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ABSTRACT

Downstream demand inference (DDI) emerged in the supply chain theory, allowing an upstream actor 
to infer the demand occurring at his formal downstream actor without need of information sharing. 
Literature showed that simultaneously minimizing the average inventory level and the bullwhip effect 
isn’t possible. In this paper, the authors show that demand inference is not only possible between direct 
supply chain links, but also at any downstream level. The authors propose a bi-objective approach to 
reduce both performance indicators by adopting the genetic algorithm. Simulation results show that 
bullwhip effect can be reduced highly if specific configurations are selected from the Pareto frontier. 
Numerical results show that demand’s time-series structure, lead-times, holding and shortage costs, 
don’t affect the behaviour of the bullwhip effect indicator. Moreover, the sensitivity analysis show 
that the optimization approach is robust when faced to varied initializations. Finally, the authors 
conclude the paper with managerial implications in multi-level supply chains.

Keywords
Bullwhip Effect, Downstream Demand Inference, Genetic Algorithm, Multi-Objective Optimization, Supply 
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1. Introduction

The supply chain management is increasingly including both theoretical methods and practical 
recommendations in order to draw more benefits for all supply chain links (Min et al., 2019). Nowadays, 
a strong tendency to analyze the sustainable performance of supply chains has taken place in the fields 
of research and industry. While it is not always evident to derive continuous supply chain savings, 
the directive line in the supply chain management is often the proposal of adapted strategies and 
techniques that may contribute to supply chain sustainability, such as efficiency-based, innovation-
based, or closed-loop strategies (Khan et al., 2022a).
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While the benefits of information sharing policies and systems’ integration in the supply chain 
field such as supply resilience and sustainability are well-known (Khan et al., 2022b), there is a lack 
of study of how practitioners may achieve higher global performance without complete integration 
and critical information sharing. Indeed, privacy policies are continuously persisting in many 
industries. As it was reported in some papers, financial constraints, lack of information systems’ 
compatibility, lack of trust, unwilling of sharing risks and rewards, and information protection laws in 
different countries, are always leading to sub-optimal solutions which affect the whole supply chain’s 
performance (Cetindamar et al., 2005; Cai et al., 2010). In this context, collaborative forecasting 
is one of the most distinguished organisational tools that allow performance improvements such 
as sustainability improvement (Shoukohyar & Seddigh, 2020). Collaborative forecasting refers to 
the situation where supply chain actors collaborate, either by coordinating forecasting methods or 
sharing forecast information, in order to achieve higher supply chain’s performance. Many authors 
discussed the impacts of collaborative forecasting on different supply chain industries such as the 
renewable energy sector (Nam et al., 2020), the defense sector (Kim et al., 2015) or the food sector 
(Eksoz et al., 2014).

One of the most recent collaborative forecasting strategies is called Downstream Demand Inference 
(DDI). DDI emerged in the supply chain theory in order to better control the forecasting processes in 
decentralized supply chains, where demand information is not shared. It proposes balanced solutions 
for actors who specifically don’t want to dislock their strategic demand information. DDI refers to 
a collaborative forecasting strategy mainly between two supply chain links: an upstream actor and a 
downstream actor receiving the demand of a customer. Some works already provided an initial vision 
on this coordination strategy (Ali and Boylan, 2012; Ali et al., 2017). More specifically, the demand 
inference refers to the mathematical deduction of the customer’s demand arriving at the downstream 
level, based only on the downstream orders’ process arriving at the upstream level. The mathematical 
deduction supposes that the propagation of the demand across the supply chain is unique, which is 
true under some known assumptions. The works of Ali and Boylan (2011; 2012) showed that DDI is 
not possible with Single Exponential Smoothing (SES) or Minimum Mean Squared Error (MMSE) 
forecasting methods. Next, the papers of Ali and Boylan (2011) and Tliche et al. (2019; 2020) showed 
that the adoption of either Simple Moving Average (SMA) or Weighted Moving Average (WMA) 
forecasting methods at the downstream level, insures unique demand propagation at the upstream 
level. This leads to the following conclusion: either with SMA or WMA, for a well-known orders’ 
process at the upstream actor, there exists one unique demand process arriving at the downstream 
actor. Consequently, it is possible for an upstream actor to estimate and reconstruct the demand process 
arriving at his formal downstream actor without need of demand information sharing. This research 
has opened the door to promising new directions on which the authors have aligned.

In the first case, where the downstream actor is adopting the SMA method, DDI strategy proved its 
efficiency to provide savings in upstream average inventory level and bullwhip effect, when compared 
to the No Information Sharing (NIS) strategy, under the assumption of Auto-Regressive demand 
of order 1 (AR(1)) (Ali et al., 2017). In the second case, and in a first attempt of investigation, the 
weighting vector of the WMA method was determined according to the minimization of the upstream 
actor’s average inventory level (Tliche et al., 2020). The non-equal weightings enhanced the local 
performance indicator, i.e., the upstream average inventory level, but negatively affected the bullwhip 
effect, thus deteriorating the global supply chain’s performance indicator.

The purpose of this paper is theoretical in the sense that the authors are investigating a new and 
an uncommon situation. In the knowledge of the authors, there is no literature studying how WMA 
configuration can reduce bullwhip effect in a context of a DDI strategy. The enhancement of demand 
processes’ understanding along the supply chain and the improvement of forecasting accuracy without 
violating the confidentiality of demand data, can smooth out high demand alterations over time, avoid 
supply disruption and ensure a better performance of supply chains’ sustainability as the bullwhip 
effect is affecting the whole supply chain. The best example which highlighted these different aspects 
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of performance when supply chains are decentralised, such as for example the perishable food supply 
chain (Khan & Ponce, 2021), is certainly the recent Covid-19 crisis.

This work is therefore a natural continuation of previous works in the field of collaborative 
forecasting in supply chains, thus building on the introduction of the WMA forecasting method in 
the context of a DDI strategy. The novelties of this research paper are as follows. First, the authors 
show that it isn’t only possible to infer the demand process arriving at his formal downstream actor, 
but it is also possible to infer the demand at any downstream level in a serial multi-level supply 
chain, under some assumptions. Second, as the SMA method is a particular case of the WMA 
method where the ponderations (or weights) allocated to historical observations are all equal, the 
second contribution is the investigation of the WMA method where forecasting ponderations are 
unequal. In order to further mitigate the amplification of the bullwhip effect while keeping upstream 
inventory levels low, a bi-objective orientation was envisaged in order to take into account both key 
performance indicators. The optimization process allows obtaining non-dominated solutions, thus 
forming the Pareto border. Compared to one solution, providing a set of Pareto-solutions is more 
interesting in terms of flexibility and managers’ orientations (Trisna et al., 2016). This motivation 
is justified by the global nature of the bullwhip effect which affects all the supply chain links, when 
compared to a local inventory-oriented mono-objective optimization. Third, the authors modeled the 
relationship between the two studied performance metrics which proved to be complex in view of the 
polynomial’s degree of the most appropriate mathematical model. This model captures the relationship 
in a mathematical form, thus allowing supply chain actors to estimate bullwhip effect improvement 
in function of average inventory level variation. Fourth, the authors investigated the reliability of the 
simulation results obtained from the proposed methodology by examining the robustness according 
to some key supply parameters and algorithm’s initialization. They showed that the presented DDI 
approach is unsensitive to the demand’s time-series structure, to the algorithm’s initialization and 
more important, robust in stressful situations where lead-times, holding and shortage costs may vary. 
The authors finally provided a summary scheme of how this approach can be practically implemented 
by decision-makers in serial multi-level supply chains.

