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ABSTRACT

The paper presents a new powerful technique to linearize the quadratic assignment problem. 
There are so many techniques available in literature that are used to linearize the quadratic 
assignment problem. In all these linear formulations, both the number of variables and linear 
constraints significantly increase. The technique proposed in this paper has the strength that 
the number of linear constraints increases by only one after linearization process. The QAP 
has application in areas such as wring, hospital layout, dartboard design, typewriter keyboard 
design, production process, and scheduling.
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1. INTRodUCTIoN

The quadratic assignment problem (QAP) is a well-known problem and this is a problem whereby 
a set of facilities are allocated to a set of locations in such a way that the cost is a function of the 
distance and flow between the facilities. In this problem the costs are associated with a facility being 
placed at a certain location. The objective is to minimize the assignment of each facility to a location 
as given Munapo (2012) and Koopmans & Beckmann (1957). There are three main categories of 
methods for solving the quadratic assignment problem. These categories are heuristics, bounding 
techniques and exact algorithms.

1.1 Heuristics
These are algorithms that quickly give near optimal solutions to the quadratic assignment problem 
that are given in Drezner (20008) and Yang et al. (2008). There are five main classes of heuristics 
for the quadratic assignment problem and these are:

1.  Construction methods
2.  Limited enumeration methods
3.  Improvement methods
4.  Simulated annealing techniques
5.  Genetic algorithms
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1.2 Bounding Techniques
For a formulated quadratic assignment problem a lower bound can be calculated. There are several 
types of bounds that can be calculated for a quadratic assignment problem as given in Adams & 
Johnson (1994) and Ramakrishnan (2002). These are:

1.  Gilmore-Lawler bounds
2.  Eigenvalue related bounds
3.  Bounds based on reformulations

Lower bounds are important in two main ways. Besides being used to approximate optimal 
solutions they can be used within the context of heuristics or exact methods.

1.3 Exact Algorithms
There are for main classes of methods for solving the quadratic assignment problem exactly as given 
in Cela (1998) and Nagarajan and Sviridenko (2009). These are:

1.  Dynamic programming
2.  Cutting plane techniques
3.  Branch and bound procedures
4.  Hybrids of the last two

Research on these four methods has shown that the hybrids are most successful for solving 
instances of the quadratic assignment problem.

1.4 Applications of the QAP
The QAP has application in wring, hospital layout, dartboard design, typewriter keyboard design, 
production process, scheduling etc.

1.4.1 Steinberg Wiring Problem
When wiring a computer backboard, there is a need to minimize the total amount or length of wire 
used. The main reason we need to minimize the amount of wire or length of wire is to minimize costs. 
In addition minimizing the total length of the wiring will improve computing time. To achieve this the 
wiring problem is formulated as a QAP and this problem is now known as Steinberg Wiring Problem.

1.4.2 Hospital Layout
In designing a hospital layout there are so many important factors that must be considered. These 
important factors include the patients, hospital staff, clinics, X-ray room, emergency room, drug store 
etc. In designing the hospital layout the objective is to minimize the total distance a patient in need 
of urgent care must travel before being treated. This problem is formulated as a QAP.

1.4.3 Dartboard Design
A competitive sport in which two or more players bare-handedly throw small sharp-pointed missiles 
at a round target or dartboard is called darts or dart-throwing. In darts, points are scored by hitting 
specific marked areas of the board. These areas follow a principle of points increasing towards the 
centre of the board. The dartboard design problem can be formulated as a QAP.

1.4.4 Typewriter Keyboard Design
The use of smart phone and tablet is increasing significantly these days.
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For one to enter data or text on these modern devices, virtual keyboards are now being used 
instead of the conventional hardware keyboards. The challenge is what is the best virtual keyboard 
layout for these devices? This problem is modeled as a quadratic assignment problem.

1.4.5 Production
In production processes orders for a number of products must be scheduled on a number of similar 
production lines so as to minimize the sum of product- dependent changeover costs, production 
costs and time-constraint penalties. This is a production problem that can be modeled as a quadratic 
assignment problem.

1.4.6 Scheduling
Scheduling is very important in big hospitals, large universities, rail operations, large bus companies, 
airlines, etc. As an example, assignment of classes at a university can be scheduled in such a way 
that very few similar classes would be in the same time slot. In order to do this, the problem can be 
formulated as a quadratic assignment problem.

More on applications of the quadratic assignment problem can be found in Mohamed et al. (2018).

2. QUAdRATIC ASSIGNMENT PRoBLEM FoRMULATIoN

2.1 Types Quadratic Assignment Problems
There are four main variants of the quadratic assignment problem. These are the quadratic bottleneck 
assignment problem (QBAP), the biquadratic assignment problem (BQAP), the quadratic semi-
assignment problem (QSAP), and the generalized quadratic assignment problem (GQAP).

2.1.1 Quadratic Bottleneck Assignment Problem (QBAP)
Suppose we are given a set of n facilities and a set of n locations. Suppose it is also given that for each 
pair of locations, a distance is specified and for each pair of facilities a weight or flow is also specified. 
The quadratic bottleneck problem is to the problem of assigning all facilities to different locations 
with the goal of minimizing the maximum of the distances multiplied by the corresponding flows.

2.1.2 BiQuadratic Assignment Problem (BQAP)
A biquadratic assignment problem can be defined as a quartic assignment problem with cost 
coefficients formed by the products of two four-dimensional arrays.

2.1.3 Quadratic Semi-Assignment Problem (QSAP)
In the quadratic semi-assignment problem (QSAP) we are given again two coefficient matrices, which 
are the flow matrix and a distance matrix. In this case there are n objects and m locations and are in 
such a way that n m> .  The objective is to assign all objects to locations and at least one object to 
each location so as to minimize the overall distance covered by the flow of materials (or people) 
moving between different objects.

