
DOI: 10.4018/JITR.299947

Journal of Information Technology Research
Volume 15 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Multi-Objective Big Data View
Materialization Using Improved Strength
Pareto Evolutionary Algorithm
Akshay Kumar, Jawaharlal Nehru University, India

T. V. Vijay Kumar, Jawaharlal Nehru University, India*

ABSTRACT

Big data refers to the enormous heterogeneous data being produced at a brisk pace by a large number
of diverse data generating sources. Since traditional data processing technologies are unable to
process big data efficiently, big data is processed using newer distributed storage and processing
frameworks. Big data view materialization is a technique to process big data queries efficiently on
these distributed frameworks. It generates valuable information, which can be used to take timely
decisions, especially in cases of disasters. As there are a very large number of big data views, it is
not possible to materialize all of them. Therefore, a subset of big data views needs to be selected for
materialization, which optimizes the query response time for a given set of workload queries with
minimum overheads. This big data view materialization problem, having objectives minimization of
the query evaluation cost of a set of workload queries, while simultaneously minimizing the update
processing costs of the materialized views, has been addressed using improved strength pareto
evolutionary algorithm (SPEA-2) in this paper. The proposed big data view selection algorithm,
which is able to compute a set of diverse non-dominated big data views, is shown to perform better
that existing big data view selection algorithms..

KEywORDS
Big Data, Evolutionary Algorithm, Multi-Objective Optimization, SPEA-2, View Materialization

1 INTRODUCTION

Advances in Information and Communication Technology (ICT) have impacted almost every aspect
of human life including health, education, commerce, agriculture, scientific exploration etc., triggering
the generation of large amounts of data. This Big data has a very large volume; is produced by variety
of sources; is generated at a high speed or velocity; generally has low veracity or trustworthiness; and
has low value. These characteristics of Big data are referred to as the five V’s of Big data (Jacobs, 2009;
Zikopoulos et al., 2011; Gupta et al., 2012; Gandomi & Haider, 2015; Kumar & Vijay Kumar, 2015). Big
data cannot be processed efficiently by the traditional technologies. This led to the emergence of Big data
processing frameworks, which entail distributed processing over a Distributed File System (DFS). Some
of the technologies and frameworks that can be used to process Big data include Hadoop, Apache Hadoop,
map-reduce framework, NoSQL database, Apache Spark etc. (Hadoop 2008; Hadoop 2012; Manyika
2011; Dezyre, 2015; Dean & Ghemawat, 2012; Kumar & Vijay Kumar 2021a). These frameworks provide
features of redundant Big data storage along with reliable distributed processing of big data.

Journal of Information Technology Research
Volume 15 • Issue 1

2

Big data processing has the potential to provide useful, unforeseeable information, which can
benefit society in many different ways. For example, healthcare systems generate large amount of
clinical, diagnostic, medical imaging, and public health data received from large number of hospitals
and health centers, which can be used to predict and monitor the spread or outbreak of infectious
diseases (Luo et al., 2016). One of the most recent applications of Big data involves the determining
of the extent and possible future spread of corona virus disease, called COVID19, which is threatening
human health internationally. This Big data application has faced the technological challenges of
integrating redundant data from multiple diverse data sources and processing such geographically
spread Big data in real time (Zhou et al., 2020). Another interesting application of vig data has been
proposed in (Bibri, 2018), which relates to the use of the Internet of Things (IoT) devices in smart
cities. IoT devices can produce large amounts of Big data in smart cities, which relate to people’s
health, water system, electrical appliances, vehicles, machines, plants, soil, air etc. This Big data
can be processed to determine the environmental impact of the smart cities, which can be used to
model environmentally sustainable cities (Bibri, 2018). Thus, Big data applications can be created to
facilitate healthcare, disease control, resource management, environmental protection etc. A Big data
application is required to collect, clean, integrate, store, process, analyze and present information in
various visual forms. Further, it must generate accurate real time information, as incorrect or delayed
information has no value, especially in case of disasters. Thus, a Big data application must process
data efficiently to produce information, which can be used for making timely decisions.

Big data view materialization enhances the efficiency of processing Big data queries over a Big
data application. As large numbers of queries can be made on a Big data application, there could be
a large number of possible Big data views. All such Big data views cannot be materialized, as that
would result in a significant increase in the total size of Big data in an application. In addition, it will
also increase the cost of update processing, as updates will be required to be performed on the Big
data and the related materialized views. Therefore, a subset of Big data views must be selected for
materialization, which optimizes the performance of Big data query processing. The view selection
problem in the context of a data warehouse, has been shown to be an NP-hard problem (Harinarayan
et al., 1996). This problem becomes more complex in the context of Big data.

The problem of selection of Big data views for materialization is concerned with selecting views
that optimize the cost of processing of a set of workload queries. This optimization problem should
incorporate Big data characteristics. (Kumar & Vijay Kumar, 2021b) presented the Big data view
materialization, as a bi-objective optimization problem, with the objectives being the minimization
of query evaluation cost and the minimization of the update processing cost with a constraint on
the total available size for materialization. One of the ways to address this problem is by using the
multi-objective evolutionary algorithms. (Kumar & Vijay Kumar, 2021b) used the Vector Evaluated
Evolutionary Algorithm (VEGA) to solve this bi-objective optimization problem. In this paper, this
bi-objective Big data view materialization problem is addressed using the Improved Strength Pareto
Evolutionary Algorithm (SPEA-2) (Zitzler et al., 2001). SPEA-2 follows an elitist approach and produce
a set of non-dominated solutions to the multi-objective optimization problems. SPEA-2 has features
of fast convergence due to its elitist archive selection; less complexity due to use of fewer number of
configuration parameters; creation of diverse solutions due to the use of density computations; and
the production of non-dominated solutions. In this paper, a SPEA-2 based Big data view selection
algorithm to select non-dominated Big data views for materialization is proposed.

The paper is organized as follows: Section 2 presents the view materialization problem with focus
on Big data view materialization. The bi-objective Big data view materialization problem, given in
(Kumar & Vijay Kumar, 2021b), is briefly discussed in Section 3. Section 4 presents a SPEA-2 based
Big data view selection algorithm to solve the bi-objective Big data view materialization problem. An
example illustrating the use of the proposed algorithm is given in Section 5 followed by experimental
results in section 6. Section 7 is the conclusion.

Journal of Information Technology Research
Volume 15 • Issue 1

3

2 VIEw MATERIALIZATION

The problem of selection of views for materialization was first studied in the context of a database
management system. A view, in this context, is defined as a derived relation, which is produced
as a result of a database query. Further, a materialized view stores data along with its definition.
The problem of selection of views for materialization involves the selection of subsets of views for
materialization that optimize the query response time for a given set of workload queries. As data
in the database relations receive updates, the materialized views are also required to be maintained.
(Gupta & Mumick, 1995) defined the issues of the view maintenance problem, viz. representation of
the view creation query, identification of access rights on the view data, and the process of performing
incremental updates on the views. (Ross et al., 1996) suggested that the maintenance cost of the
materialized views can be optimized by identifying and maintaining additional views, which can be
identified from the common query sub-expressions among the views. Further, in database systems,
the materialized views can be updated incrementally to reduce maintenance costs. However, in case of
Big data, such optimization is a tedious process, as Big data is voluminous and mostly unstructured.