The main objective of this study is to show that the DDI approach hasn’t yet revealed its full 
potential to improve supply chain performance, especially under causal invertible Auto-Regressive 
Moving Average (ARMA(p,q)) demands, where p presents the order of the autoregressive demand and 
q presents the order of the moving average demand (Shumway and Stoffer, 2017). Indeed, the authors 
show in this study that bi-objective optimisation integrated to collaborative forecasting processes can be 
useful in improving some key supply chain performance indicators, even in stressful situations. Table 
1 presents the main contributions of this research paper as well as some of the recent related papers.
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Table 1. Contributions of recent literature

Work Demand model Forecasting 
method

Optimization 
method

Main contributions

This paper Causal invertible 
ARMA(p,q)

WMA Bi-objective 
genetic 
algorithm

- Feasibility of the DDI strategy at any 
downstream level under the assumption 
of causality and invertibility 
- Considerable improvement of bullwhip 
effect when compared to DDI’s literature 
- Modeling the relationship between 
average inventory level variation and 
bullwhip effect 
- Robustness of the approach to demand 
time-series structure, supply parameters, 
and algorithm initialization.

Tliche et al. 
(2020)

Causal invertible 
ARMA(p,q)

WMA Mono-
objective 
Newton 
method

- Integration of the optimization in the 
forecasting process 
- Establishment of the mathematical 
expressions of the mean squared error, 
the average inventory and the bullwhip 
effect with WMA/Newton method under 
ARMA demands 
- Improvement of forecasting mean 
squared error and average inventory 
level when compared to no collaboration 
strategy at the expense of bullwhip effect 
- The performance indicators depend on 
supply and time-series parameters

Tliche et al. 
(2019)

Causal invertible 
ARMA(p,q)

SMA - Generalization of the DDI feasibility to 
causal invertible ARMA demands 
- Establishment of the mathematical 
expressions of the mean squared error, 
the average inventory and the bullwhip 
effect with SMA method under ARMA 
demands 
- The performance indicators depend on 
supply and time-series parameters

Ali et al. (2017) AR(1) SMA - Establishment of the mathematical 
expressions of the mean squared error 
with SMA method under AR(1) demands 
- Mean squared error and inventory 
costs depend on AR(1) time-series 
autoregressive coefficient

Ali and Boylan 
(2012)

ARMA(p,q) SES and SMA - DDI isn’t possible with SES forecasting 
method 
- DDI is feasible with SMA forecasting 
method.

Ali and Boylan 
(2011)

ARMA(p,q) MMSE - Establishment of the DDI feasibility 
principles 
- DDI isn’t possible with MMSE 
forecasting method 
- Information sharing is more valuable in 
terms of inventory than DDI strategy

Table 1 continued on next page
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The rest of the paper is organized as follows. Section 2 is devoted to the literature review and 
research planning. Section 3 presents the supply chain models and the forecasting optimization problem 
formulated for this research. In section 4, the authors provide the adopted optimization methodology 
while the simulation results, the analyses and the managerial implications are provided in section 5. 
Finally in section 6, the authors resume the key features, the merits and the implications, as well as 
the future directions.

2. Literature Review and Research Planning

This section is devoted to the literature review and the plan of the research. The literature review is 
focusing on the bullwhip effect as it presents a persistent harmful effect that continuously affects 
the entire supply chain, in an era where globalization is more and more generalized and where 
sustainability’s issues are more and more discussed.

2.1 Bullwhip Effect: A Persistent Harmful Effect
Bullwhip effect is a phenomenon that has been known for a long time and which persists to this day. 
Lee et al. (1997) illustrated two real-life examples of the bullwhip effect. While examining sales of the 
Pampers product, executives at Procter and Gamble found that sales in retail stores fluctuated, but the 
variability wasn’t excessive. However, while reviewing distributor orders, managers were surprised 
by the high degree of variability. Moreover, when these managers looked at the company’s orders for 
raw materials from their suppliers, they found that the variabilities were even greater. On the face of 

Work Demand model Forecasting 
method

Optimization 
method

Main contributions

Hosoda et al. 
(2008)

AR(1) MMSE - Estimation of the standard deviation 
of predicted errors under information 
sharing strategy 
- Information sharing is more valuable in 
terms of standard deviation of predicted 
errors

Hosoda and 
Disney (2006)

AR(1) MMSE - Establishment of the mathematical 
expressions of the bullwhip effect under 
AR(1) demand 
- Orders received by the upstream actor 
contains information about demand 
received by the downstream actor under 
AR(1) demands

Gilbert (2005) ARMA(p,q) MMSE - Establishment of the bullwhip effect 
under AR(1) model 
- Establishment of the ARIMA inventory 
models

Zhang (2004) ARMA(p,q) MMSE - Orders received by the upstream actor 
contains information about demand 
received by the downstream actor under 
ARMA demands 
- Establishment of the ARMA-in-ARMA 
principle

Table 1 continued
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it, the variabilities are meaningless. While customers, babies in this case, were consuming diapers at 
a steady pace, the demand’s variabilities in the supply chain were amplified as they moved up within 
the supply chain. Similarly, when Hewlett-Packard managers examined sales of one of their printers 
at a major retailer, they found that there were, as expected, some fluctuations over time. When these 
managers reviewed the reseller’s orders, they observed much greater oscillations. Another more 
obvious example of this phenomenon is illustrated by the famous “beer game” (Coppini et al., 2010). 
In the game, actors play the roles of customers, retailers, manufacturers and suppliers of a certain 
beer’s brand. Because of the lack of communication, actors must take decisions based only on orders 
from the next downstream actor. The ordering shapes shared a common and recurring phenomenon. 
The variability in demand of an upstream actor is always greater than that of the downstream actor, 
a simple but powerful illustration of the bullwhip effect. This amplified demand variability, or 
uncertainty, is generally attributed to the irrational decision making of the actors (Ellram, 2010; 
Kumar et al., 2013). The bullwhip effect is then presented by the upstream distortion of the demand 
information flows all along the supply chain. This distortion was commonly represented by the ratio 
of the upstream demand’s variability to the downstream demand’s variability (Michna et al., 2020).

A very large number of researchers studied this phenomenon and provided different solutions to 
mitigate this harmful effect (Chang et al., 2018; Keshari et al., 2018; Bayraktar et al., 2020; Nguyen 
et al., 2021). Most of the studies involve quantitative analyses with time-series models, simulations 
and empirical studies, develop structural equations for different scenarios, and use linear or non-linear 
optimization methods for problem solving. Bullwhip effect generally require high correction costs 
that can be mitigated through better involvement and collaboration between partners (Bhattacharya 
and Bandyopadhyay, 2011). For example, de Almeida et al. (2015) identified a list of the main 
approaches to mitigate the bullwhip effect. These are collaborative approaches such as information 
sharing policies, improved forecasting methods, replenishment policies, and reduced delivery time. 
The authors stressed the importance of trust, transparency of information, credibility, flexibility and 
knowledge sharing among actors.

While time-series models have been widely introduced in the supply chain field, and more 
specifically to investigate information sharing benefits (Tai et al., 2019; Wesonga et al., 2014), 
the bullwhip effect still persists because of many organisational and behavioral factors (Wu et al., 
2021; Yang et al., 2021; Verma et al., 2022). Multi-objective optimisation presents one of the most 
appropriate solutions that can be considered. It often concerns multiple design objectives under 
complex, linear or nonlinear constraints. Different objectives often conflict each other, sometimes there 
are no truly optimal solutions, and compromises are often necessary. In addition to this complexity, 
a design problem is subject to various design constraints, limited by the design codes or standards, 
the material properties, and the choice of available resources and costs (Jafarian et al., 2020). Even 
for mono-objective problems, the overall optimization isn’t easy to achieve, if the design functions 
are highly non-linear.

