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ABSTRACT

This study explored students’ motivation and difficulties in learning programming in a blended 
learning environment. The face-to-face classroom instructions were blended with digital learning 
instructions. The study adopted a convergent parallel design mixed methods research and involved 209 
pre-university students. The findings were as follows: (1) Looping was hard. Students faced difficulties 
in program design, problem-solving, and debugging of repetition structures. (2) Students with prior 
programming experience were more motivated to learn by innate psychological needs: autonomy and 
competence. (3) Competence-motivated students performed better in programming, but no significant 
findings for autonomy and relatedness motivated students. A blended learning environment must be 
structured around the nature of the subject to satisfy students’ innate psychological needs. Digital 
learning materials can support understanding of certain programming concepts, but teaching instructors 
play an important role in providing academic, mental, and emotional support.
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INTRODUCTION

The Covid-19 pandemic has changed the education landscape entirely. When it comes to a new 
normal in education, information and communication technologies (ICT) integration is often part of 
the teaching and learning strategies. Since the Covid-19 outbreak, many educational institutions could 
not operate fully, and blended learning is one of the alternative instructional models. Blended learning 
is an educational approach that combines face-to-face (offline) and online learning instructions, and 
the effectiveness of blended system has been reported in many past studies (e.g., Alhazbi, 2016; 
Chiu, 2021; Tang et al., 2020; Yigit et al., 2014). Despite the positive outlook, younger students (e.g., 
primary, secondary and pre-university education) are more likely to face difficulties in adapting to the 
online learning instructions, and even well performed students may lose motivation when learning 
remotely (Di Pietro et al., 2020). Students who are isolated from their peers and instructors may 
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face learning difficulties and psychological problems that demotivate them to learn independently 
(Di Pietro et al., 2020). Very few studies have investigated the design of technological environments 
that satisfy students’ inner psychological needs (Chiu, 2021). Hence, more studies are required to 
understand how educational technologies can support learning motivation, resulting in better learning 
experience and positive learning outcomes (Ryan & Deci, 2020).

Blended learning is the best educational model to learn programming (Alhazbi, 2016). 
Unfortunately, students with no self-directed learning skills could find it hard and discouraging to 
learn programming independently, e.g., watching video lectures followed by in-class programming 
practices (Baldwin, 2015; Di Pietro et al., 2020). Responding to these findings, this study investigated 
motivation and difficulties of pre-university students in learning programming in a blended learning 
environment. This study addressed the following research questions:

1. 	 How students rated their proficiency in programming?
2. 	 What were the difficulties faced in learning programming?
3. 	 How were students motivated to learn programming?

To answer these research questions, quantitative and qualitative data were collected to triangulate 
the findings of the study.

