77 160.0000

4 2.4000 41 157.1559 78 295.7505

5 2.4000 42 220.0000 79 175.0689

6 4.0000 43 440.0000 80 98.0059

7 4.0000 44 560.0000 81 10.0000

8 4.0000 45 660.0000 82 12.0000

9 4.0000 46 616.2389 83 20.0000

10 64.4000 47 5.4000 84 200.0000

11 62.1600 48 5.4000 85 325.0000

12 36.2885 49 8.4000 86 440.0000

13 56.6371 50 8.4000 87 14.3811

14 25.0000 51 8.4000 88 24.3110

15 25.0000 52 12.0000 89 82.4198

16 25.0000 53 12.0000 90 89.2470

17 155.0000 54 12.0000 91 57.8600

18 155.0000 55 12.0000 92 100.0000

19 155.0000 56 25.2000 93 440.0000

20 155.0000 57 25.2000 94 500.0000

21 68.9000 58 35.0000 95 600.0000

22 68.9000 59 35.0000 96 471.5000

23 68.9000 60 45.0000 97 3.6000

24 350.0000 61 45.0000 98 3.6000

25 400.0000 62 45.0000 99 4.4000

26 400.0000 63 185.0000 100 4.4000

27 500.0000 64 185.0000 101 10.0000

28 500.0000 65 185.0000 102 10.0000

29 200.0000 66 185.0000 103 20.0000

30 100.0000 67 70.0000 104 20.0000

31 10.0000 68 70.0000 105 40.0000

32 20.0000 69 70.0000 106 40.0000

33 80.0000 70 360.0000 107 50.0000

34 250.0000 71 400.0000 108 30.0000

35 360.0000 72 400.0000 109 40.0000

36 400.0000 73 104.9493 110 20.0000

37 40.0000 74 191.4957 Fuel Cost ($/hr.) 197987.7386
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& Patel, 2019), HPSO (Das et al., 2021), and IGA_MU (Chiang, 2005). Simulation time and 
‘number of hits to best solution’ are 0.35 seconds and 50 (out of 50 trials).

In Test Case 2, the average and minimum fuel costs are 24512.60656 $/hr. and 24512.60656 $/hr. 
respectively. Simulation time and ‘number of hits to best solution’ are 0.30 seconds and 50 (out 
of 50 trials).

In Test Case 3, the average and minimum fuel costs are 32697.2918 $/hr. and 32697.2819 $/hr. 
respectively, better than other existing techniques like ESSA (Alkoffash et al., 2021), Jaya 
SML (Yu et al., 2019), etc. The number of hits to the best solution is 49 out of 50 trials with a 
simulation time of 0.59 seconds.

In Test Case 4, the average and minimum fuel costs are 121412.5530 $/hr. and 121412.5355 $/hr. 
The number of hits best solution 49 with a simulation time of 6 seconds.

Table 11. Comparison of result obtained by AEO and other techniques for test case 5

Method Minimum 
Fuel Cost ($/
hr.)

Maximum 
Fuel Cost($/
hr.)

Average 
Fuel Cost 
($/hr.)

Simulation 
Time 
(sec.)

No of hits to 
best Solution 
(50 trials)

AEFA 197987.7386 197987.7386 197987.7386 0.8 50

TFWO (Ghasemi et al., 2020) 197,988.1790 197988.1904 197988.1823 NA NA

OIWO (Pradhan et al., 2017) 197989.14 197989.93 197989.41 NA NA

AGWO (Kamboj et al., 2017) 197988.00 197988.00 197988.00 NA NA

ORCCRO (Bhattacharjee et al., 2014) 198016.29 198016.89 198016.32 0.15 48

Figure 6. Convergence characteristics for test case 5
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In Test Case 5, the average and minimum fuel costs are 197987.7386 $/hr. and 197987.7386 $/hr. 
respectively. Simulation time and ‘number of hits to best solution’ is 0.8 seconds and 50 (out 
of 50 trials).

5.7 Discussion
For obtaining the best result, two things play an important role in any optimization technique. (i) 
Determination of population size (ii) Determination of tuning Parameter. Determination of population 
size can change in population size also affects the performance of the AEFA. The large or small 
value of population size may not give the optimum value. For each population size of 20, 50, 100, 
150, and 200, 50 trials have been run using test system-5. Table 12 shows the performance of the 
BSA for different population sizes. A population size of 50 resulted in achieving global solutions 
more consistently.

5.8 Determination of Tuning Parameter
Tuning of different parameters like, K0 and α is required to search out an optimum solutions using 
AEFA algorithm. For different values of these parameters, minimum fuel cost has been evaluated for 
all Test cases, and table 13 shows the same for Test Case-5. At K0=500 and α=30 minimum value 
has been obtained.

6. CONCLUSION

In this paper, a new and efficient algorithm named AEFA is proposed to solve the ELD problem 
with constraints like valve point loading effect, prohibited operating zone, and multiple fuel and 
ramp rate limits. The five test systems are employed to show the applicability of the AEFA method. 
The advantage of AEFA is that it converges to a stable stage. Numerical results show that the AEFA 

Table 12. Determination of population size for Test Case-5

Population Size No. Hits to Best 
Solution

Simulation 
Time (S)

Min. Fuel Cost 
($/hr)

Max. Fuel Cost 
($/hr)

Avg. Fuel Cost 
($/hr)

20 47 0.6 197990.8963 197996.6398 197991.12

50 50 0.8 197987.7386 197987.7386 197987.73

100 45 1.2 197993.5368 197996.37 197993.82

150 43 1.9 197995.1255 197999.145 197995.60

200 41 2.6 197997.9658 197999.9888 197998.24

Table 13. Determination of tuning parameter for Test Case-5

K0 α

10 20 30 40 50

100 197992.9638 19792.5698 197991.7386 197993.5698 197993.5241

200 197991.8795 197991.8562 197990.8521 197991.7385 197992.5638

300 197991.7412 197990.5896 197989.7884 197990.9856 197991.7896

400 197990.8545 197989.7896 197988.8928 197989.9639 197990.2358

500 197989.4569 197988.8388 197987.7386 197988.8569 197988.9856
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algorithm performs better than other algorithms in terms of robustness, premature convergence, 
and less computational effort. Although the AEFA algorithm is applied to the ELD problem in the 
current study, it seems that AEFA can be used to solve many optimization problems in power system 
operation and planning.
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APPENDIX

Table 14

NomenclatureFT Total Fuel cost

Pi Power generation of ith unit

N total number of generating unit

P Population size

maxiter the maximum number of iteration

αi, βi, γi, δi Fuel coal coefficient for ith generating unit

Pi
min

minimum value of power generation of ith unit

Pi
max

maximum value of power generation of ith unit

PD Total power demand

PLoss Total transmission loss

Bij, Bi0, B00 Loss coefficient of the line between i and j bus

URRi, DRRi Up ramp rate and Down ramp rate limit of ith unit

ni number of prohibited zone in ith unit

Pi0 Previous operating zone of ith unit
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