In operations management, heuristic and metaheuristic methods are very powerful to handle 
this type of optimization (Wang et al., 2011; Yeh and Chuang, 2011; Yang, 2022). One of the 
most effective and popular algorithms in computer science and operations research, is the Genetic 
Algorithm (GA). Many researchers in the supply chain field employed the GA for the resolution of 
different problems (Diabat and Deskoores, 2016; Jiang et al., 2016; Hiassat et al., 2017; Nakhjirkan 
et al., 2019). GA refers to a metaheuristic inspired by the process of natural selection that belongs to 
the larger class of Evolutionary Algorithms (EAs). GAs are commonly used to generate high-quality 
solutions to multi-objective optimization and research problems by relying on bio-inspired operators 
such as mutation, crossover and selection. These operators are presented in more details in section 4.

2.2 Research Planning
As this research specifically concerns the DDI strategy in supply chains, the authors briefly resume the 
last main findings of this approach. DDI is a strategy that allows an upstream actor to mathematically 
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infer the demand arriving at his formal downstream actor. Ali et al. (2017) showed that DDI strategy 
with SMA method allows improvements of Mean Squared Error (MSE) and inventory costs under 
AR(1) demand model when compared to the NIS strategy. Then, Tliche et al. (2019) generalized 
these results to situations of ARMA(p,q) demands, by incorporating the bullwhip effect, in addition 
to the two first performance indicators. Next, Tliche et al. (2020) introduced the WMA method in 
the context of the DDI strategy. They showed that the determination of the WMA weights through an 
inventory-oriented Newton’s mono-objective optimization allows considerable improvement of the 
upstream average inventory level at the expense of the bullwhip effect, when compared to SMA method. 
Building on these findings, the authors of this paper found it a promising avenue for improvement 
which directly affects the sustainability dimension as the bullwhip effect is a long-lasting effect that 
affects the whole supply chain from the retailer to the raw material supplier. The main research question 
is then: Is it possible to improve bullwhip effect without deteriorating upstream average inventory, 
in a context of a DDI strategy with WMA forecasting method? Based on this research question, 
some underlying issues arise. Is it possible to infer the demand arriving at any downstream level? If 
it is possible, then how to do it? Which method can easily be adopted? What are the characteristics 
when compared to the last reported DDI results? How to test quickly the resilience of the approach 
and the robustness of the method before real-life implementation or industry validation? What are 
the implications of the approach and what are the limitations? In order to answer these issues, we 
planned the following framework presented in Figure 1.

Figure 1. Research framework
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3. Supply Chain Model and Bi-Objective Forecasting Problem

In this section, the authors first recall the basic two-level supply chain derived from the literature. 
Then, they generalize the approach to the case of multi-level supply chain showing that demand’s 
inferability isn’t restricted to the direct downstream link. Finally, the authors formalize the forecasting 
optimization problem.

3.1 Two-Level Supply Chain Model
The authors first consider a two-level supply chain where an upstream actor receives orders from a 
downstream actor. The downstream actor’s order is placed after the receipt of a final customer’s 
demand, and after checking his current inventory level. The replenishment policy is thus assumed to 
follow a periodic system and both actors are assumed to adopt an Order-Up-To inventory policy that 
minimizes the total costs over infinite time horizon (Caldentey et al., 2022). Let D

t
 be the demand 

quantity of the customer over the period t  and let Y
t

 be the orders quantity of the downstream actor 
at the end of time period t . Once the orders are received, the upstream actor prepares and ships the 
required quantity after the lead-time period L . Consequently, the downstream actor receives the 
quantity Y

t
 at time period t L+ +1 . The unit inventory holding and shortage costs are variable and 

denoted respectively by h  and s .
Let D

t
 be a causal invertible ARMA p q,( )  demand process at the downstream actor (Shumway 

and Stoffer, 2017). This process is expressed at period t  by equation (1) as follows:

D c D
t

j

p

j t j t
j

q

j t j
= + + +

=
−

=
−∑ ∑

1 1

φ ξ θ ξ 	 (1)

where:

•	 c ³ 0  is the unconditional mean of the demand process.
•	 f

j
j p, ,...,∈ { }1  are the autoregressive coefficients of the demand process.

•	 q
j
j q, ,...,∈ { }1  are the moving average coefficients of the demand process.

•	 ξ σξt
N t→ ( ) ∈ +0 2, ,   are the errors terms of the demand process, independently and identically 

distributed according to the normal distribution.

Assuming the decentralized criteria of the two-level supply chain, the demand at the downstream 
actor is unknown to the upstream actor as he holds only orders’ historical information. In such context, 
DDI strategy allows the upstream actor to infer the customer’s demand without having to go through 
formal information sharing. It was already shown that if the downstream actor uses the WMA method 
to forecast the customer’s demand, the orders process at the upstream actor would also follow an 
ARMA p q,( )  process with some differences (Tliche et al., 2020). Let first recall this statement.

At the downstream level, the WMA forecasting method affects non-equal weights to the most 
recent N  demand observations. At period t +1 , the forecast is expressed by equation (2) as follows:

f x D
t

i

N

i t i+
=

+ −= ∑1
1

1
	 (2)
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where x
i
 is the weight associated to the observed demand occurring at time t i+ −1 , and verifying 

the set of constraints:

C
x

x i N
i

N

i

i

( ) =

≥ ∀ ∈ …{ }










=
∑:

, ,
1

1

0 1
	

Let Y
t

 be the orders process arriving at the upstream actor at period t . This process is expressed 
by equation (3) as follows:

Y c Y
t

j

p

j t j t
j

q

j t j
= + + +

=
−

=
−∑ ∑

1 1

φ ξ θ ξ  	 (3)

where:

•	 c ³ 0  is the unconditional mean of the orders process.
•	 f

j
j p, ,...,∈ { }1  are the autoregressive coefficients of the orders process.

•	 q
j
j q, ,...,∈ { }1  are the moving average coefficients of the orders process.

•	 ξ
t N

i

N

i i
N L x x x x Lx→ + + −( )












+ +







=

−

+∑0 2 12
1
2 2

1

1

1

2

1
, 





















∈ +σξ

2 ,t   are the errors terms of the 

orders process, independently and identically distributed according to the normal distribution.

Thus, the upstream propagation of the demand along the supply chain keeps the same 
autoregressive and moving average coefficients f

j
 and q

j
. The difference lies on the residual structure 

of the process. Indeed, the orders’ error terms x
t
 are a linear function of the demand’s error terms, 

expressed by x x x x
t

i

N

i t i t i t
L x= −( )











+

=
− + −∑

1
1

. Moreover, the variance of the error term is amplified 

by a strictly positive real expressed by:

b = + + −( )











+ +

=

−

+∑L x x x x Lx
N

i

N

i i
2

1
2 2

1

1

1

2

1
2 1 	

Considering such transformations, the propagation is always unique. The upstream actor is 
consequently able to infer the demand arriving at the downstream level without need of information 
sharing mechanisms. The downstream actor is then no longer invited to share his demand information 
and the issue of disclosing information is over.
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3.2 Multi-Level Supply Chain Model
Let consider a serial multi-level supply chain composed of n  actors where WMA forecasting method 
is adopted by all links, as shown in Figure 2.

The generalized mathematical model in this sub-section is a natural inductive deduction from 
the two-level supply chain model, as it can follows a serial two-by-two reasoning.

3.2.1 Proposition: Level-Independent Inferability
If the demand of a final customer is:

D Y c D
t t

j

p

j t j t
j

q

j t j
= = + + +

=
−

=
−∑ ∑0

1 1
,

φ ξ θ ξ 	

with ξ σξt
N→ ( )0 2, .