RELATED WORK

Blended Learning
Blended learning is an educational model that enriches student learning experience by 
integrating technology-based instructions (e.g., online learning and digital learning materials) 
and physical face-to-face classroom instructions (Di Pietro et al., 2020). Many studies have 
stated that blended learning is somewhat more effective than traditional classroom learning 
(Spanjers et al., 2015). In a blended learning environment, students are more positive and 
motivated to learn programming (Alhazbi, 2016; Yigit et al., 2014). Blended learning is claimed 
to be the best educational model to learn programming because it facilitates learning by giving 
students the flexibility to learn at their own time, pace, and location as well as supporting 
their social-emotional needs (Alhazbi, 2016). The sole use of blended learning model does not 
improve teaching quality. Instead, blended learning is often combined with a flipped classroom 
model to deliver lectures online (i.e., whether asynchronous, or synchronous) prior to the 
face-to-face classroom interactions (e.g., exercises and practices) (Akçayır & Akçayır, 2018; 
Giannakos et al., 2014; Lacher & Lewis, 2015). A flipped classroom is a pedagogical model 
that flips the learning practices. Typically, the in-class activities (e.g., lectures) and homework 
outside of the classroom are reversed (Akçayır & Akçayır, 2018; Lacher & Lewis, 2015). Many 
studies related to flipped learning have reported increase in learning motivation (Akçayır & 
Akçayır, 2018). In a flipped programming course, students can use in-class time working on 
programming exercises and at the same time, interacting with their peers and instructors. To 
learn programming effectively, students need the in-person guidance and help to overcome 
programming difficulties and doubts. A flipped programming course promotes computational 
thinking, deep learning, higher-order-thinking skills, and active learning (Giannakos et al., 
2014; Lacher & Lewis, 2015). Conventional lecturing is no longer effective in programming 
education because many instructors tend to focus on syntactic structures rather than coaching 
students to improve problem-solving skills (Alhazbi, 2016). Ultimately, blended learning and 
flipped classroom have potentially become the dominant instructional models in this pandemic.
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Programming Learning Difficulties
Novice learners encounter different types of programming difficulties. They may have basic 
programming knowledge, but they do not have problem-solving skills to write logical and correct 
program algorithms (Alhazbi, 2016). Students with poor problem-solving skills tend to believe that 
programming is difficult because they do not have any strategy (Bain & Barnes, 2014). Computer 
programming is not only about understanding the language and syntactic details, but also involves 
the use of other important skills such as problem analysis, algorithm design, coding and debugging 
(Alhazbi, 2016). Past studies have reported the difficulties of novice learners in program development, 
algorithm construction, modular design, syntax usage, and bugs detection (Lahtinen et al., 2005; 
Piteira & Costa, 2013). Novice learners also failed to comprehend some programming concepts such 
as repetition, recursion, parameters, pointers, data types, error handling and libraries (Lahtinen et al., 
2005; Piteira & Costa, 2013; Settle et al., 2014). Some of these abstract constructs are cognitively 
hard to understand because they do not correspond to physical things in real life (Alhazbi, 2016; 
Lahtinen et al., 2005). In a blended programming course, students struggle to comprehend for loop 
and while loop (Baldwin, 2015). Another challenge is understanding the larger entities of a program 
instead of focusing on many minor ones (Bain & Barnes, 2014; Lahtinen et al., 2005). In computer 
programming, learners must utilize abstract design to understand a program at various degrees of 
abstraction (Alhazbi, 2016).

Learning Motivation
Motivation is the most important element in effective learning. Students who are intrinsically motivated 
will devote more time and effort to learn for their own sake rather than being driven by external 
rewards or threats. Intrinsic motivation is the inner drive that pushes someone to act freely (Deci & 
Ryan, 2000; Van den Broeck et al., 2010). Self-determination theory (SDT) suggests that humans 
are motivated to act by three innate psychological needs: competence (the desire to feel effective 
when doing something), autonomy (the desire to feel in control of their actions and experience) and 
relatedness (the desire to feel attached to other people) (Deci & Ryan, 2000; Van den Broeck et al., 
2010). Instructional models that satisfy human innate psychological needs can prolong the passion 
of learning, and it is more fulfilling for both learners and instructors. According to Ryan and Deci 
(2020), SDT research should be designed around educational technologies. In a blended learning 
environment, student engagement can be fostered through digital and teacher support (Chiu, 2021). 
Chiu (2021) has proposed digital support strategies based on the three innate psychological needs: 
(1) autonomy – use various forms of electronic learning materials for the same subject matter, (2) 
competence – develop exercises and interactive resources with different level of difficulties and 
challenges, and (3) relatedness – use constructive interactional support (Chiu, 2021).

In a blended learning environment, programming theories and concepts can be presented in lecture 
slides, diagrammatic representations (e.g., flowcharts, animations) and video lectures to enable students 
to direct their own learning independently, which might result in better understanding and cognitive 
engagement. Students have the autonomy to choose their preferred modalities. The learning motivation 
is linked to the perceived relevance; a tool is useful if it can help them to achieve the programming 
learning objectives (Settle et al., 2014). Visualization tools (e.g., visual programming languages) also 
promote the sense of autonomy (Settle et al., 2014; Tsai, 2018). Students can visualize and explain the 
graphical examples to themselves, and this results in a sense of ownership over the learning process 
and encourage positive learning engagement (Settle et al., 2014). Some visual programming languages 
(e.g., Scratch) are helpful for beginners to understand the basic programming concepts, whereby they 
can manipulate the program structures graphically (Tsai, 2018). Learning would be more engaging 
and enjoyable if students have a sense of control over the learning processes (Csikszentmihalyi, 1975).
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A competency-based programming course strikes a balance between support and challenges. 
Students are challenged, but they must feel competent and self-efficacy to overcome the challenges 
(Chiu, 2021; Csikszentmihalyi, 1975; Settle et al., 2014). Setting high learning expectations could be 
detrimental, especially for beginners with only basic programming knowledge and routine learning 
experience (Settle et al., 2014). According to Csikszentmihalyi’s (1975) model of the flow state, 
one will get anxious and worried if challenges are overwhelming and beyond their capabilities; 
however, one will experience boredom if challenges are too easily achievable (Csikszentmihalyi, 
1975, 1988). In both scenarios, engagement efforts have failed to enhance the sense of competence. 
Cognitive competency can be enhanced by the state of flow, i.e., when the challenge is increased 
gradually, the learning experience will be more enjoyable (Chiu, 2021; Csikszentmihalyi, 1988). 
Learning is more motivating and engaging if students can use their programming knowledge to 
solve challenging problems.