View materialization in data warehouses is a widely studied problem and has been presented and
solved using different approaches. (Roussopoulos, 1998) highlighted the potential of materialized
views in query evaluation. The data in the data warehouse is represented as multi-dimensional data
cubes. A cell in these data cubes represents a level of data aggregation, or a possible view, and the
interrelationships among these views are represented by a lattice framework (Harinarayan et al., 1996).
(Gupta, 1996) used an AND-OR view graph structure to represent the interrelationships amongst the
views in a data warehouse. Selection of views for materialization is required to compute the query
processing cost of workload queries and the maintenance cost of the materialized views. (Harinarayan
et al., 1996) used the number of records that are processed to answer a query for computing the query
processing cost. (Chirkova et al., 2001) presented a theoretical framework for view materialization
for a data warehouse, which used estimates of view statistics generated by the query optimizers, for
computing the query processing cost. (Mistry et al., 2001) suggested the optimization of maintenance
cost by materializing common sub-expressions among the query expression graphs of the queries.
Many different types of approaches have been designed for solving the view materialization problem
for data warehouse. (Harinarayan et al., 1996; Gupta, 1996) used greedy approaches to select a set of
views for materialization. (Agrawal et al. 2000) designed an empirical approach for automatic selection
of materialized views and indexes from SQL queries and related statistics of query evaluation. (Mami
et al., 2012) presented a survey of various view selection algorithms and also illustrated a classification
of these algorithms. View selection problem in the context of the data warehouse has been solved
using metaheuristic algorithms (Arun & Vijay Kumar, 2015a, 2015b, 2017a, 2017b; Vijay Kumar
& Arun, 2016, 2017, Vijay Kumar & Kumar, 2014, 2015; Kumar & Vijay Kumar, 2018). The same
problem was formulated as a bi-objective view selection problem and solved using multi-objective
evolutionary algorithms VEGA (Prakash & Vijay Kumar, 2019a), MOGA (Prakash & Vijay Kumar,
2020a), SPEA-2 (Prakash & Vijay Kumar, 2019b) and NSGA-II (Prakash & Vijay Kumar, 2020b).

View Materialization for Object-Oriented Database Management System (OODBMS) requires
multiple and dynamic re-classification of objects into materialized view classes. A materialized view
in OODBMS can be created without making a physical copy of the objects into the materialized
view classes (Kuno et al., 1995), thus, minimizing the maintenance overheads of the views. View
materialization has also been studied for influencing data intensive web applications in (Labrinthis &
Roussopoulos 2000; Kumar & Vijay Kumar, 2020). A web page consists of many smaller components,
called web-views where the web-view can be shared by several web pages. Materializing the web-
views dynamically, with every access of a web page and every update of a stored relation, optimizes
the processing of web page requests (Labrinthis & Roussopoulos 2000).

View materialization for semi-structured databases use query graphs to identify sub-trees from
the ordered tree of semi-structured data (Abiteboul et al., 1997; Tang et al., 2009). (Abiteboul, 1999)

Journal of Information Technology Research
Volume 15 • Issue 1

4

presented a three-level view architecture for XML data, namely the database server level, view server
level and the display component level. (Tang et al., 2009) presented a greedy algorithm to select views
for materialization on semi-structured XML data. The view maintenance problem on semi-structured
data is handled through an incremental update model (El-Sayed et al., 2006). View materialization
has not been specifically studied for unstructured data, eventhough, efficient handling of such data
is essential to support view materialization on Big data, since it is the largest segment of Big data.
The basic characteristics of unstructured data have been presented in (Gandomi & Haider, 2015),
which also illustrates the methods of processing unstructured data by including data integration from
heterogeneous resources. (Yafooz et al., 2013) proposes three techniques for processing queries on
unstructured data, viz. linking the unstructured data with the relational model and/or creating models
on unstructured data and/or extracting data using natural language queries. (Lu et al., 2017) proposes
use of a hybrid architecture to enhance the efficiency of batch processing jobs on unstructured data
using the map-reduce framework.

In general, view materialization for different types of database systems involves the optimization
of the query response time and the view maintenance costs with a constraint on the cumulative size
of the materialized views. Further, the problem of selection of views for materialization is solved
primarily for the structured data. However, Big data view materialization is concerned with the
materialization of views from structured, semi-structured and unstructured data considering the
characteristics of Big data. Big data view materialization is discussed next.

2.1 Big Data View Materialization
Big data view materialization aims to optimize the processing time of Big data queries. It should
also address issues relating to the storage and processing of large heterogeneous data, maintenance
of materialized views, rapid rate of data generation having low data integrity. (Goswami et al., 2017)
studied Big data view materialization for Hive, a Big data warehousing tool, for a specific dataset.
It defined view materialization, as a multi-objective problem and solved it using the differential
evolution algorithm and non-dominated sorting genetic algorithm. However, their approach to Big
data view materialization is an extension of the view materialization approach on data warehouses
and does not consider the Big data characteristics for the computation of query processing cost and
view maintenance cost. (Kumar & Vijay Kumar, 2021a) presented the Big data view materialization
problem, which considers Big data characteristics like data heterogeneity, data volume, data integrity,
data generation rate; and query frequencies to compute the total query processing cost of the workload
queries. (Kumar & Vijay Kumar, 2021a) also presented a greedy algorithm to solve the problem of
selecting Big data views for materialization. (Kumar & Vijay Kumar, 2021b) presented the Big data
view materialization problem defined in (Kumar & Vijay Kumar, 2021a), as a bi-objective optimization
problem, with the two objectives being the minimization of the query evaluation cost for a given set
of workload queries within a specific time window; and the minimization of the update processing
cost for such materialized Big data views; with a constraint on the total size of the materialized views.
(Kumar & Vijay Kumar, 2021b) used the vector evaluated genetic algorithm (VEGA) to solve the Big
data view materialization problem.

The views on Big data are generated as a result of a query. For identifying the candidate Big data
views for materialization, query attributes (QA) are used. Query attributes (QA) are those attributes of
Big data queries that results in the retrieval of structured data or the extraction of semi-structured and
unstructured data (Kumar & Vijay Kumar, 2021a). These query attributes could have query attribute
dependencies. For example, a query attribute dependency B→C indicates that the Big data created
based on a query involving query attribute B can derive the Big data created based on the query
involving query attribute C. In other words, a Big data view created using query attributes B, can
answer the query that involves query attributes C. Thus, the query attributes and their dependencies
form a complex interrelationship structure, which can be represented using a directed graph (Kumar
& Vijay Kumar, 2021b). Figure 1 shows an example of the view relationship graph, which has been

Journal of Information Technology Research
Volume 15 • Issue 1

5

created using three query attributes (QA) {A, B, C} with a query attribute dependency B→C. Each node,
called a view node, in Fig. 1 represents a view consisting of structured, semi-structured and unstructured
data. Also, a view node is created for a specific subset of query attributes. The links in Fig. 1 represent a
view dependency, i.e. a link from view node X to view node Y indicates that a query that can be answered
by the view node Y can also be answered by view node X. A query attribute dependency also results in
the creation of links between the view nodes. For example, in Fig. 1, a query attribute dependency B→C
generates links between the view nodes View(B) to View(C), View(B, A) to View(C, A) and View(B, A) to
View(C). In addition, query dependency may result in the removal of certain nodes from the graph. For
example, the view node View(B, C) is same as View (B) due to the query attribute dependency B→C,
therefore, view node View(B, C) is not included in the graph in Fig. 1.

It may be noted that several views can be generated from every view node of Fig. 1. A view,
so generated, may not involve all types of data of the view node, e.g. a view may be created on the
structured and semi-structured data from view node View(B, C). In addition, the three views of the
root node (Fig. 1), one each for structured, semi-structured and unstructured data respectively, are
always assumed to be materialized. Figure 1 can also help in computing alternate query evaluation
plans. For example, a query, which can be answered by a view created from view node View(C) can
also be answered by views created from view nodes View(B), View(C, A) or View(B, A), provided all
these views are created from similar data.

SD-Structured Data, SSD-Semi-structured Data, UD-Unstructured Data
The frequencies of the queries in a Big data application are dynamic in nature and hence, Big

data view materialization is defined for a specific window of time. Thus, selection of views for
materialization on Big data may be performed periodically, during the lifetime of a Big data application.

A bi-objective Big data view materialization problem given in (Kumar & Vijay Kumar, 2021b)
is briefly discussed next.