Then:

Orders of Actor 1: Y c Y
t

j

p

j t j t
j

q

j t j1
1

1 1
1

1, , , ,
= + + +

=
−

=
−∑ ∑φ ξ θ ξ   with ξ β σξ1

20
,

,
t
N→ ( ) 

Orders of Actor 2: Y c Y
t

j

p

j t j t
j

q

j t j2
1

2 2
1

2, , , ,
= + + +

=
−

=
−∑ ∑φ ξ θ ξ   with ξ β σξ2

2 20
,

,
t
N→ ( ) 

Orders of Actor 3: Y c Y
t

j

p

j t j t
j

q

j t j3
1

3 3
1

3, , ,
= + + +

=
−

=
−∑ ∑φ ξ θ ξ   with ξ β σξ3

3 20
,

,
t
N→ ( ) 

 	

Figure 2. Demand propagation in a serial multi-level supply chain
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Orders of Actor n -1 : Y c Y
n t

j

p

j n t j n t
j

q

j n t j−
=

− − −
=

− −= + + +∑ ∑1
1

1 1
1

1, , , ,
φ ξ θ ξ   with ξ β σξn t

nN−
−→ ( )1

1 20
,

,  

Hence, when moving up a level in the supply chain, the error term is a linear function of the 
first downstream error term:

x x x x
t

i

N

i t i t i t
L x= −( )











+

=
− + −∑�

1
1

	

where the variability is amplified by:

b = + + −( )











+ +

=

−

+∑L x x x x Lx
N

i

N

i i
2

1
2 2

1

1

1

2

1
2 1 	

This model implies that the actor n  is able to infer the demand arriving at any downstream level 
j j n, , ,= … −1 1 .

For illustration, if the demand structure at actor 6 is following an ARMA 4 2,( )  model, then the 
demand structure at the actor 3 is following an ARMA 4 2,( )  model with the same autoregressive 
and moving average parameters, but different error’s structure. Let’s note: If the demand arriving at 
actor 6  (or orders of actor 5) can be expressed by:
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,
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N→ ( )  then the demand at actor 3 (or orders of actor 2) is expressed by:
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with ξ β
2

30
,

,
t
N→ ( )− . Moreover, the demand of the final customer arriving at actor 1  is expressed 

by:
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50
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with ξ β
t
N→ ( )−0 5, .

This strong capability of inference in the case of a WMA method, at any level of a serial supply 
chain, first justify the motivation to explore the DDI results when compared to the last reported results 
(Tliche et al., 2020). Since the root cause of the bullwhip effect starts at the orders of the first level, 
the authors will first focus on the first two-level supply chain, and then drive the implications for the 
whole multi-level supply chain.
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Of course, to precisely infer the demand at any downstream level of the supply chain, the upstream 
actor needs to know the values of the data horizon N , the lead-time L  and the weighting vector 
used in the WMA method, i.e., x x

N1
, ,¼ , as b  is function of these parameters. As argued in the 

paper of Ali et al. (2017), the partners of a supply chain would collaborate on sharing supply and 
forecasting parameters rather than sharing critical demand information.

3.3 Bi-Objective Forecasting Problem
If the downstream actor adopts the WMA/Newton method as described in the work of Tliche et al. 
(2020), two important results are to be taken into account: the first one is the induction of additional 
inventory savings at the upstream actor; hence, local savings at the upstream level when compared 
to the situation of a SMA method. However, the second result corresponds to the amplification of 
the bullwhip effect. This orders’ variability involves high uncertainty at the strategic level and may 
cause irreversible losses for all supply chain actors. In fact, optimizing two conflictive objectives at 
the same time isn’t really possible.

Since the amplification of the bullwhip effect is irreversible when minimizing the upstream 
average inventory level in a DDI strategy, the upstream actor is able to mitigate this amplification by 
applying a different optimisation process. This optimization may constitute a preliminary to be 
integrated into the downstream actor’s forecasting process. Under the DDI strategy, while I x

t
DDI ( )  

presents the upstream average inventory level from period t +1  to period t L+ +1 , where 
x x xt

N
= …( )1

, ,  is the weighting vector of the most recent N  observations, the BEA xDDI ( )  metric 
presents bullwhip effect amplification expressed by the ratio of the bullwhip effect generated by 
employing WMA method, related to the bullwhip effect generated by employing SMA method. The 
SMA method is used as a benchmark given that it is the first method, apart from the WMA method, 
to have ensured the capability of inference. That said, the results of the SMA method will serve as a 
benchmark for improvement in terms of bullwhip effect. The authors thus define the Bi-Objective 
Forecasting Problem (BOFP) as follows:

BOFP
upstream average inventory level
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is the mean squared error over the lead-time period L  at weighting configuration x , g
j
 is the auto-

covariance function of the demand process at time period j , K F
s
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standard normal distribution at s
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, and σξ  is the standard deviation of the orders’ error terms 

x
t
.

The two non-linear objective functions at the BOFP formulation show the complexity of the 
matter. While, the first function depends on lead time L  and parameter N , weighting vector x , 
demand time-series structure (c , f

j
, g

j
), standard deviation of orders’ errors σξ( ) , holding and 

shortage costs h s,( ) , the second function depends only on weighting vector x , lead time L  and 
parameter N . The conflictive character of these two functions will illustrate be illustrated based on 
the Pareto borders discussed in Section 5.

We also note here that the prediction capability is enhanced when the average inventory level is 
improved. Indeed, we can see from BOFP formulation that the forecasting MSE can be expressed by:
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which is a strictly positive non-linear function of the average inventory level. Consequently, the 
reduction of the average inventory level corresponds to a substantial reduction in terms of forecasting 
error which enables higher forecasting capabilities.

4. Optimization Methodology

In this section, we address the optimization methodology adopted in this research by presenting the 
well-known multi-objective optimization as well as the adopted evolutionary genetic algorithm and 
its main advantages.

4.1 Multi-Objective Optimisation
Multi-objective optimization is a mathematical branch that allows the optimization (minimization or 
maximization) of multiple objectives under some defined set of constraints (Kadziński et al., 2017). In 
this context, instead of a unique best solution, a set of solutions, called “non-dominated”, are derived 
in order to get a good approximation to the theoretical Pareto front. Evolutionary Computation presents 
one of the most efficient techniques that respond to multi-objective optimization. In this field, a large 
set of algorithms allow the resolution of multi-objective problems. The main advantage of the EAs is 
that they are stochastic and mostly heuristic. Instead of searching the overall space, finding the best 
solutions in each population and using them to improve newer solutions allow these algorithms to 
search only promising regions of the search space. These algorithms are sometimes criticized because 
they don’t lead to similar solutions after several executions, as opposed to deterministic algorithms, 
which provide same solutions after every execution. However, when the dimension of the problem 
is high, deterministic algorithms have a much slower speed of execution and risk stopping on locally 
optimal solutions. The popularity of the EAs made their applications common in many research 
areas. Another advantage of EAs is that they consider optimization problems as black boxes. Users 
of EAs, as opposed to gradient-based optimisation algorithms, don’t require knowing the shape of 
search space or the line to follow in order to reach solutions (Deb, 2011).

4.2 An Evolutionary Bi-Objective Genetic Algorithm
One of the best EAs is the GA which mimics the darwinian theory of “Survival of the fittest” in 
nature (Kumar et al., 2020; Arık et al., 2021). In nature, the most tenacious organisms are more likely 
to survive, and later, pass on their genes to future generations. The first step is to randomly consider 
a starting population as solutions that will be evaluated by a fitness function, hence indicating their 
respective relevancies. Then, an iterative process is performed in order to choose the fittest solutions. 
In each iteration, the best solutions are selected, stochastically combined and mutated, to produce 
the next set of generations. Three main components integrate the algorithm: selection, crossover and 
mutation. The crossover and mutation operators are equipped with several stochastic functions such 
as weighted sum functions and probabilistic distributions. In this study, the Bi-Objective Genetic 
Algorithm (BOGA) is detailed in Figure 3.
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The evaluation function is a two-component vector of the upstream average inventory level and 
the bullwhip effect amplification separating WMA to SMA method.