A relatedness supportive instructor offers students with academic, emotional, and motivational 
assistance, so that they feel connected (relatedness) and experience the sense of belonging in the 
learning community (Chiu, 2021). Although digital relatedness was proposed in Chiu (2021), the 
face-to-face component of a blended learning model could better satisfy students’ need for relatedness. 
Studies conducted during the pandemic have suggested that students need the in-person classroom 
interactions (whether with peers or instructors) to maintain a good mental health and positive emotions 
(Aguilera-hermida, 2020; Di Pietro et al., 2020; Shim & Lee, 2020). No matter how much efforts have 
been done in a virtual learning environment, the digital relatedness can never replace the in-person 
classroom interactions. Social interactions (whether formal or informal) happened spontaneously in a 
physical classroom. Education is not only about academic; it also includes socializing, communicating, 
and emotional development.

METHODOLOGY

MATLAB Programming Course
A MATLAB programming course was taught over a period of 10 weeks (a weekly three hours in-
class lecture/tutorial) at a pre-university program in Malaysia. The course was delivered through 
blended learning and flipped classroom models. Face-to-face classroom instructions were blended 
with digital learning materials such as lecture slides, animations, diagrams, video lectures, interactive 
practices, and self-guided tutorials. Students were encouraged to use the electronic resources to learn 
programming before attending the in-class lecture/tutorial. The self-directed learning (autonomy) 
served as a preparation for the upcoming lessons. Most of the students did not have prior programming 
experience so they might not have the ability to learn programming independently. Hence, short 
lectures, additional practices, and constructive discussions were conducted during the in-class sessions 
to support their need for relatedness. The topics covered were: using MATLAB as a calculator, array 
and matrix operations, array manipulation, built-in functions, graphs, functions, calculate the sum of 
series using a for loop, calculate the area under a curve using a for loop, write input/output program, 
if statements, nested for loop, while loop, and polynomial functions. Each programming lesson was 
designed with multiple levels of difficulty (competency).

Data Collection
The study employed the most well-known mixed methods research design, i.e., the convergent 
parallel design (Creswell & Plano Clark, 2011). The approach was used to triangulate the 
methods by comparing quantitative and qualitative findings for corroboration (Creswell & Plano 
Clark, 2011). Both quantitative and qualitative data were collected during the same phase of 
the study. Upon completion of the course, students were given 50 multiple-choice questions test 
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to assess their programming knowledge and understanding. Then, survey and interview were 
administered to explore student learning experience, e.g., motivation and learning difficulties. 
The response rate was 91% (209 students) for both survey and programming test. Subsequently, 
a sub-sample of seven students were drawn for the interview on a voluntary basis: six students 
without prior programming experience and one student with Java programming knowledge. 
The survey was structured in two sections:

1. 	 Programming proficiency for each lesson was measured using a 5-point Likert scale ranging 
from very easy (1) to very hard (5).

2. 	 SDT motivation level was evaluated using a 5-point Likert scale ranging from strongly disagree 
(1) to strongly agree (5):
a. 	 I am motivated to solve challenging programming problems [competence].
b. 	 I am motivated to learn programming at my own pace and time [autonomy].
c. 	 I am motivated to learn programming together with my friends [relatedness].

The survey and interview were used to explore the same issues, but the conversational nature 
of the interview allowed more flexibility in the formulation and adaptation of queries than survey. 
During the interview, students’ point of views, learning difficulties, motivations, experiences, and 
feelings were explored in depth.

Data Analysis
Drawing on the convergent parallel design, the quantitative and qualitative data were analyzed 
independently, and the findings were merged into an overall interpretation. Qualitative methods 
offered in-depth and rich information, but the results were not generalized beyond the sample of 
study (Creswell & Plano Clark, 2011; Johnson & Christensen, 2008). To complement the findings, 
quantitative methods were used to provide statistical generalizations of a population from the sample 
of study (Creswell & Plano Clark, 2011; Johnson & Christensen, 2008). The convergent design offered 
complementary strengths and non-overlapping weaknesses of quantitative and qualitative methods 
(Creswell & Plano Clark, 2011; Johnson & Christensen, 2008). During the final interpretation, 
quantitative and qualitative results were merged to provide a consolidated understanding of the study.