Figure 1. Structure for Big Data views based on QA{A, B, C} with dependency B→C

Journal of Information Technology Research
Volume 15 • Issue 1

6

3 BI-OBJECTIVE BIG DATA VIEw MATERIALIZATION PROBLEM

Big data view materialization aims at minimizing the query evaluation cost while simultaneously
minimizing the cost of processing updates on the view data. Further, it has been defined as a bi-
objective optimization problem with the objectives being the minimization of the query evaluation
cost for a set of workload queries for a specific time window; and the minimization of the update
processing cost of materialized Big data views subject to a constraint on the total size of the Big data
views (Kumar & Vijay Kumar, 2021b). These objectives are briefly discussed below:

Minimize Query Evaluation Cost (QECBDV) for a given set of workload queries and their
frequencies during a specific time window:

The query evaluation cost (QECBDV) is the cost of evaluating the workload queries using a set of
materialized views. Each of these queries can be computed using alternate query evaluation plans. Big
data views need to be selected for materialization in order to minimize the total query evaluation cost
of the workload queries. QECBDV is computed using the query frequencies along with the minimum
cost of evaluating a query (MCQi). The minimum cost of evaluating the ith query (MCQi) for a given
set of materialized views using the alternative query evaluation plans for that query is given by
(Kumar & Vijay Kumar, 2021b):

MCQ Min m CMV ufv m
i j k k k k
= × × + ×

+ −(1

1

2
1))× × + ×

∑ CV uf
k kk
1
1

2
 (1)

In the above equation, MCQi is computed by finding the minimum cost of a query evaluation
from amongst the j query evaluation plans. A query evaluation plan can consist of k views and for
each query evaluation plan, the cost of evaluating a query is computed using the number of stored Big
data blocks of kth view (CMVk), in case the kth view is materialized; or the number of stored Big data
blocks of data that is required to compute the kth view (CVk), in case the kth view is not materialized.
The variable mk is a binary variable and the value of mk is 1, if the kth view is materialized, or 0, if
the kth view is not materialized. The minimum of these query evaluation costs from all the j query
evaluation plans, is the minimum cost of evaluating the query (MCQi) for the given set of materialized
views. The ufvk and ufk are the size increase factor for the view and the data from which the view
is computed respectively. The computation of the query evaluation cost of all the workload queries
(QECBDV) is given by (Kumar & Vijay Kumar, 2021b):

QEC MCQ f
BDV i i

i

n

= ×()
=
∑

1

 (2)

In the above equation, fi is the query frequency of the ith query and n represents the number of queries.
Minimize the update processing cost (UPCBDV) of the Big data views selected for materialization:
The update processing cost (UPCBDV) of the materialized views is computed using the size of data,

in terms of Big data blocks, which is required to be processed to update a Big data view, along with
the integrity factor of the view (Kumar & Vijay Kumar, 2021b). The integrity of different types of
data is different. For example, integrity of unstructured data is lower than that of the semi-structured
or structured data. Low integrity results in generation of additional data for updating a view. The
computation of the update processing cost of all the Big data views that are materialized is given by
(Kumar & Vijay Kumar, 2021b):

UPC m UMV I
BDV i i mi i
= × ÷()∑ (3)

Journal of Information Technology Research
Volume 15 • Issue 1

7

In the equation (3), UMVi is the cost of data that is to be processed to update the ith materialized
view and Imi is the integrity factor related to the ith Big data view. The variable mi is a binary variable,
which takes a value 1, if the ith Big data view is materialized, else it takes a value 0.

It may be noted that CMVk, CVk and UMVi, which are used for computing QECBDV and UPCBDV,
are represented in terms of the size of the stored Big data blocks (Kumar & Vijay Kumar, 2021a). The
computation of QEC and UPC using Big data blocks is more reliable and consistent in comparison
to performing the computation using the number of records, which are significant in case of Big
data; or performing the computation using the time of computation of queries and views, which is
dependent on the number and state of the map-reduce nodes used for computation.

The above two objectives are conflicting in nature; accordingly, evolutionary algorithms can be
applied to solve the above bi-objective Big data view selection problem. In this paper, an Improved
Strength Pareto Evolutionary Algorithm (Zitzler et al., 2001), i.e. SPEA-2, has been used to solve
the bi-objective Big Data View Selection Problem (Kumar & Vijay Kumar, 2021b). Big data view
selection using SPEA-2 is discussed next.

4 BIG DATA VIEw SELECTION USING SPEA-2

Strength Pareto evolutionary algorithm (SPEA) was proposed in (Zitzler et al., 1999). SPEA is an
elitist multi-objective evolutionary algorithm, which stores elitist solutions explicitly as an archived
population. (Zitzler et al., 1999; Zitzler et al., 2000) illustrated that SPEA performs well in comparison
to other multi-objective genetic algorithms, although, it had several limitations. These limitations
were related to assigning a fitness value to a solution, the estimation of the density of the solutions
and the truncation of the solutions when non-dominated solutions exceed the archive size (Zitzler et
al., 2001). SPEA-2 proposed in (Zitzler et al., 2001) addressed these limitations and has performed
well in comparison to other multi-objective genetic algorithms. Further, it produces the Pareto optimal
solutions. Therefore, Big data view selection for materialization, which is a bi-objective optimization
problem, has been solved using SPEA-2 (Zitzler et al., 2001), which is discussed next.

4.1 SPEA-2
Strength Pareto evolutionary algorithm (SPEA-2) was proposed in (Zitzler et al., 2001). In SPEA-2,
initially, a random population of size N is generated and the archived population is initialized to null.
The strength of a solution in SPEA-2 is defined as the number of solutions in the population and the
archived population that are dominated by it. SPEA-2 computes the raw fitness of each solution, as
the sum of the strength of the solutions in the population and the archived population that dominates
that solution. Thus, a raw fitness value 0 for a solution implies that no other solution dominates it.
The density of solutions is determined by measuring the k-nearest distance from the other solutions.
A higher density implies that a solution has closer neighbors. The raw fitness and density are used to
compute the fitness value of a solution. The non-dominated solutions are selected from the population
and the archived population to create the next generation archived population. SPEA-2 ensures that the
size of the archived population is fixed. Thus, if the number of non-dominated solutions is less than the
size of the archived population, the best dominated solutions are added to the archived population of
the next generation; else if the non-dominated solutions are more than the size of archived population,
the extra solutions are truncated from the archived population of the next generation, using the density
value. The mating pool is created using the binary tournament selection with replacement from the
archived population of the next generation. The crossover and mutation are performed to create the
population for the next generation. The algorithm is run for a specified number of generations and
the non-dominated solutions of the last generation forms the output of the genetic algorithm.

In the next sub-section, a Big data view selection algorithm using SPEA-2 (BDVSASPEA-2) is presented.

Journal of Information Technology Research
Volume 15 • Issue 1

8

4.2 Big Data View Selection Algorithm (BDVSASPEA-2)
BDVSASPEA-2 is an evolutionary algorithm, based on SPEA-2, to solve the bi-objective view
materialization problem discussed above. The algorithm is presented below:

The input to BDVSASPEA-2 algorithm are - the list of frequent queries (Q) over a time window;
the frequencies of these queries during the same time window (f); the list of Big data views (CVVDB),
which are candidates for view materialization identified using query attributes (QA) and queries (Q);
mapping of queries to alternate query evaluation plans (QtVs), which are created using Big data views
(CVVDB) and the view structure graph (Fig. 1); the cost matrix of views, which includes the cost of
the data, in terms of Big data blocks, required to compute the view (CV) and the cost of materialized
views (CMV), in terms of Big data blocks; the update factors - ufv, which represents the change in
the size of the view compared to the original size of the view, and uf, which represents the change
in size of the data used to create the view to its original size; size of the data, in terms of Big data
blocks, required to be processed to update a materialized view (UMV); and the Integrity Factor (Im),
which represents the correctness of data in each candidate Big data view. The chromosome for the
algorithm is a linear view vector of materialized Big data views of size k (VVk). Figure 2 shows the
structure of the chromosome of size 4, i.e. a view vector of size 4 (VV4). Each element in this view
vector is a Big data view identified by a view identifier (Vid). The value of k, which represents the
number of views to be materialized, also acts as an input to the algorithm.