The selection function selects two individuals from the population as the parents of the 
next generation in terms of their scaled values from the fitness scaling function. Concretely, the 
identification of each parent is done through a stochastic uniform function, laying out a line where 
each parent corresponds to a section of the line of length proportional to its expectation.

The crossover function associates two observations, or two parents, to produce a new observation, 
or a child for the next generation. In this case, the generation is done through a scattered function 
that creates a random binary vector where one presents the case of selecting the gene from the first 
parent and zero presents the case of selecting the gene from the second parent.

The mutation function makes small random changes for individuals in the population, which 
generate genetic diversity and allow the BOGA to seek a larger space. In this case, the constraint-
dependant and more specifically, the adaptive feasible function is used as a mutation function. This 
function randomly generates directions that are adaptive with respect to the last effective or ineffective 
generation. Besides, a step length characterizes each direction so constraints aren’t violated.

The BOGA can quickly reach the region near an optimal Pareto front, when compared to other 
algorithms. Besides, the BOGA is intrinsically parallel. This parallelism makes possible to explore 
broad search spaces without the need to exploit a specific heuristic. Thus as discussed, the BOGA 
doesn’t give a solution but a set of optimal solutions that form the Pareto border. Each solution on 
this border is an acceptable solution for the BOFP, and presents a different configuration of the WMA 
weighting vector, at the downstream level. The resulting Pareto-optimal solutions are much more 
interesting than a single solution since they allow flexibility when considering real data and would 
allow supply managers to exploit their own experiences in choosing the adequate solution. In addition, 
and in this context, this will enable the authors to choose the solutions that match the expectations, 
i.e., reducing as much as possible the bullwhip effect while keeping the upstream inventory levels low.

In the next section, the authors present the simulated demands, the simulations’ results and 
interpretations their interpretations, as well as the managerial implications of these results.

5. Simulation and Analyses

The multi-objective optimization tool was used on Matlab software, and the authors adapted it to match 
the defined BOFP. Concretely, the ‘gamultiobj’ function of the controlled elitist genetic algorithm 
(Deb, 2011) was exploited for all different problems with regard to the simulated ARMA(p,q) 

Figure 3. Adapted Bi-objective genetic algorithm
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models presented in Table 2. It is important to maintain the diversity (based on the function space) 
of the population for convergence to an optimal Pareto front. For the first four subsections, the 
authors fixed the forecasting horizon N = 12  and the lead-time L = 5 . They also fixed the holding 
cost at h = 1  and shortage cost at s = 2 . The authors defined the bi-objective function (fitness 
function) on a separate Matlab file and they tested the algorithm using a fixed population size set 
at 20. The stopping criterion can be defined in many ways. One can use either a given tolerance and/
or a fixed number of iterations. The maximum number of iterations was set at 100, and the function 
tolerance at 10 6- . The computing time was at the scale of some minutes on a Windows 7 professional 
system. For each execution, the BOGA provided 63 solutions which form the Pareto border of each 
simulated problem.

Table 2 continued on next page

Table 2. Simulated ARMA demands

Simulated demand Expression
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5.1 Pareto Optimization
The figures in the appendix show the results of the Pareto optimization of twenty BOFP according 
to their specified simulated demands in Table 2. As discussed, solutions in each figure are defined 
by their evaluation function f I x BEA x

t
DDI DDI= ( ) ( )( ) ;  representing independently the two 

conflictive objective functions of the BOFP. In addition, each solution characterizes a different 
weighting vector setting x  to introduce in the downstream actor forecasting process. With such 
flexibility, managers are often able to choose which solutions best match their expectations.

First of all, it is clear from the figures at the appendix, that most (three quarters) of the pareto 
borders present solutions below the red lines. Set at a threshold value of 1, these red lines present the 
limit of BEADDI  not to be exceeded if the actors in the supply chain want to ensure increased 
performance in terms of bullwhip effect, when compared to SMA method. Indeed, supply chain 
managers should consider solutions whose projections along the y-axis are less or equal to 1, and 
then select a solution from this space to be applied in the downstream forecasting. Second, as the 
authors are focusing on the mitigation of the bullwhip effect while keeping inventory levels low, they 

Simulated demand Expression
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Table 2 continued
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marked solutions with the minimum values of BEADDI  indicator. These solutions are providing the 
highest improvements when compared to solutions provided by the SMA method. These solutions 
marked by 4-pointed stars were called “star-solutions”. Indeed, the authors can consider for example 
the star-solution of problem 1 at the first figure of the appendix and analyze the performance results 
of its setting. The weighting vector identified by the solution x * =  (0.028; 0.072; 0.092; 0.081; 
0.102; 0.084; 0.073; 0.108; 0.121; 0.092; 0.075; 0.066) gives unequal importance to past observations 
and characterizes the evaluation function f I BEA

t
DDI DDI* . ; .= = =( ) 11 6552 0 7186 . Specifically, 

as BEADDI  indicator lies between 0 and 1, the more this value approaches 0, the more the bullwhip 
effect improvement is considerable. This setting corresponds to the maximum reduction of the bullwhip 
effect amplification, among all the solutions forming the Pareto border and corresponding to problem 
1.

5.2 Comparative Study on Mono-Objective and Bi-Objective Optimized Forecasting
For purpose of comparison, the authors present in Table 3 the results of the average inventory levels 
and the bullwhip effect amplifications according to the adopted forecasting methods. For each 
problem characterized by its own demand, while the WMA/Newton results are the ones performed 
by the integration of the mono-objective Newton method into the WMA forecasting (Tliche et al., 
2020), the WMA/BOGA* results correspond to the ones performed by the integration of the BOGA 
into the WMA forecasting, where the weighting vectors are determined by the star-solutions, which 
minimize the bullwhip effect amplifications among the Pareto frontier.

Table 3. Average inventory level and bullwhip effect amplification according to WMA/Newton and WMA/BOGA*

Demand Model
It
DDI BEADDI

WMA/Newton WMA/BOGA* WMA/Newton WMA/BOGA*

1 11.4855 11,6552 8.0351 0.7186

2 14.2098 14,3869 8.8732 1,1233

3 18.2922 18,7491 10.2814 0,9949

4 7.4038 7,5061 7.5548 0,6520

5 7.7376 7,8811 7.8568 0,5944

6 8.0942 8,2293 8.1322 0,7465

7 11.7838 11,9200 8.2624 0,8932

8 12.0835 12,3569 8.5025 0,6714

9 13.4401 13,8743 9.5634 0,8538

10 14.1049 14,9002 10.2073 0,6415

11 14.4536 15,0148 10.5797 0,9764

12 14.8132 15,1154 10.9764 1,6828

Table 3 continued on next page
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The simulation results in Table 3 show that a very slight increase in the average inventory level 
generally corresponds to an important decrease in the bullwhip effect amplification. For example, 
considering the simulated problem 20, the results of WMA/Newton forecasting method reported a 
value of BEADDI  equal to 7.5625, and the corresponding percentage decrease in terms of bullwhip 
effect amplification when adopting the WMA/BOGA* is equal to:

0 6441 7 5625

7 5625
100 91 48

, .