Three types of analyses were performed: (1) item analysis of the programming test, (2) statistical 
analysis of the survey questionnaire and (3) content analysis of the interview data:

1. 	 Item analysis was performed using SmartScan. Two types of item analysis were performed as 
suggested by Oosterhof (1990): (i) the item discrimination index was calculated to measure how 
well an item was able to distinguish between examinees who were knowledgeable (mastered) 
and those who were not (non-mastered) and (ii) the difficulty index was calculated to measure 
the proportion of examinees who answered the item correctly.

2. 	 Data collected from the survey was analyzed using SPSS software. Statistical analyses performed 
included descriptive statistics, correlation, and Mann-Whitney test. Descriptive statistics was used 
to summarize the percentage of the findings in a tabular form. Correlation analysis was used to 
measure the strength of the relationship between two variables. And finally, Mann-Whitney U 
test was used to compare two independent sample means (non-parametric).

3. 	 Interview data was analyzed using the content analysis approach. A priori codes and inductive 
codes were used during segmenting and coding. The initial a priori codes were derived from 
the research questions such as learning difficulties and motivation. Then, inductive codes were 
drawn from the interview data such as difficulties in learning for loop, nested loop and while 
loop. Finally, the common themes were derived to provide a holistic and consolidated finding.
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RESULTS AND DISCUSSION

Item Analysis
The programming test used in the study demonstrated strong validity (see Table 1). The discrimination 
index showed no question fall in the range of [-1.0, 0.0), and 68% of the questions were either good 
or very good at discriminating high scorers and low scorers. Although 32% of the questions were 
considered fair, they were acceptable. In the test, high performing students were more likely to answer 
the questions correctly and low performing students were more likely to answer the questions wrongly.

As shown in Table 2, the difficulty indices for 48% of the questions were easy [+0.8, +1.0], while 
4% were difficult [0.0, +0.3], and the remaining 48% of the questions were within an optimal range 
(+0.3, +0.8). Moderate questions had great discriminative power while easy and difficult questions 
demonstrated poor discrimination index. About half (48%) of the questions were acceptable as far 
as difficulty and discriminative indices were concerned.

A pass index was calculated for each lesson assessed in the test (see Table 3). The larger the 
pass index, the more students had mastered the lesson. All lessons tested were considered moderate 
level of difficulty, except lesson 4 and lesson 11. A high past index of 0.8 or more indicated easy 
test questions for lesson 4 (built-in functions) and lesson 11 (while loops). To master the built-in 
functions in lesson 4 (e.g., sqrt, factorial, exp, log10, isprime, acos, cosd, fliplr, etc.), students only 
needed to understand the purpose and syntax of the functions. However, it was surprising to find that 
students could master while loops in lesson 11, which was considered one of the hardest programming 
structures. The students might be familiar with the while loop structures (e.g., calculate the sum of 
a series) that had been learned in the tutorial classes.

Programming Proficiency
The majority of the students (61% to 87%) reported proficient in lesson 1 to 4: using MATLAB as a 
calculator, array and matrix operation, array manipulation and built-in functions (see Table 4). There 
was no programming involved in the four lessons; students worked with commands, calculations, 
and built-in functions in the command window. In the subsequent lessons, students started to learn 
programming. The majority of the students (82% to 93%) reported lessons 5 to 7 and lesson 9 as very 
easy, easy, or moderate. In these lessons, students learned some programming structures such as plotting 
graphs, developing functions, using for loop to calculate the sum of a series, and using if statement to 

Table 1. Validity of the test

Discrimination Index Percentage of Question Measure of Discrimination

[-1.0, 0.0) 0% Bad

[0.0, +0.2) 32% Fair

[+0.2, +0.6) 64% Good

[+0.6, +1.0] 4% Very Good

Table 2. Difficulty of the test

Difficulty Index (p-value) Percentage of Question Level of Difficulty

[0.0, +0.3] 4% High (Difficult)

(+0.3, +0.8) 48% Medium (Moderate)

[+0.8, +1.0] 48% Low (Easy)
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write a program that included input, process, and output. Ultimately, students reported lesson 8, and 
lesson 10 to 12 as hardest: calculate area under a curve using a for loop, nested for loop, while loop 
and polynomials. A significant proportion of the students (24% to 34%) rated the four lessons as hard 
or very hard. In these lessons, students must demonstrate strong logical thinking, problem solving and 
visualization skills. This result coincided with the findings of past studies that looping was hard to learn 
(e.g., Baldwin, 2015; Lahtinen et al., 2005; Piteira & Costa, 2013; Settle et al., 2014).