BDVSA
SPEA-2

Bi-objective Problem: Minimize the query evaluation cost (QEC
BDV
); and

minimize the update processing cost (UPC
BDV
) for a given query workload

over a time window.
Input
 List of frequent Queries (Q) and their frequencies (f) in a time window
 List of Candidate Big data views for materialization (CVV

BD
)

 Mapping of queries to alternate query evaluation plans using Big data
views (QtVs)
 Cost vectors of Candidate Views (number of Big data blocks)
 Size of materialized view (CMV), and
 Size of Data, which is used for computing the view (CV)
 Update factor of big data required to compute ith View V

BDi
(uf

i
)

 View Integrity Factor (I
m
)

 Data size, in terms of Big data blocks, for updating ith materialized
view(UMV

i
)

 The size of view vectors, representing number of views to
materialize (k)
Output
 Set of non-dominated view vectors of size k
Procedure:
Initialize:
 Population Size (N); Archive size (Narc); Number of Generations (n

g
);

 Probability of crossover (p
c
); Probability of mutation (p

m
);

Figure 2. The View Vector of size 4 (VV4)

Journal of Information Technology Research
Volume 15 • Issue 1

9

Step 1: Generate Initial Population:
 Create a random population (POna) of size N of view vectors of
size k (VVk);
 Create an empty archived population (POarc) = ∅ ;
Perform the following Steps WHILE generation t<= n

g

 Step 2: Compute Objective function values
 For every view vector (VVk) of population VVk

na
∈

POna

 for every Query i in Q
 Compute the Minimum cost of ith Query MCQ

i
 using equation

given below, by computing cost of query evaluation for every jth query
evaluation plan, where a plan consists of z views.

MCQ Min m CMV ufv m
i j z z z z
= × × + ×

+ −∑ 1

1

2
1

zz z z
CV uf()× × + ×

1
1

2
 // MCQ

i
 is computed for each query

 Compute the objective function values using the equations given
below:

 QEC MCQ f
BDV i i

i

n

= ×()
=
∑

1

UPC m UMV I
BDV i i mi i
= × ÷()∑

 // compute for every VVk
na

 Step 3: Assign Fitness
 Compute the strength value (StVVk) for each view vector
(VVk

i
) ∈ {POna ∪ POarc} using the equation given below:

 StVVk VVk VVk POna POarc VVk VVk
i j j i j
= ∈ ∪{ } ∧� � � � � � ��{� | � � � � }� .

 The symbol:|…| specify cardinality of the set; ∪ finds the
union of multi-set; and � is a symbol for Pareto dominance relation
(Zitzler et al., 2001).
 Compute the raw fitness (Rf

i
) for each VVk

i
using the equation

given below:

 Rf StVVk
i

POna POarc VVk VVk

j

j i

=
∪{ }()∧

)
∑

j � (� �]

()����
�

 Compute the fitness (Ff
i
) for each VVk

i
 ∈ {POna ∪ POarc} as:

 Compute the density (den
i
) of each VVk

i
 using k-nearest

method using equation given below:

 den
i
=

+
��

�

�
VVk
k

i

1

2()±

 Here, ±
VVk
k

i
is computed using Euclidian distance of the

ith view vector from all other view vectors VVk
j
 ∈ {POna ∪ POarc} using

the equation given below:

dist QEC QEC UPC UPC
ij i j i j
= −() + −()n n n n

2 2

 These distances are then sorted. The kth distance is
used for computation of den

i
. The value of k for the k-nearest neighbor

method is N Narc+()

Journal of Information Technology Research
Volume 15 • Issue 1

10

 Compute the fitness (Ff
i
) using the equation given below:

 Ff Rf den
i i i
= +

 Step 4: Selection of Environment
 Transfer all the non-dominated view vectors from POna and POarc to
archived population of next generation using the equation given below:

 POarc VVk VVk POna POarc Ff
i i i() = ∈ () ∪ (){ } ∧ <

+t t t1
1{ | }

 Compare the |(POarc)
t+1
| with Archive size (Narc)

 if |(POarc)
t+1
| == (Narc) the step is complete;

 else if |(POarc)
t+1
| < (Narc)

 Copy [(Narc) - |(POarc)
t+1
|] best dominated

view vectors
 from POna and POarc to archived
population of next generation
 else if |(POarc)

t+1
| > (Narc)

 Truncate |(POarc)
t+1
| - (Narc) view vectors one

by one from archived population of next generation, which are closest to
other view vectors.
 Step 5: Termination:
 if the generation t >= n

g
 then collect all the non-dominated view-

vectors of (POarc)
t+1
.

 Output the final non-dominating view-vectors from (POarc)
t+1
.

 Step 6: Mating Selection
Use binary tournament selection method with replacement on(POarc)

t+1
to

create mating pool:
 Perform the following selection till mating pool is full
 Select a binary pair of VVk from the (POarc)

t+1

randomly
 Select the winner of each pair using the lower
fitness (Ff

i
)

 Winner VVk is made a member of mating pool
 Perform the above selection till mating pool is full
 Step 7: Variation
 Repeat for every ith and (i+1)th (i=1, 3,… mp-1) VVk in mating pool
 Perform a modified single point crossover (Davis, 1985) with
a probability p

c
ensuring no duplicate Vid in the view vector.

Perform random mutation (Goldberg, 1989) with a probability p
m
 ensuring

no duplicate Vid in view vector.
 Assign the resultant population to POna.
 Repeat Step 2 to Step 7 WHILE generation t++ <= n

g

END of Algorithm
BDVSASPEA-2 comprises seven steps. The algorithm uses view vectors of size k, which represent

the number of materialized views.
In step 1, a random population (POna) of size N with view vectors (VVk) of size k is created and

the archived population is set to null. The algorithm then performs steps 2 to 7 for a pre-specified
number of generations.

In step 2, the values of the objective functions, i.e. query evaluation cost and update processing
cost are computed. For each view vector of the population, the minimum cost of evaluating a query
is computed using equation (1) and the QEC is computed using equation (2). These computations use
the alternate query evaluation plans, the size of the views or the data required to compute the view (in

Journal of Information Technology Research
Volume 15 • Issue 1

11

terms of Big data blocks), the change in the size of data or views, and query frequencies. Equation (3)
is used to compute the UPC. It requires the size of data (in terms of Big data blocks) that is processed
to perform updates on the materialized views and the integrity factor of the data of the views.

Step 3 is used to assign fitness to each view vector VVki in the population and the archived
population. The strength of a view vector is computed by finding the number of view vectors it
dominates. The strength value (StVVk) for each view in the population and the archived population
is computed using equation (4) (Zitzler et al. 2001)

StVVk VVk VVk POna POarc VVk VVk
i j j i j
= ∈ { } ∧{ | }� � � � � �∪ � (4)

The strength of the ith view vector is computed (equation 4) by computing the cardinality of the
set of view vectors, which are dominated by the ith view vector in the set of population and archived
population. An ith view vector dominates a jth view vector, represented by VVk VVk

i j
� , if the ith view

vector is better than the jth view vector in at least one objective function and is as good as the jth view
vector with regard to the remaining objective functions. Next, the raw fitness value (Rfi) for each VVki
is computed using equation (Zitzler et al. 2001) given below:

Rf StVVk
i

POna POarc VVk VVk

j

j i

=
{ }()∧

)
∑

j � (� �]

()�
∪ �

 (5)

The raw fitness of a view vector is the sum of the strength of all the view vectors in the population
and the archived population that dominates it. Thus, a view vector, which is not dominated by any
other view vector will have raw fitness as 0.