.
. %

−
× ≈ 	

Likewise, the results of WMA/Newton forecasting method reported a value of I
t
DDI = 7 5625.  

and the percentage increase in terms of average inventory level is equal to:

8 8272 8 7030

8 7030
100 1 42

, .

.
. %

−
× ≈ 	

The two performance metrics behave conflictedly such as “return” and “risk”. It is important 
for supply chain managers to understand that there is no perfectly optimized solutions and there 
are always trade-offs to be respected. While it’s interesting to investigate the behaviors of these 
performance metrics, the authors present in Table 4, the percentages gaps separating WMA/Newton 
to WMA/BOGA. By denoting by DDI* the situation where WMA/BOGA* is used and by DDI the 
situation where WMA/Newton is used, the performance gaps are computed in percentages in the 
following manner:

Demand Model
It
DDI BEADDI

WMA/Newton WMA/BOGA* WMA/Newton WMA/BOGA*

13 15.2839 16,0223 11.3773 1,0110

14 10.7887 10,9570 8.0352 0,7555

15 15.6680 16,0364 9.1444 0,9908

16 16.0256 16,1562 9.5308 1,6021

17 16.4813 16,8579 10.2582 1,1342

18 8.3972 8,4774 7.3549 0,6455

19 8.5747 8,6403 7.4530 0,8931

20 8.7030 8,8272 7.5625 0,6441

Table 3 continued
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BEA variation
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and:



 


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DDI
t
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t
DDI
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−
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Table 4. Percentage gaps of average inventory level and bullwhip effect amplification separating WMA/BOGA* to WMA/Newton

Demand Model
It
DDI  variation BEADDI  variation

1 1 47. % -91 05. %

2 1 24. % -87 34. %

3 2 49. % -90 32. %

4 1 38. % -91 36. %

5 1 85. % -92 43. %

6 1 66. % -90 82. %

7 1 15. % -89 18. %

8 2 26. % -92 10. %

9 3 23. % -91 07. %

10 5 63. % -93 71. %

11 3 88. % -90 77. %

12 2 04. % -84 66. %

13 4 83. % -91 11. %

14 1 55. % -90 59. %

15 2 35. % -89 16. %

16 0 81. % -83 19. %

17 2 28. % -88 94. %

Table 4 continued on next page
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Table 4 shows that percentage decrease of bullwhip effect amplification, exceeds far away the 
percentage increase of upstream average inventory levels. Based on the twenty simulated models, the 
average reduction in terms of bullwhip effect amplification is nearly 44 times the increase in upstream 
average inventory levels. This result reflects the strength of BOGA to effectively detect solutions that 
correspond to an increased overall performance of a slightly less efficient local performance. This 
further strengthens the possibility of negotiating a collaboration agreement with a downstream actor 
and proposing joint improvements. In addition, Table 4 suggests a possible relation between the two 
percentages. If a relation is statistically significant, supply chain managers will be able to predict 
the bullwhip effect’s improvement when moving from a mono-objective solution to a bi-objective 
star-solution, which provides a solid basis for estimating supply chain’s savings.

5.3 Relationship Between Local and Global Performance
Performed under SPSS software, Tables 5, 6, and 7 show the resulting output of the linear regression 
of the percentage decrease of the bullwhip effect amplification, on the percentage increase of the 
upstream average inventory level.

Table 5. Linear regression of the percentage decrease of bullwhip effect amplification, on the percentage increase of average 
inventory level

Model R
R2 R

adjusted
2 Standard error of estimation

1 ,446a ,199 ,154 2,34118183157918

Predictors: (Constant), Increase of average inventory level

Demand Model
It
DDI  variation BEADDI  variation

18 0 95. % -91 22. %

19 0 76. % -88 01. %

20 1 42. % -91 48. %

Mean 2 16. % -89 92. %

Table 4 continued

Table 6. Analysis of variance of the percentage decrease of bullwhip effect amplification on the percentage increase of average 
inventory level

Model Sum of Squared Ddl Mean of 
Squared

F Sig.

1 Regression of 
Student

24,474 1 24,474 4,465 ,049

98,660 18 5,481

Total 123,134 19
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Table 6 displays an F value equal to 4,465, which is significant at a p-value < 0.05. In this case, 
the authors conclude the significant relationship between the dependent variable (Y = the percentage 
decrease of the bullwhip effect amplification) to the independent variable (X = percentage increase 
of the average inventory level). In addition, Table 5 shows an absolute correlation coefficient R of 
the order of 0 446. . This suggests a relationship of a moderate intensity. Then, R2  value displays 
0 199, . It can therefore be concluded that the percentage increase of average inventory level may 
explain the variability of the percentage decrease of the bullwhip effect amplification to a height of 
19 9, % . In addition, the overall explanatory power of the model isn’t very important since the R

adjusted
2  

displays a value of 0 154, . The authors concluded that the linear model is statistically significant 
( . ; ; . . )F ddl Sig= = <4 465 19 0 05  but doesn’t fit very well the simulated data. Despite the linear 
regression isn’t well adjusted to the simulated data, both the constant and the explanatory variable 
are significant at the 5% risk threshold when looking at Table 7. Thus, the authors suggested to 
perform some non-linear models to check if another model will be more suitable for the simulation 
results. As shown in Table 8, the authors checked the performance of 9 models and they selected the 
better one in terms of R2.

Table 8 shows that the 6th degree polynomial model outperforms the rest of the tested models. 
Since the value of R2 increases to reach 38,65%, this model explains the highest variability of the 

Table 8. Models of the relationship linking the percentage decrease of the bullwhip effect amplification and the percentage 
increase of average inventory level

Model R-squared

Exponential 19,23%

Linear 19,90%

Logarithmic 22,14%

Power 22,07%

Polynomial 2nd degree 19,59%

3rd degree 27,75%

4th degree 31,73%

5th degree 38,28%

6th degree 38,65%

Table 7. Coefficients of the linear regression of the percentage decrease of bullwhip effect amplification on the percentage 
increase of average inventory level

Model Unstandardized coefficients Standardized 
coefficients

t Sig.

B Standard Error Bêta

1 (Constant) 88,061 1,028 85,691 ,000

Increase of average 
inventory level

,863 ,408 ,446 2,113 ,049

Dependant variable: Decrease of bullwhip effect amplification
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dependent variable Y (the percentage decrease of the bullwhip effect amplification). Figure 4 shows 
the illustration of this model, fitting much better the scatter graph.

The 6th degree polynomial model is expressed by equation (5) as follows:

ˆ , , , ,

, ,

Y X X X X

X X

= − + − +

− + +

0 0543 1 1863 10 222 44 149

99 831 111 11 4

6 5 4 3

2 22 777,
	 (5)

The 6th degree polynomial model is the most adjusted among the tested models. This model 
captures in a polynomial form, about 38,65% of the complex behavior linking the bullwhip effect 
amplification to the upstream average inventory level. The authors assume that increasing the number 
of demand models simulated can improve the explanatory power of the model. However, as shown 
in Figure 5, there is no apparent relation between ARMA’s autoregressive and moving average 
parameters p  and q  on one hand, and the variation of the performance indicators on the other hand. 
It means that the demand’s time-series structure, in this context, doesn’t affect the behavior of the 
supply chain performance, as it was reported in the works of Ali et al. (2017) and Tliche et al. (2020).

Figure 4. Illustration of the 6th degree polynomial model
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5.4 Approach’s Resilience to Supply Chain Parameters
In this subsection, the authors discuss the effect of varying lead-times, shortage and holding costs 
on supply chain performance. These parameters are generally considered as performance indicators 
in supply chains (Pochampally et al. 2009). Let:

D D D D D D
t t t t t t
= + − + − +− − − −10 0 200 0 150 0 120 0 100 0 080

1 2 3 4
, , , , , −− −

− − −

+
+ − + + +

5 6

7 8 1

0 070

0 060 0 051 0 100 0 060

,

, , , ,

D

D D
t

t t t t
x x x

tt t t− − −+ +
2 3 4

0 040 0 010, ,x x
	

be the demand of a final customer arriving at the downstream actor.