Programming Learning Difficulties
During the interview, students also expressed their difficulties in learning for loop, nested for loop, 
while loop, and polynomial functions. The data corresponded to the quantitative findings.

Table 3. Pass index of MATLAB lessons

Lesson Pass Index

(1) Using MATLAB as a calculator 0.79

(2) Array and matrix operation 0.79

(3) Array manipulation 0.66

(4) Built-in functions 0.85

(5) Plot graphs 0.67

(6) Create functions 0.68

(7) Calculate sum of series using a for loop 0.64

(8) Calculate area under a curve using a for loop 0.60

(9) Write input/output program/ if statements 0.67

(10) Nested for loop 0.71

(11) while loop 0.86

(12) Polynomials 0.78

Table 4. Student programming proficiency

Lesson Easy/ Very Easy Moderate Hard/ Very Hard

(1) Using MATLAB as a calculator 87% 11% 2%

(2) Array and matrix operation 83% 15% 2%

(3) Array manipulation 74% 23% 3%

(4) Built-in functions 61% 34% 5%

(5) Plot graphs 53% 40% 7%

(6) Create functions 41% 43% 16%

(7) Calculate sum of series using a for loop 39% 43% 18%

(8) Calculate area under a curve using a for loop 26% 40% 34%

(9) Write input/output program/ if statements 44% 38% 18%

(10) Nested for loop 25% 41% 34%

(11) while loop 34% 43% 24%

(12) Polynomials 38% 38% 24%
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for Loop
In lesson 8, students were required to calculate the area under a curve using the right-hand Riemann approximation 
approach. According to Reimann Sum, an interval was split into several rectangles. To make the approximation 
better, more and more rectangles should be packed into the interval. A rough approximation of the area under the 
curve was calculated by adding up the areas of the rectangles, which was the sum of the height of the rectangles 
multiplied by the width respectively. Students must understand the principles behind Riemann Sum and transform 
it into the equivalent programming algorithm. The sample code is shown as follows:

%ALGORITHM: Sample Program of Reimann Sum

function[Area]=zDistribution(a,b) 
    Area=0; 
    for z=a:0.0001:b-0.0001 
        Area=Area+0.0001*(1/sqrt(2*pi)*exp(-1/2*z^2)); 
    end 
end

Students revealed their difficulty in visualizing the algorithm of Reimann Sum. They could not 
understand how the variables in a for loop accumulated the results:

This is the hardest to understand because for me to understand the question, I need to imagine. Like 
this question consists of many for loops and it’s quite hard to imagine that.

for loop is in a range of something like you plus it up, and then just add up and add up. But sometimes 
when you put the condition that you thought it will be like that. The result you are expecting is not 
given out from the computer. The structure is weird.

Diagrams and animations were used to describe the principle of Riemann Sum. However, the 
difficulties faced by the students were beyond the underlying principle of Riemann Sum. The fact is, 
they could not relate and transform the principle into a programming structure.

Nested for Loop
In Lesson 10, students learned nested for loop in which there was an outer for loop and an inner for 
loop. For example, the students were required to write a function to change all the negative numbers 
in a matrix to zeros. The sample code is shown as follows:

%ALGORITHM: Sample Program of a Nested Loop

function[y]=matrixchange(A) 
[row, column]=size(A); 
for r=1:row 
    for c=1:column 
        if A(r,c)<0 
            A(r,c)=0; 
        end 
    end 
end 
y=A; 
end
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A student said this lesson was hardest:

Because you need to know which value to assign and how to use the for loop. Must know how to jump, 
that is the problem…the increment.