Next, the density value (den
i
) is computed for each of the view vector VVki using the k-nearest

distance from all other view vectors in the population and the archived population, which is given
below (Zitzler et al. 2001).

den
i

VVk
k

i

=
+

��
�

�

1

2()α
 (6)

The value 2 in the denominator of the above equation is a constant value, which ensures that the
value of the density is always less than 1. Further, α

VVk
k

i
 is computed using the Euclidian distance of

the view vector VVki from all other view vectors in the population and the archived population. The
Euclidian distance is computed after normalizing the QEC and UPC values to nQPC and nUPC
respectively, as the values of QEC and UPC differ in magnitude. The distance between the ith and the
jth view vectors is computed as given below (Zitzler et al. 2001):

dist nQEC nQEC nUPC nUPC
ij i j i j
= −() + −()� � �

2 2
 (7)

Next, the distance (distij) for VVki are sorted and the kth distance α
VVk
k

i
() is used for the computation

of density (deni) of the ith view vector. The value of k in the context of the k-nearest neighbor method

is computed using the expression N Narc+() (Zitzler et al. 2001)

Journal of Information Technology Research
Volume 15 • Issue 1

12

The fitness value (Ff
i
) for the ith view vector (VVki) is computed using the following equation

(Zitzler et al. 2001), where raw fitness (Rf
i
) is computed using equation (5) and density ()den

i
 is

computed using equation (6):

Ff Rf den
i i i
= + (8)

Step 4 of the algorithm is used for the selection of the environment. For this, first, the non-
dominated view vectors are identified and transferred to the archived population for the next generation
POarc()

+t 1
. This can be computed as given below (Zitzler et al. 2001):

POarc VVk VVk POna POarc Ff
i i i() = ∈ () (){ } ∧ <

+t t t1
1{ | }∪ (9)

The above equation identifies all the VVk
i
 in the population or the archived population, which

has the fitness value of less than 1 and creates the archived population of the next generation. It may
be noted that all the non-dominated view vectors must have a fitness value less than 1, as for a non-
dominated view vector, raw fitness ()Rf

i
 (equation 5) would be zero, and the value of the density

()den
i

 (equation 6) would always be less than 1, as the value of the denominator of equation (6) is
atleast 2.

Next, the size of this next generation archive (POarc()
+t 1

) is compared with the archive size
(Narc). In case both are of the same size, no further action is required, however, if the number of
non-dominated view vectors in � �POarc()

+t 1
is less than Narc, then [(Narc) - POarc()

+t 1
], best

dominated view vectors from POna and POarc are transferred to the archived population of the next
generation. If the value of POarc()

+t 1
 is more than Narc then the view vectors which are closest

to other view vectors are truncated using the density value. In each truncation operation, only one
view vector having lesser density is removed. Thus, POarc()

+t 1
 - (Narc) truncation operations are

performed.
In step 5, the algorithm checks, if the algorithm has run for the pre-specified number of

generations. If so, the non-dominated view-vectors stored in the archived population (POarc)t+1 are
produced as the output and the algorithm terminates.

Step 6 of the algorithm uses the binary tournament selection method with replacement on
(POarc)t+1 to create the mating pool (Zitzler et al. 2001). A pair of VVks are randomly selected from
the (POarc)t+1. The view vector VVk, which has a lower fitness value (Ffi), is selected and added to
the mating pool. This operation is repeated till the mating pool is full.

Step 7 is used to perform the crossover and mutation operations. The crossover is performed on a
pair of view vectors VVk in the mating pool using a modified single point crossover operator (Davis,
1985) with a probability pc. This modified single point crossover ensures that no duplicate view is part
of a view vector. Similarly, random mutation (Goldberg, 1989) is performed with a probability pm. The
modified random mutation operation further ensures that no duplicate view is part of a view vector.

Steps 2 to step 7 of the algorithm are repeated for predefined number of generations. An example
illustrating the use of BDVSASPEA-2 is discussed next.

Journal of Information Technology Research
Volume 15 • Issue 1

13

5 EXAMPLE OF BDVSASPEA-2

The input to the proposed algorithm is a set of queries and their frequencies, which are shown in Table
1. These queries assume three query attributes QA {A, B, C} with the dependency B→C, as shown in
Fig. 1. This example assume a Big data size of 100 Big data blocks (one Block = 128 MB), which
includes 10 Big data blocks of structured data, 40 Big data blocks of semi-structured data and 50
Big data blocks of unstructured data. Figure 1 is also used to create the candidate views as shown in
Table 2, for example, the view V1(2) in Table 2 has been created using the second node View(B,A)
in Fig. 1, using the structured and semi-structured data (SD+SSD) only. The view cost data, viz. CVi
and CMVi, are also computed using the data size, in terms of the number of Big data blocks, using
Fig. 1. For example, the CV1 for view V1 is computed by adding the sizes of the structured and the
semi-structured data of the Root Node and CMV1 for view V1 is computed by adding the sizes of the
structured and the semi-structured data of the second node View(B,A). The other statistic shown in
Table 2, is based on different types of the data of the views. Table 1 shows a set of 5 most frequent
queries, which uses 8 possible views. It also shows the alternate query evaluation plans, which are
generated using the links or interrelationships shown in Fig. 1 and the type of data used to create
the view. Table 2 shows these 8 views and the data related to these views. The views 9, 10 and 11

Table 1. Query evaluation Plans and Query frequency

Query Evaluation Plans for different Queries Query Frequency

Q1 V9 V5 - - 10

Q2 V10 V7 V1 V3 20

Q3 V11 V8 V2 V4 20

Q4 V9, V10 V9, V3 - - 30

Q5 V9, V11 V6 V2 - 20

Table 2. Example data of Views for materialization

V1
(2)

V2
(2)

V3
(3)

V4
(4)

V5
(5)

V6
(5)

V7
(6)

V8
(6)

V9
(Root)

V10
(Root)

V11
(Root)

SD+SSD SD+UD SSD SD+UD SD SD+UD SSD UD SD SSD UD

Views Cost Data:

Size of non-materialized view (CVi):

50 60 40 60 10 60 40 50 10 40 50

Size of materialized view (CMVi):

26 32 20 20 4 14 8 10 10 40 50

View Integrity Factor (Imi)

0.9 0.8 0.9 0.8 0.99 0.8 0.9 0.8 0.99 0.9 0.8

Size Increase Factor (ufvi and ufi)

0.8 0.9 0.8 0.9 0.5 0.9 0.8 0.9 0.5 0.8 1

Data size for updating a view (UMVi)

40 54 32 54 5 54 32 45 5 32 50

S-Structured, SS-Semi-structured, U-Unstructured, D-Data

Journal of Information Technology Research
Volume 15 • Issue 1

14

in Table 2 are created from the root node of Fig. 1 for structured, semi-structured and unstructured
data respectively. These views are always assumed to be materialized.
Step 1: Generate Initial Population

An initial random population of size 10 is created and is given in Table 3. The size of the archived
population is assumed to be 8. However, initially the archived population set is empty.
Step 2: Compute Objective function values

The objective function values for the population is computed using equations (2) and (3) using
the data given in Table 1 and Table 2. In order to compute the QEC, the value of MCQi for every ith
query is computed using equation (1). For example, the value of MCQi for the view vector VV41 and
query Q1 is computed for the two alternate paths, which consist of a single view each viz. V9 and V5
respectively. It may be noted that V9 is created from the root node and is assumed to be materialized
and V5 is one of the views in the view vector VV41 and therefore, is proposed to be selected for
materialization. Thus, MCQi for this query for the given view vector will be computed using the
following equation:

MCQ Minimumof CMV ufv
i
= × × + ×

� �1 1

1

29 9
aand CMV uf1 1

1

25 5
× × + ×

��

Likewise, the MCQi for all the queries will be computed for VV41. These MCQi values and query
frequencies will be used to compute the QEC for VV41 using equation (2). The computation of UPC for
VV41 will use the data size for updating a view (UMVi) and the integrity factor (Im) for the views of view
vector VV41, viz. (V2, V5, V6 and V4), and all the root node views (V9, V10, V11), which are assumed to
be materialized. The computed values of QEC and UPC for all the view vectors are shown in Table 3.