Figure 6. Supply chain performance according to different lead-times

Figure 5. Supply chain performance variation according to the demand’s time-series structure
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Figure 6 shows the results of varying lead-time L  in a range of [1; 20] when N = 12 , h = 1  
and s = 2 , on the two performance indicators. As expected, the average inventory level increases 
when the lead-time L  increases. However, the bullwhip effect isn’t affected by the increase of the 
lead-time since the indictor is showing the performance of the star-solution in each instance. This 
finding implies a strong conclusion as it outperforms most of the results reported in the literature. 
Even in times of transport or logistics crisis, the performance in terms of bullwhip effect of the whole 
supply chain can be maintained at a certain level.

Figure 7 shows the results of varying the unitary holding cost h  in a range of [1; 10] when 
L = 5 , N = 12  and s = 2 . Once again as expected, the figure shows that average inventory level 
decreases when unitary holding cost increases. However, in terms of bullwhip effect, the performance 
of the supply chain appears to be insensitive to variations of unitary holding costs.

Figure 8. Supply chain performance according to different shorting costs

Figure 7. Supply chain performance according to different holding costs
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Finally, Figure 8 shows the results of varying the shortage cost s  in a range of [1; 10] when 
L = 5 , N = 12  and h = 1 . While, Figure 8 shows the positive correlation linking the average 
inventory level to unitary shortage cost, the bullwhip effect appears to be unaffected by the different 
shortage costs.

In conclusion, in the case of a DDI strategy where the WMA/BOGA* is implemented at the 
downstream actor’s forecasts, the bullwhip effect occurring at the whole supply chain is unaffected by 
some well-known sources of risk such as increased holding costs, increased shortage costs or increased 
delivery times, while the upstream average inventory level seems dependant of such variations.

5.5 Algorithm’s Robustness to Initialization
In this sub-section, the authors discuss the robustness of the BOGA to varied initializations. Indeed, 
the authors check the effect of varying initial population (affecting the number of generations), on 
the average distance of the Pareto solutions and the spread of the Pareto front (Deb, 2011). First, the 
number of generations indicates the elapsed time. As this indicator increases, the elapsed time is more 
important. Second, the spread measure indicates the change/movement in two fronts. As the spread 
indicator increases, the pareto front changes significantly from one generation to the next. Third, the 
average distance indicates the distribution’ nature of the Pareto-solutions. As the average distance 
measure increases, the solutions on the Pareto front are unevenly distributed.

The authors keep the same numerical example of demand shown in previous sub-section 5.4 and 
investigate the mentioned indicators for 47 simulations. The initial population is performed using a 
uniform random number generator in the range of [0;1]. The values of the population size and the 
range of the initial population are used to create the initial population. The population size is equal 
to 15 × number of variables (in this case 15 ´  12 = 180). The results of these simulations are reported 
in Figure 9.

Figure 9 shows the contour, the main and the residual scatter plots of the interpolant linear surface 
fitting, respectively, where each point in the graphs corresponds to a different initial solution 
represented by a 3D-vector of the resulting number of generations, the average distance and the spread 
indicator after the run of the algorithm. While as expected, the number of generations highly depends 
on the initial solution (in the range of [100; 800]), the results show the insignificant variability in 
terms of both average distance of the Pareto solutions (in the range of [0; 0,0035]) and spread (in the 
range of [0; 0,45]). These results are further confirmed by Figure 10, where the linear regressions of 
the two performance indicators on the number of generations are insignificant in terms of R2  and 
R
adjusted
2 .

Figure 9. Algorithm’s robustness faced to variable initial solution
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In conclusion, the BOGA doesn’t present any particular dependence on initialization when it 
comes to spread indicator or average distance measure. The only indicator that changes depending 
on the initial population is the number of iterations or the elapsed time.

5.6 Managerial Implications for Multi-Level Supply Chains
In terms of managerial implications, all actors of a decentralized multi-level supply chain, i.e., 
operations managers at any supply level, can coordinate their forecasting operations with other levels 
in order to achieve a better overall performance. During the forecasting processes, the n-1 actors (see 
Figure 2) can convince actor 1 to adopt a forecasting method that allows the demand process to be 
inferred. Similar in principle to the SMA method, the WMA method allows such inference. Moreover, 
if all actors can introduce WMA for their forecasts, any upstream actor will be able to infer the demand 
at any downstream level. The essence of this paper is first the parameterization of the weighting vector 
in the WMA method in a manner to achieve the common goal of reducing the bullwhip effect. The 
BOGA makes it possible to obtain a set of undominated solutions according to the two discussed 
objectives. Besides, the DDI approach where WMA/BOGA* is adopted, appears to be robust in terms 
of bullwhip effect, with regard to possible variations in supply and delivery conditions. The practical 
part of drawing the Pareto front and selecting the star-solution will theoretically be up to the actor 2 
if his average inventory function presents a confidential information. This is usually the case when 
actor 1 isn’t in favor of sharing the customer’s demand information.

An engineering or operations manager can benefit from the findings of this study by coordinating 
the forecasting method with his formal upstream actor, his formal downstream actor, or both of them. 
The authors thus distinguish three cases of figure:

•	 If an operations manager coordinates his forecasting approach with his formal downstream actor, 
he will automatically benefit from the improvements of both average inventory level and bullwhip 
effect, which results in forecasting accuracy and economic savings.

•	 If an operations manager coordinates his forecasting approach with his formal upstream actor, 
a contract including the savings’ sharing induced by the adoption of the DDI approach must be 
established between the two partners.

•	 If an operations manager coordinates his forecasting approach with both downstream and upstream 
actors, he will be able to benefit doubly from this coordination by cumulating the advantages 
of the first two cases.

Figure 10. Results of linear regression of the number of generations on the average distance and spread measures
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In addition to the possibility of a local collaboration between two actors of a supply chain, a 
second collaboration approach from a global supply chain view-point can be considered. The specific 
action plans based on the research findings can be highlighted by the development of a savings-sharing 
contract between all supply chain partners at once, which can follow the proposals below:

1. 	 Supply chain actors (actor 2 to actor n in Figure 2) are invited to negotiate and convince actor 1 
to implement WMA method for his demand forecasting. This firstly requires the estimation of 
savings’ allocation for each partner.

2. 	 The actor 1 accepts to adopt the WMA forecasting method. The actor 2 applies the BOGA for his 
BOFP resolution, generates the Pareto border, and selects the weighting solution that minimizes 
the amplification of the bullwhip effect, among non-dominated solutions.

3. 	 The actor 2 transmits the star-solution that will be implemented in the actor 1’s forecasting.
4. 	 The actor 1 adopts the WMA method in his forecasts. He implements the star-solution weights 

in the WMA method configuration. This is potentially a generator of costs and implementation 
time if ever another method was adopted.

5. 	 The actor 2 is able to infer the demand arriving at the downstream level only through orders 
history. If all actors adopt the WMA forecasting method, all the supply chain links are able to 
infer the demand process at any downstream level.

6. 	 The generated savings, taking into account the benefits of the entire supply chain, i.e., from 
actor 2 to actor n, and taking into account all the costs of adopting such a collaboration strategy 
such as the method implementation’s costs at actor 1, have to be shared equally between all the 
supply chain links, unless there is leader-follower links where benefit allocations can be offered 
unevenly.