The student seems to be confused how the inner and outer loops connected to each other. For 
instance, how the program flowed between the inner and outer loops, and what the sequence of 
increment between the counters was. The confusion might have arisen because of the complex 
dynamics between the counter r and counter c. In this case, the student might face difficulty in 
understanding the logic of nested loop structures. Although a video lecture was recorded to visualize 
how the elements were checked and updated one by one, it had no added value in explaining the 
abstract concept. Apparently, most of the students cleared their doubts and confusions during the 
in-class tutorials.

while Loop
In lesson 11, students learned how to calculate the sum of a series using a while loop. For example, 
they were required to develop a function to calculate the total of an alternating harmonic series:
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The sample program is shown as follows:

% ALGORITHM: Sample Program of Alternating Harmonic Series

function[total]=alternating_harmonic_series(n) 
    total=0; 
    k=1; 
    while k<=n 
        total=total+(-1)^(k+1)/k; 
        k=k+1; 
    end 
end

A student said calculating the sum of a series using a while loop is the hardest:

The while is the hardest for me because you have to make sure that the while loop is always true… 
If you put calculation outside the while loop and you put calculation inside the while loop would be 
totally different thing… You have to break it, break the loop or to continue the loop. That’s the most 
challenging part.

The student seems to be confused with the basic concept of a while loop. For instance, how the 
loop would start or stop, and how the loop would process the calculations inside the loop. while loop 
was hard especially for those who could not understand the fundamental concept of iterations and 
how the controlled variables started or stopped the iterations.

Also, in lesson 11, students learnt how to find the maximum or minimum point using a while 
loop. For example, students were required to find the minimum point of a quadratic function 
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y x x= − +2 6 3 . The basic principle behind the program algorithm was that, as the points (x1, y1) 
and (x2, y2) moved from the left to right, the gradient of the graph changed from negative to positive 
at the minimum. When the gradient changed from negative to positive, the minimum point was found 
at (x1, y1). Based on this principle, the sample solution was developed with a few assumptions (e.g., 
the initial value of x=0, the initial value of gradient d=-1, and the shape of the graph was known). 
The sample program is shown as follows:

% ALGORITHM: Sample Program of Sentinel-Controlled Loop

d=-1; x=0; 
while d<0 
        x1=x; 
        y1=x1^2-6*x1+3; 
        x2=x+0.01; 
        y2=x2^2-6*x2+3; 
        d=(y2-y1)/(x2-x1); 
        x=x+0.01; 
end  
fprintf(‘Minimum point at (%f, %f)\n’,x1,y1);

Students mentioned that this lesson was hard:

Because the method used to determine maximum and minimum is different from maths… Last time 
when we learn maths, we use differentiation to find the maximum and minimum point.

The concept of finding those things, the principle behind it. The while loop is fine. The application 
part is a bit hard.

The students found it hard to comprehend the strategy used to determine the maximum or 
minimum point. They seemed to understand the functionality of a sentinel-controlled loop. However, 
the principle used to solve the problem contradicted with what they had learned in mathematics 
lessons. There were perhaps two reasons for this confusion: (1) the students had to accommodate a new 
problem-solving strategy (assimilation), (2) the students had to convert the newly learned approach to 
programming codes. An animation was used to demonstrate how a maximum or minimum point was 
found by shifting the points (x1, y1) and (x2, y2) along the graph. Unfortunately, the new problem-
solving strategy was hardly accepted by most students, and it stirred up more confusion when they 
tried to construct the program algorithm.

Polynomials
In lesson 12, students learnt polynomial functions. For example, they were required to find a quadratic 
curve that best fitted a set of data and draw the best quadratic equation approximation to the graph. 
The polynomial functions polyfit() and polyval() were used:

% ALGORITHM: Sample Program of Curve Fitting

x=[.5 1 1.5 2 2.5 3 3.5 4]; 
y=[2.2 2.1 2.3 2.9 4.1 6.2 8.3 10.7]; 
a=polyfit(x,y,2) 
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x2=0:.1:5; 
y2=polyval(a,x2); 
plot(x,y,’+’,x2,y2)

According to a student, the hardest part of this program was understanding the functionality 
of polyval():

The polyval is just very confusing like don’t know what is to write inside the polyval function. Because 
the sequence is not logical, is a function.

When the student said “the sequence is not logical”, he/she could not understand the syntax 
of polyval(), and how to enter the correct input arguments to produce the required output. A video 
lecture was recorded to explain the functionality of polyfit() and polyval(). Yet, most students would 
still prefer to ask the instructor to explain the functionality of polyval() during the in-class sessions. 
One of the limitations of video lectures was the lack of interactivity in providing feedback to students.

Debugging
During the interview, students also expressed their difficulties in debugging a program. Syntax 
errors could be detected and fixed easily because error messages were shown in the MATLAB IDE 
(Integrated Development Environment). However, students expressed their difficulties in detecting 
and fixing logical errors.