Step 3: Assign Fitness
The fitness values are computed based on the strength of each view vector of size 4 (StVV4i) using

equation (5). A dominated matrix is created for each pair of view vectors, which is used to compute
StVV4j. If the view vector in the ith row dominates view vector of the jth column, then 1 is put in that
cell, else a value 0 is put in the cell. For example, the view vector VV42 dominates view vector VV44
, as it has lower QEC and UPC values. Accordingly, the row of VV42 under column VV44 has a value

Table 3. The Initial Population of view vectors, QEC and UPC

View ID Selected Views QEC UPC

VV41 2 5 6 4 4211 311

VV42 3 6 4 1 2886 318

VV43 7 6 8 5 3025 267

VV44 1 6 8 2 3604 339

VV45 6 4 2 7 3390 341

VV46 4 1 5 3 4145 256

VV47 1 3 2 7 3420 286

VV48 2 1 6 5 4167 288

VV49 5 1 4 2 4341 288

VV410 4 2 3 7 3072 309

Journal of Information Technology Research
Volume 15 • Issue 1

15

1. It may be noted that StVV4j is the sum of each row, while Rfi is obtained by adding all the StVV4j
of the ith column, where the dominated matrix contains a value 1 (refer to Table 4). For example, raw
fitness value (Rfi) for view vector VV44 is the sum of the strengths of VV42, VV43, VV47 and VV410;
which dominate the view vector VV44.

Next, the density of each view vector is computed using equations (6) and (7). To compute
density, a normalized distance from the ith view vector to all the view vectors is computed. These
values are then sor ted for each view vector. The value of k i s computed as

N Narc+() = +() =10 8 4 (rounded off). Table 5 shows the distance of 4th nearest neighbor in
the 4th row. Table 6 shows the density computed using equation (6).

Next, the fitness for each view vector is computed using equation (8). Table 6 shows the fitness assignment.

Table 4. Computation of Dominated Matrix, Strength and Raw Fitness

Table 5. Computation of kth Nearest Neighbor

Journal of Information Technology Research
Volume 15 • Issue 1

16

Step 4: Selection of Environment
Selection of the environment is performed using equation (9). Since, the number of non-dominated

view vectors is less than the size of the archived population, the best dominated view vectors are
transferred to the archived population of the next generation. Table 7 shows this archived population
of the next generation.

Step 5: Termination
Since the generations are less than the number of specified generations, the algorithm proceeds

to step 6.
Step 6: Mating Selection

For mating selection, binary tournament selection is performed on the views using the next
generation archived population. The mating pool is shown in Table 8.
Step 7: Variation

The modified crossover is performed with a probability of 0.8 and mutation is performed with
a probability of 0.1. The results of the variation are shown in Table 8.

Table 6. Computation of Final Fitness

View ID Selected Views StVV4i Rfi Deni Ffi

VV41 2 5 6 4 0 19 0.28714 19.287

VV42 3 6 4 1 2 0 0.2869 0.2869

VV43 7 6 8 5 7 0 0.26301 0.26301

VV44 1 6 8 2 0 16 0.28714 16.287

VV45 6 4 2 7 0 12 0.30628 12.306

VV46 4 1 5 3 3 0 0.27031 0.27031

VV47 1 3 2 7 4 7 0.29786 7.2979

VV48 2 1 6 5 2 14 0.31987 14.32

VV49 5 1 4 2 0 16 0.31442 16.314

VV410 4 2 3 7 3 7 0.30628 7.3063

Table 7. Archived Population of size 8 for the Next Generation

View ID Selected Views QEC UPC Ff.i

VV42 3 6 4 1 2886 318 0.2869

VV43 7 6 8 5 3025 267 0.26301

VV46 4 1 5 3 4145 256 0.27031

VV47 1 3 2 7 3420 286 7.2979

VV410 4 2 3 7 3072 309 7.3063

VV45 6 4 2 7 3390 341 12.306

VV48 2 1 6 5 4167 288 14.32

VV44 1 6 8 2 3604 339 16.287

Journal of Information Technology Research
Volume 15 • Issue 1

17

Steps 2 to 7 are repeated for a pre-specified number of generations whereafter, the non-dominated
view vectors of size k are produced as the output.

BDVSASPEA-2 was executed for 10 generations for the view vectors of size 4 (k=4). The non-
dominated view vectors of size 4 are shown in Table 9.

Experimental results are discussed next.

6 EXPERIMENTAL RESULTS

The BDVSASPEA-2 is implemented using GNU Octave 4.4.1 on an Intel dual core I5, 2.5 GHz, 64-bit
processor, with 6 GB RAM. This implementation assumes a set of 14 queries with 4 query attributes
and 16 views and similar query statistics as was considered in (Kumar A, Vijay Kumar T.V, 2021b)
so as to validate the results. It may be noted that most of the statistics, which have been used for
experimental results are similar to the example data which has been presented in section 5. The
algorithm was run for a population (N) =100; an archived population size = 80; Number of generations
(ng) = 25; Probability of crossover (pc) = 0.8; and Probability of mutation (pm) = 0.1.

The algorithm was run for different sizes of the view vectors (k). Figure 3 shows the non-dominated view
vectors for different sizes of the view vectors (k) from 3 to 10. It can be observed form Fig. 3 that for lower
values of k, the non-dominated view vectors have a higher query evaluation cost and lower view update cost.

Figure 4 represents the QEC, UPC and the number of materialized views. It shows that the query
evaluation cost decreases, in general, with an increase in the number of materialized views while
the update processing cost increases with an increase in the number of materialized views. Figure 5
shows non-dominated view vectors of all sizes.

Table 8. Mating Pool, Crossover and Mutation

Table 9. Non-Dominated View Vectors of size 4

k Selected Views QEC UPC

4 7 6 8 5 3025 267

4 7 6 8 3 2260 298

4 7 6 5 3 3345 247

4 7 1 5 3 4679 224

4 3 6 4 5 2811 279

Journal of Information Technology Research
Volume 15 • Issue 1

18

Figure 3. Query Evaluation Cost and Update Processing Costs for view vectors of different sizes

Figure 4. Query Evaluating Cost Vs. View Update cost Vs. Number of Materialized Views

Figure 5. Non-dominated view vectors

Journal of Information Technology Research
Volume 15 • Issue 1

19

It may be noted that only 24 distinct non-dominated data points are visible in Fig. 5. Each of these
data points refer to a unique value of QEC and UPC pair. However, it was observed that dissimilar
view vectors may have same QEC and UPC values (Table 10). In fact, BDVSASPEA-2 has produced 72
different non-dominated view vectors.

It can be noted from Table 10 that, although the three view vectors of size 9 though have different
sets of materialized views, but they have the same values of QEC and UPC. This can be attributed to
the experimental data set, which has been used to compute the set of materialized views. It may be
noted that the three view vectors in Table 10 differ only on one view, i.e. the fourth row.

BDVSASPEA-2 performs better than the greedy approach in regards to electing Big data views
for materialization (Kumar & Vijay Kumar, 2021a), as the latter produces only one view vector
for each view vector of size k.

Table 11 compares the non-dominated view vectors obtained from BDVSASPEA-2 with the view
vectors obtained from BDVSAVEGA (Kumar & Vijay Kumar, 2021b). Table 11 shows view vectors of
size k=7. It can be noted from table 11 that the view vectors obtained from BDVSASPEA-2 dominate
the view vectors obtained by BDVSAVEGA. Thus, BDVSASPEA-2 produces better quality view vectors in
comparison of BDVSAVEGA (Kumar & Vijay Kumar, 2021b).

Further, BDVSASPEA-2 produces a number of view vectors, any of which can be selected by an application
for materializing the Big data views subject to the space and timing constraints pertaining to that application.