In Figure 11, the authors present an overview of the schematical process of the collaborative 
WMA/BOGA* in a context of a DDI strategy.

Figure 11. Process of WMA/BOGA* action plan in a DDI strategy
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In the next section, the authors present the conclusion of the paper, highlighting the main objective, 
features and merits, theoretical and practical implications, as well as the limitations and the natural 
guidelines for future research.

6. Conclusion

Supply chain management is a research field that integrate more and more sophistical approaches and 
methods, with the objective of improving global supply chain performance. This work is developed 
in the light of a recent strategy called “DDI”, in order to tackle a well-known issue that persists in 
the supply chain field.

In a multi-level decentralized supply chain, a major data communication problem may be present 
or arise between two actors, resulting from lack of trust, confidentiality policies, or even competition. 
In a context where customer’s demand is confidential to the retailer, the latter may not be able or simply 
don’t want to disclose his demand information. The DDI forecasting strategy allows an upstream actor 
to infer the demand met by the downstream actor, without need of information sharing.

The literature showed that this strategy is able to enhance some key performance indicators 
such as MSE, inventory levels or bullwhip effect. Among other things, for inference to be feasible 
and accurate, this strategy is conditioned by the choice of the forecasting method at the downstream 
level. The SMA and WMA methods allow unique demand propagation all along the supply chain. 
While the SMA method allows the reduction of the upstream average inventory level and the bullwhip 
effect, the WMA method further reduces the average inventory level when the weighting vector is a 
configuration/solution to the upstream inventory-oriented Newton’s mono-optimization. Since this 
vector doesn’t consider equal weights of demand’s historical observations, the bullwhip effect is 
negatively affected and the whole supply chain is hit by its amplification (Tliche et al., 2020).

Following this research course, this research paper attempts to broaden the potential of the DDI 
strategy, by tackling the issue of increasing bullwhip effect when WMA forecasting method is adopted, 
through the integration of a bi-objective optimization into the forecasting process. Instead of adopting 
the inventory-oriented mono-objective Newton’s method, the introduction of the BOGA allows the 
optimization according to both upstream average inventory level and bullwhip effect amplification.

Based on simulated demand models that follow causal invertible ARMA p q,( )  time-series 
processes, the solutions derived by the BOGA allow drawing the Pareto borders, which technically 
provide flexibility margins for the supply chain decision-makers. In this work, the authors opted to 
select solutions that minimize as much as possible the bullwhip effect among these Pareto-solutions, 
denoted by “star-solutions”. The motivation is justified by the global nature of the bullwhip effect 
which affects the sustainability of the supply chain links, while keeping upstream average inventory 
level relatively low.

To do so, the authors computed the percentages gaps separating the WMA/Newton results to the 
WMA/BOGA* results, in terms of average inventory and bullwhip effect. First, the authors found 
that a negligeable increase in the upstream average inventory level (2,16% on average) corresponds 
to a considerable decrease in the bullwhip effect amplification (89,92% on average). It has been 
noted that the average decrease of bullwhip effect amplification is nearly 44 times the increase of the 
upstream average inventory level. A 6th degree polynomial model captured the complex relationship 
linking the two performance indicators and would allow supply chain decision-makers to estimate 
their co-variations and savings. It has also been argued that the identified polynomial model fitted the 
simulated data but explanation power may be subject of enhancement if more simulations are carried.

The approach adopted in this research paper has several features and merits. First, this approach 
is conditioned by the use of the WMA forecasting method at the downstream level, in order to ensure 
unique demand propagation along the supply chain. Second, the approach has made it possible to 
broaden the knowledge of the DDI strategy by showing that causal invertible ARMA demands’ 
inference can be done at any downstream level of the supply chain, in a context of no explicit demand 
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information sharing, if all actors use WMA forecasting method. Third, the approach tackles a persistent 
harmful effect which persists in the supply chain field. Indeed, it allowed considerable improvement in 
terms of bullwhip effect while ensuring low upstream inventory levels, under some specific forecasting 
configurations, denoted in this paper by star-solutions. Fourth, the authors verified the resilience 
of the approach with respect to some key supply chain parameters and algorithm’s robustness. The 
simulations’ results showed that in stressful situations of lead time, holding or shortage variations, 
the performance of the bullwhip effect isn’t affected. However, the upstream average inventory level 
is dependant of these parameters. The authors also checked the robustness of the algorithm when 
faced to different initializations. The results showed the unsensitivity of both average distance of 
Pareto solutions and spread measure to different initial populations, unlike the elapsed time which 
significantly depends on initialization. Finally, a general managerial scheme for multi-level supply 
chains was proposed in order to adopt the WMA/BOGA* approach while distinguishing some cases 
of figure.

In terms of theoretical implications, the developed approach allows to improve the supply 
sustainability as the bullwhip effect affects the entire chain from the retailer to the supplier, through the 
various levels of manufacturers and transporters. Such approach can also improve trust and emphasize 
future collaboration between business partners. It also improves the resilience of forecasting processes, 
as the inventory level’s optimization implies the forecasting MSE’s optimization, and the proposed 
algorithm is unsensitive to initialization. This allows for example, the possible implementation of a 
method that randomly provides initializations, which will reduce the labour costs related to computer 
programming.

In terms of practical implications, the proposed approach provides two collaboration perspectives. 
First, from a local supply chain performance view-point, an operations manager has three options to 
collaborate with his business partners. As discussed in previous section, collaboration with formal 
downstream actor would allow benefits from the improvements of both average inventory level and 
bullwhip effect, while collaboration with formal upstream actor needs to be formalised through a 
sharing of achievable savings. The operation manager can combine the two advantages if collaboration 
is done with both upstream and downstream actors. Second, from a global supply chain performance 
view-point, if the first downstream actor who faces the end customer’s demand accepts to use the 
WMA forecasting method, all upstream levels will automatically benefit from the reduction of the 
bullwhip effect. The provided polynomial model would help supply chain actors to estimate the 
variations of bullwhip effect with regard to the upstream inventory level.

The authors conclude the paper with limitations and natural guidelines for future research. First, 
the DDI strategy can still be evaluated with other forecasting methods. To date, only SMA and WMA 
insure unique time-series demand propagation all along the supply chain. Second, a real-case study 
with WMA forecasts in a DDI strategy must take place in the future for industrial validation. Third, 
genetic algorithms present some known limitations such as the computation time as they require 
many iterations as well as excessive use of the evaluation function and the allocation memory. It is 
also known that genetic algorithms approach the optimal Pareto-front, without having the certainty 
of having reached it. Other metaheuristics may be more interesting. Finally, as performance metrics 
in this study are limited to the manipulation of averages and standard deviations, the generalization 
of such a collaborative strategy in the context of seasonal autoregressive integrated moving average 
(SARIMA) models isn’t possible. More sophisticated and theoretical performance metrics should be 
developed to include the latter models in the DDI strategy.
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APPENDIX: PARETO-OPTIMAL SOLUTIONS OF SIMULATED PROBLEMS

Figure 14. Pareto-optimal solutions of BOFPs 5 and 6

Figure 13. Pareto-optimal solutions of BOFPs 3 and 4

Figure 12. Pareto-optimal solutions of BOFPs 1 and 2
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Figure 16. Pareto-optimal solutions of BOFPs 9 and 10

Figure 17. Pareto-optimal solutions of BOFPs 11 and 12

Figure 15. Pareto-optimal solutions of BOFPs 7 and 8
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Figure 20. Pareto-optimal solutions of BOFPs 17 and 18

Figure 19. Pareto-optimal solutions of BOFPs 15 and 16

Figure 18. Pareto-optimal solutions of BOFPs 13 and 14
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Figure 21. Pareto-optimal solutions of BOFPs 19 and 20