Syntax Errors

Easy is like the typo errors and the bracket errors, spacing errors.

The easiest to detect is like you didn’t put the parentheses.

The easiest one is normally about syntax, like missing of comma, missing of colon or semi colon or 
bracket.

Logical Errors

Like if I use a for loop and it supposed to be like this, but is not giving the result that I want… Why 
it doesn’t work?

The harder one you have constructed the if statement, and the returning result is not your wanted result.

Maybe you look at the thing, you think you are correct. That’s how you understand the concept and 
is like nothing seems wrong.

There was no error message shown in the IDE to indicate logic errors. The programs usually ran 
without crashing (no syntax errors) but incorrect results were produced. In this case, the instructor 
played a significant role in facilitating the debugging process.

Self-Determination Theory of Motivation
Most of the students (60% to 73%) agreed or strongly agreed that they were motivated to learn 
programming (see Table 5).
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Up to 60% of the students agreed that they were motivated to solve challenging problems 
(competence). They claimed that programming problems without any challenges were boring and 
not engaging:

I like challenging questions more because I can use my brain more. I find it more interesting. Easy 
questions are quite boring.

It helps you to think more… Complicated one because it stimulates you to think more.

I want to think outside of the box. I don’t want to lock inside the box, with the same frame and same 
idea. It is boring.

I prefer challenging question because it normally consists of many easy questions. So, you get one 
question, you revise all the other questions already.

About 72% of the students claimed that they liked to have control over their learning pace and 
time (autonomy). The students were positive with the idea of self-studying and independent learning. 
Digital learning materials fitted well with their learning motivation:

I normally learn faster than other people. So I won’t wait other people’s pace… I will learn with 
my pace… Do you think if I learn in the time that I feel is not convenient or is not the time I should 
learn, do you think it will be better? No, I am not happy at all.

Yes is because if I feel that the pace is too fast or too slow, I can adjust it so that it is suitable for me.

Approximately 73% of the students liked to learn together with their friends (relatedness). They 
wanted to learn distinct problem-solving strategies and common mistakes from their peers. The 
students valued the benefits of peer learning:

Normally I learn among my friends… Like I got my way to solve it and he also got his special way 
to solve it. I can also learn from his way and get more information.

I need other people’s ideas to think about a concept or something… I will think why they want to do 
this and why they want to do that, and I will see is good or not.

We won’t be the only one doing the mistakes. They will also doing mistakes. So sometimes when they 
did the mistakes, we might look at it and we can see… learning from their mistakes.

They might already know where is the mistake and may be they did the same mistakes and they found 
out and they can help you with it.

Table 5. Motivation factors in learning programming

Disagree/Strongly Disagree Not Sure Agree/ Strongly Agree

Challenge 15% 25% 60%

Own pace and time 7% 21% 72%

Peer learning 6% 22% 73%
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The correlations of SDT of motivational factors and test performance are presented in Table 
6. The motivation to solve challenging problems (competence) was weakly positive correlated with 
test performance (challenge: rs = .204, p = .003). Students who liked to solve challenging problems 
were more likely to perform better in the test. There was no significant correlation between other 
motivational factors and test performance. The findings suggested that students who were motivated 
to learn by competence were more likely to perform better in the test. However, students who were 
motivated to learn by autonomy and relatedness might not perform better or worse in the test. All 
motivational factors were weakly positive correlated with each other. The findings suggested that 
innate psychological needs for competence, autonomy, and relatedness were linearly related.

Subsequently, a Mann-Whitney test was used to compare the mean differences between students 
with prior programming experience (20% of the students) and without prior programming experience 
(80% of the students) in the three motivational factors. Students with prior programming experience 
were significantly more motivated to learn at their own pace and time (U =2705, p < .05, r = .159), 
and solve challenging problems (U =2269, p < .01, r = .245). There was no significant difference 
between the groups in peer learning.