The total processing cost, which is computed by adding the query evaluation cost and the update
processing cost, was plotted against the number of materialized views (Fig. 6). This total processing
cost was averaged on the final set of view vectors produced by BDVSASPEA-2 (Fig. 5) and the best five
view vectors on QEC along with the best five vectors on UPC of BDVSAVEGA. However, it may also be
noted that BDVSASPEA-2 produces non-dominated view vectors, whereas BDVSAVEGA does not produce
such view-vectors. Thus, in general, BDVSASPEA-2 performs comparatively better than BDVSAVEGA.
However, these algorithms can be compared using statistical approaches.

Table 10. View vectors of size 9 having the same QEC and UPC

Table 11. BDVSASPEA-2 Vs. BDVSAVEGA: QEC and UPC of view vectors

View Vectors
of BDVSASPEA-2

View Vectors
of BDVSAVEGA

QEC UPC QEC UPC

2138 195 2826 210

2341 176 2956 215

2476 172 3159 196

Journal of Information Technology Research
Volume 15 • Issue 1

20

One of the sources of errors, which may lead to the non-optimal selection of Big data views for
materialization, is the query frequencies statistics, which has a major impact on the computation of
the query evaluation cost. It may be noted that the present statistics of query frequencies are used to
estimate the future statistics of queries. In general, Big data application queries may show a periodicity
over time and should be collected as part of the statistics of an application. In addition, other statistics,
as shown in Table 2, also needs to be optimized for minimizing errors in view materialization. Seamless
implementation of BDVSASPEA-2 in an actual Big data application on different master nodes may be
considered, as it can minimize the query processing time.

7 CONCLUSION

Big data view materialization is formulated as a bi-objective Big data view materialization problem
in (Kumar & Vijay Kumar, 2021b) where the two objectives are the minimization of the query
evaluation cost for a set of workload queries and the minimization of the update processing cost of
the materialized views over a given time window. This bi-objective Big data view materialization is
addressed using SPEA-2 in this paper. Accordingly, SPEA-2 based Big data view selection algorithm,
i.e. BDVSASPEA-2, that selects non-dominated and diverse Big data views for materialization is presented.
Further, it shown that the algorithm BDVSASPEA-2 is able select comparatively better quality views
than those selected using existing Big data view selection algorithms. Big data views selected using
BDVSASPEA-2, when materialized, would improve the query response times of Big data queries. As a
future work, the performance of BDVSASPEA-2 can be statistically compared with other existing Big
data view selection algorithms using larger and real experimental data sets.

FUNDING AGENCy

The publisher has waived the Open Access Processing fee for this article.

Figure 6. BDVSASPEA-2 Vs. BDVSAVEGA: Average total processing cost of view vectors

Journal of Information Technology Research
Volume 15 • Issue 1

21

REFERENCES

Abiteboul, S. (1999, December). On Views and XML. SIGMOD Record, 28(4), 30–38. doi:10.1145/344816.344853

Abiteboul, S., Goldman, R., McHugh, J., Vassalos, V., & Zhuge, Y. (1997). Views for Semistructured Data.
Technical Report. Stanford InfoLab, Workshop on Management of Semistructured Data, Tucson, AZ.

Agrawal, S., Chaudhari, S., & Narasayya, V. (2000). Automated Selection of Materialized Views and Indexes
in SQL databases. 26th International Conference on Very Large Data Bases (VLDB 2000), 486-505.

Arun, B., & Vijay Kumar, T. V. (2015a). Materialized View Selection using Marriage in Honey Bees Optimization.
International Journal of Natural Computing Research, 5(3), 1–25. doi:10.4018/IJNCR.2015070101

Arun, B., & Vijay Kumar, T. V. (2015b). Materialized View Selection using Improvement Based Bee Colony
Optimization. International Journal of Software Science and Computational Intelligence, 7(4), 35–61.
doi:10.4018/IJSSCI.2015100103

Arun, B., & Vijay Kumar, T. V. (2017a). Materialized View Selection using Artificial Bee Colony Optimization.
International Journal of Intelligent Information Technologies, 13(1), 26–49. doi:10.4018/IJIIT.2017010102

Arun, B., & Vijay Kumar, T. V. (2017b). Materialized View Selection using Bumble Bee Mating Optimization.
International Journal of Decision Support System Technology, 9(3), 1–27. doi:10.4018/IJDSST.2017070101

Bibri, S. E. (2018). The IoT for smart sustainable cities of the future: An analytical framework for sensor-based
big data applications for environmental sustainability. Sustainable Cities and Society, 38, 230–253. doi:10.1016/j.
scs.2017.12.034

Chirkova, R., Halevy, A. Y., & Suciu, D. (2001). A Formal Perspective on the View Selection Problem.
Proceedings of the 27th VLDB Conference.

Davis, L. (1985). Applying adaptive algorithms to epistatic domains. Proceedings of the international joint
conference on artificial intelligence, 162–164.

Dean, J., & Ghemawat, S. (2012, January). MapReduce: A Flexible data processing tool. Communications of
the ACM, 53(1), 72–77. doi:10.1145/1629175.1629198

Dezyre. (2015). Hadoop Ecosystem Components and Its Architecture from the web site dated 04 Jun 2015 with
Latest Update made on December 6, 2017. Accessed on August 08, 2019 from the website. https://www.dezyre.
com/article/hadoop-ecosystem-components-and-its-architecture/114

El-Sayed, M., Rundensteiner, E. A., & Mani, M. (2006). Incremental Maintenance of Materialized XQuery Views.
Proceedings of 22nd International Conference on Data Engineering (ICDE’06). doi:10.1109/ICDE.2006.80

Gandomi, A., & Haider, M. (2015). Beyondthe hype: Big data concepts, methods, and analytics. International
Journal of Information Management, 35(2), 137–144. doi:10.1016/j.ijinfomgt.2014.10.007

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Mne Learning. Addison Wesley.

Goswami, R., Bhattacharyya, D. K., & Dutta, M. (2017, December). Materialized view selection using
evolutionary algorithm for speeding up big data query processing. Journal of Intelligent Information Systems,
49(3), 407–433. doi:10.1007/s10844-017-0455-6

Gupta, A., & Mumick, I. S. (1995). Maintenance of Materialized Views: Problems, Techniques, and Applications.
Data Eng. Bulletin, 18(2).

Gupta, H. (1996). Selection of views to materialize in a data warehouse. In F. Afrati & P. Kolaitis (Eds.), Lecture
Notes in Computer Science: Vol. 1186. Database Theory — ICDT ’97. ICDT 1997. Springer.

Gupta, R., Gupta, H., & Mohania, M. (2012). Cloud Computing and Big Data Analytics: What is new from
Database Perspective? In Proceedings of Big Data Analytics-First International Conference. Springer.
doi:10.1007/978-3-642-35542-4_5

Hadoop. (2012). https://hadoop.apache.org/

Hadoop Documentation. (2008). https://hadoop.apache.org/docs/r0.17.0/mapred_tutorial.html

http://dx.doi.org/10.1145/344816.344853
http://dx.doi.org/10.4018/IJNCR.2015070101
http://dx.doi.org/10.4018/IJSSCI.2015100103
http://dx.doi.org/10.4018/IJIIT.2017010102
http://dx.doi.org/10.4018/IJDSST.2017070101
http://dx.doi.org/10.1016/j.scs.2017.12.034
http://dx.doi.org/10.1016/j.scs.2017.12.034
http://dx.doi.org/10.1145/1629175.1629198
https://www.dezyre.com/article/hadoop-ecosystem-components-and-its-architecture/114
https://www.dezyre.com/article/hadoop-ecosystem-components-and-its-architecture/114
http://dx.doi.org/10.1109/ICDE.2006.80
http://dx.doi.org/10.1016/j.ijinfomgt.2014.10.007
http://dx.doi.org/10.1007/s10844-017-0455-6
http://dx.doi.org/10.1007/978-3-642-35542-4_5
https://hadoop.apache.org/
https://hadoop.apache.org/docs/r0.17.0/mapred_tutorial.html

Journal of Information Technology Research
Volume 15 • Issue 1

22

Harinarayan, V., Rajaraman, A., & Ullman, J. D. (1996). Implementing data cubes efficiently. In Proceedings
of the 1996 ACM SIGMOD international conference on Management of data (SIGMOD ’96). ACM.
doi:10.1145/233269.233333

Jacobs, A. (2009, August). The Pathologies of Big Data. Communications of the ACM, 52(8), 36–44.
doi:10.1145/1536616.1536632

Kumar, A., & Vijay Kumar, T. V. (2015). Big data and analytics: Issues, challenges, and opportunities.
International Journal of Data Science, 1(2), 118–138. doi:10.1504/IJDS.2015.072412

Kumar, A., & Vijay Kumar, T. V. (2021a). View Materialization over Big Data. International Journal of Data
Analytics, 2(1), 61–85. doi:10.4018/IJDA.2021010103

Kumar, A., and Vijay Kumar, T.V. (2021b). A Multi-objective approach to Big data view materialization.
International Journal Knowledge and Systems Science 12(2):17-3, doi:10.4018/IJKSS.2021040102.

Kumar, S., & Vijay Kumar, T.V.(2018). A Novel Quantum Inspired Evolutionary View Selection Algorithm.
Journal Sadhana, 43(10).

Kuno, H. A., & Rundensteiner, E. A. (1995). Materialized Object-Oriented Views in MultiView. ACM Research
Issues Data Eng. Workshop, 78-85.

Labrinidis, A., & Roussopoulos, N. (2000). WebView materialization. ACM SIGMOD Record, 29(2), 367–37.

Lu, W., Wang, Y., Jiang, J., Jian, L., Shen, Y., & Wei, B. (2017). Hybrid storage architecture and efficient
MapReduce processing for unstructured data. Parallel Computing, 69, 63–77. doi:10.1016/j.parco.2017.08.008

Luo, J., Wu, M., Gopukumar, D., & Zhao, Y. (2016). Big Data Application in Biomedical Research and
Health Care: A Literature Revie. Biomedical Informatics Insights, 8, BII.S31559. Advance online publication.
doi:10.4137/BII.S31559 PMID:26843812

Mami, I., & Bellahsene, Z. (2012). A Survey of View Selection Methods. SIGMOD Record, 41(1).

Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Hung Byers, A. (2011). Big data: The
next frontier for innovation, competition, and productivity. Report by McKinsey Global Institute.

Mistry, H., Roy, P., Sudarshan, S., & Ramamritham, K. (2001). Materialized view selection and maintenance
using multi-query optimization. Proceedings of the ACM (SIGMOD) Conference on the Management of Data,
307-318. doi:10.1145/375663.375703

Prakash, J., & Vijay Kumar, T. V. (2019a). A Multi-objective Approach for Materialized View Selection.
International Journal of Operations Research and Information Systems, 10(2), 1–19. doi:10.4018/
IJORIS.2019040101

Prakash, J., & Vijay Kumar, T. V. (2019b). Multi-Objective Materialized View Selection using Improved Strength
Pareto Evolutionary Algorithm. International Journal of Artificial Intelligence and Machine Learning, 9(2),
1–21. doi:10.4018/IJAIML.2019070101

Prakash, J., & Vijay Kumar, T. V. (2020a). Multi-Objective Materialized View Selection using MOGA.
International Journal of Systems Assurance Engineering and Management, 11(2), 220–231. doi:10.1007/
s13198-020-00947-2

Prakash, J., & Vijay Kumar, T. V. (2020b). Multi-Objective Materialized View Selection using NSGA-II.
International Journal of Systems Assurance Engineering and Management, 11(5), 972–984. doi:10.1007/
s13198-020-01030-6

Ross, K., Srivastava, D., & Sudarshan, S. (1996). Materialized view maintenance and integrity constraint
checking: Trading space for time. SIGMOD Intl. Conf. on Management of Data. doi:10.1145/233269.233361

Roussopoulos, N. (1998). Materialized Views and Data Warehouses. SIGMOD Record, 27(1), 21–26.
doi:10.1145/273244.273253

Tang, N., Xu Yu, J., & Tang, H. (2009), Materialized View Selection in XML Databases. Database Systems for
Advanced Applications, 5463.

http://dx.doi.org/10.1145/233269.233333
http://dx.doi.org/10.1145/1536616.1536632
http://dx.doi.org/10.1504/IJDS.2015.072412
http://dx.doi.org/10.4018/IJDA.2021010103
http://dx.doi.org/10.1016/j.parco.2017.08.008
http://dx.doi.org/10.4137/BII.S31559
http://www.ncbi.nlm.nih.gov/pubmed/26843812
http://dx.doi.org/10.1145/375663.375703
http://dx.doi.org/10.4018/IJORIS.2019040101
http://dx.doi.org/10.4018/IJORIS.2019040101
http://dx.doi.org/10.4018/IJAIML.2019070101
http://dx.doi.org/10.1007/s13198-020-00947-2
http://dx.doi.org/10.1007/s13198-020-00947-2
http://dx.doi.org/10.1007/s13198-020-01030-6
http://dx.doi.org/10.1007/s13198-020-01030-6
http://dx.doi.org/10.1145/233269.233361
http://dx.doi.org/10.1145/273244.273253

Journal of Information Technology Research
Volume 15 • Issue 1

23

Vijay Kumar, T. V., & Arun, B. (2016). Materialized View Selection using BCO. International Journal of
Business Information Systems, 22(3), 280–301.

Vijay Kumar, T. V., & Arun, B. (2017). Materialized View Selection using HBMO. International Journal of
Systems Assurance Engineering and Management, 8(1), 379-392.

Vijay Kumar, T. V., & Kumar, S. (2014). Materialized View Selection using Differential Evolution. International
Journal of Innovative Computing and Applications, 6(2), 102–113. doi:10.1504/IJICA.2014.066499

Vijay Kumar, T. V., & Kumar, S. (2015). Materialized View Selection using Randomized Algorithms.
International Journal of Business Information Systems, 19(2), 224–240. doi:10.1504/IJBIS.2015.069432

Yafooz, W., & Abidin, Z. (2013). Managing unstructured data in relational databases. Proceedings - 2013 IEEE
Conference on Systems, Process and Control, ICSPC 2013, 198-203.

Zhou, C., Su, F., & Pei, T. (2020). COVID-19: Challenges to GIS with Big Data. Geography and Sustainability,
1(1), 77-87. https://www.sciencedirect.com/science/article/pii/S2666683920300092

Zikopoulos, P. C. E. (2011). Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming
Data (1st ed.). McGraw-Hill Osborne Media.

Zitzler, E., Deb, K., & Thiele, L. (2000). Comparison of multiobjective evolutionary algorithms: Empirical
results. Evolutionary Computation, 8(2), 173–195. doi:10.1162/106365600568202 PMID:10843520

Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm.
TIK-report 2001. collection.ethz.ch

Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: A comparative case study and the strength
Pareto approach. IEEE Transactions on Evolutionary Computation, 3(4), 257–271. doi:10.1109/4235.797969

Akshay Kumar is pursuing his PhD at Jawharlal Nehru University, New Delhi. He did Master of Technology (M.Tech.)
in Computer Science from IIT Delhi in 1988. He is employed as a faculty member at School of Computer and
Information Science, IGNOU, New Delhi.

T. V. Vijay Kumar has completed his PhD in the area of databases from Jawaharlal Nehru University, New Delhi,
India, after completing his MPhil and MSc in Operational Research, and BSc (Hons) in mathematics, from the
University of Delhi, Delhi, India. His research interests are databases, data warehousing, data mining, machine
learning, nature inspired algorithms, disaster management, Big Data, and analytics.

http://dx.doi.org/10.1504/IJICA.2014.066499
http://dx.doi.org/10.1504/IJBIS.2015.069432
http://dx.doi.org/10.1162/106365600568202
http://www.ncbi.nlm.nih.gov/pubmed/10843520
http://collection.ethz.ch
http://dx.doi.org/10.1109/4235.797969