CONCLUSION

In this study, the pre-university students faced various programming difficulties in a blended learning 
environment. They reported lack of proficiency in for and while loops. The findings coincided with 
past studies (e.g., Baldwin, 2015; Lahtinen et al., 2005; Piteira & Costa, 2013; Settle et al., 2014). 
There are a few justifications to these findings. Firstly, students do not understand the looping 
structures. They could not visualize the flow and process of the loops. For instance, how the control 
variables are initialized, updated, tested, and terminated to start or end the loops. Secondly, students 
could not apply the looping structures to the problems given, in such a way that each problem entity 
corresponds to certain segments of a program algorithm. In other words, they could not transform 
their problem-solving strategies into logical program algorithms. Thirdly, the problem-solving 
strategies introduced in the programming class could be different from what they have learned in the 
mathematics class. Students must adapt to the new problem-solving strategies, and they may struggle 
to understand the logic and flow of the program algorithms. Finally, logical errors are hard to detect 
and fix, especially when dealing with multiple looping structures. For instance, the programs are 
compiled successfully without any syntax errors; unfortunately, the results are wrong, or the programs 
are terminated without executing any of the loops. Students must identify the appropriate input values 
to test the programs thoroughly.

To solve programming questions, students must grasp various facets of problem-solving skills. 
Online instructions alone may not fully support students needing help with their difficulties in certain 
programming concepts. Teaching instructors play an important role in providing appropriate academic 

Table 6. Correlations of SDT of motivational factors and test performance

Own pace and time Challenge Peer learning

Test Performance
Correlation Coefficient 0.065 .204** -0.008

Sig. (2-tailed) 0.349 0.003 0.906

Own pace and time
Correlation Coefficient 0.281** 0.179**

Sig. (2-tailed) 0.000 0.010

Challenge
Correlation Coefficient 0.371**

Sig. (2-tailed) 0.000



International Journal of Information and Communication Technology Education
Volume 18 • Issue 1

14

guidance and motivational help (Chiu, 2021). Digital learning materials can support understanding of 
certain programming concepts, but they are not fully interactive. Blended learning would offer a better 
option, in which physical face-to-face classroom strategies are used to complement the weaknesses 
of online instructions. Past studies also revealed that students need the in-person interactions to 
maintain a good psychological and emotional health (Aguilera-hermida, 2020; Di Pietro et al., 2020; 
Shim & Lee, 2020).

Most of the pre-university students were motivated to learn by competence, autonomy, and 
relatedness. In a blended learning environment, students with prior programming experience are 
better prepared with self-directed learning skills to learn at their own pace and time using the 
digital learning materials (autonomy). They are also equipped with some problem-solving skills that 
motivate them to undertake challenging problems (competence). Competence motivated students 
seek programming mastery and take extra time to explore various creative programming strategies 
and problem-solving skills. As expected, competence motivated students are more likely to perform 
better in a programming course. Programming is a complex knowledge that includes understanding 
of language, syntactic details, problem analysis, algorithm design, coding and debugging (Alhazbi, 
2016; Lahtinen et al., 2005; Piteira & Costa, 2013). During in-class sessions, students can interact 
with their peers to learn alternative programming solutions and common mistakes. Although peer 
interaction may not enhance programming performance, it could satisfy students’ innate psychological 
need for relatedness; indirectly influencing the other motivational factors.

There are a few limitations of this study. Firstly, the programming proficiency surveyed 
was confined to the 12 lessons learned. Future studies could expand the selection of attributes 
in programming difficulties, e.g., syntax, logical design, problem-solving, modular design, and 
debugging. Secondly, the convergent parallel design was adopted as the methodology of the study. 
Future studies could employ the exploratory sequential design in which the qualitative findings 
generalized from the interview are used to develop and inform the design of quantitative survey. 
Thirdly, there were very easy and very difficult questions found in the programming test with poor 
discrimination. The questions should be reviewed and reconstructed in the future.

The use of blended learning model does not guarantee the success of a programming course. A 
blended learning environment must be structured around the nature of the subject to satisfy students’ 
innate psychological needs. Autonomy: Digital learning materials should be designed to encourage 
self-directed learning. The difficulty of the learning content should be increased gradually, and various 
types of multimedia should be used to present the programming concepts, e.g., videos, animations, 
texts, and sounds. For instance, animations can be used to visualize looping structures. Competence: 
Challenging programming problems related to mathematics, science and engineering applications 
may pose more interest to the students. When a programming problem is connected to the students, 
they are more engaged to solve the problem, e.g., find the probability by calculating the area under 
a z distribution. Learning should be fun and stimulating. Learning without a challenge is not fun. 
Relatedness: Student mental and emotional health should not be overlooked. Teaching instructors 
play a significant role in teaching as well as providing mental and emotional support. The instructor-
student bonding should not be underestimated. Ultimately, education is a comprehensive package of 
formal and informal interactions in academic and non-academic settings.
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