2.1.4 Generalized Quadratic Assignment Problem (GQAP)
The GQAP involves the minimization of a total pair-wise interaction cost among m equipment, tasks 
or other entities and where placement of these entities into n possible destinations and is dependent 
upon existing resource capacities.

For more on quadratic assignment variants readers are encouraged to see Billionnet & Elloumi 
(2001). There are so many mathematical formulations for QAP. In this chapter we use the linear 
form proposed by Munapo (2012). This linear form is an extension of the formulation introduced 
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by Koopmans and Beckmann (1957). In this formulation we assume that new buildings are to be 
placed on a piece of land and n sites have been identified as sites for the buildings. We also assume 
that each building has a special function.

2.2 Koopmans-Beckmann Formulation
Let:

• a
ij

 be the walking distance between sites i and j.
• b

kl
 be the number of people per week who circulate between buildings k and l.

Then the Koopmans- Beckmann formulation of the QAP is given as:
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In this formulation there are n2  variables and 2n constraints (Koopmans & Beckman, 1957).

3. CURRENT LINEARIZATIoN TECHNIQUE

The current technique can linearize the Koopmans-Beckmann model to the form given in (2):
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Solving this linearized QAP model becomes very difficult as n increases in size. This 
linearized model has ( )n n4 2+  variables and O n( )4  constraints. This is very difficult to manage 
as n becomes large.
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3.1 The General Quadratic Binary Problem
The Koopmans-Beckmann is a special case of a quadratic binary problem.

Let a general case of the quadratic binary problem be represented in (3):

Minimize Z = +∑∑∑
==

c x x c x
ij i j k k
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n
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n
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n
0 1

11

 

such that:

a x a x a x b
n n11 1 12 2 1 1

+ + + ≤...  

a x a x a x b
n n21 1 22 2 2 2

+ + + ≤...  (3)

… 
a x a x a x b
m m mn n m1 1 2 2
+ + + ≤...  

where a b c
ij i ij
, , 0  and c

k
1  are constants:

1 1≤ ≤ ≤ ≤i m j n,  

x x x i n j n k n
i j k
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3.2 The Variables x x
i j

 where i j=

If i j=  then x x
i j
2 2= .  For binary integer variables we have the following:

x x
i i
( )− =1 0  

x x
i i
2 0− =  

x x
i i
= 2  (4)

Thus x
i
2  can be replaced by x

i
 in the objective function. Similarly x

j
2  can also be replaced by 

x
j
 in the objective function. Note that this substitution on its own does not change the number of 

variables in the problem.

3.3 The Variables x x
i j

 where i j≠

If i j≠  then in the worst case there are n n( )−1

2
 combinations of such variables in the objective function.

Proof 1: Suppose
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3
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1 2 1 3
,  or x x

2 3
 as 

the possible combinations of variables. Thus these three variables give 3 possible combinations.
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3.4 Linearizing the Quadratic Binary Problem

The variable combinations x x
i j

 where i j≠  must be removed in order to make the objective function 
linear. This is done by using the following substitution.

3.4.1 Variable Substitution
Let:

x x
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= δ  (5)
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x x
i j r r
+ = +2δ δ  

δ δ
r r
+ ≤ 1  (6)

δ δ
r r
, { , }∈ 0 1 and r n n

n
= −1 2 1, ,..., ( )  

3.4.2 Proof 2
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∴ Ω =( ) { , )x x
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3.4.2.3 Corresponding Points
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i j
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3.5 Number of Variables and Constraints in the Linearized Model

In the linearization process two extra variables are added to every product of variables x x
i j

 where 
i j≠ ,  that appears in the objective function. In other words for any quadratic binary problem there 
are n n( )−1

2
 such products as shown in Section 2. Thus there are:

2
2

1 1× − = −
n
n n n( ) ( ) new variables  (7)

This gives a total of:

n n n n( −1 2) new variables+  original variables = variables  

Also two extra constraints are added for every product of variables x x
i j

 where i j≠  that appears 
in the objective function. The total number of new constraints is given by (8):

2
2

1 1× − = −
n
n n n( ) ( ) constraints  (8)
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The total number of constraints ( )m  is given by (9):

m m n n=   original constraints +  original constraints = ( - )1 (( - )n m n2 +  variables  (9)

3.6 Linearized Quadratic Binary Problem
Then linearized model becomes as given in (10):

Minimize Z = = +
=

−
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3.7 Reducing the Number of Extra Constraints in the Linear Model

Solving a linear model with n n( )−1  extra constraints and ( - )n m n2 +  extra variables becomes 
very difficult for large QAPs. It is possible to halve the number of extra constraints. The following 
constraints can be combined into one:

x x
i j r r
+ = +2δ δ  

δ δ
r r
+ ≤ 1  

The first constraint can be expressed as given in (11) and (12):

x x
i j r r r
+ = + +δ δ δ  (11)

x x
i j r r r
+ − = +δ δ δ  (12)

Since δ δ
r r
+  cannot exceed one as given in (13):
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x x
i j r
+ − ≤δ 1  (13)

This reduces the number of extra constraints and variables to n n( ) .−1

2

3.8 Further Reduction of Extra Constraints

The reduced n n( )−1

2
 extra constraints still poses a serious problem as n increases. For example if 

n = 1000  it means both constraints and variables increase by 1000 1000 1

2

( )− = 499 500.  There is a need 
to reduce these number of constraints to lowest number possible. The lowest possible number of extra 
constraints is one and can be done. The n n( )−1

2
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i j r
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Then linearized model becomes as given in (17):
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a x a x a x b
m m mn n m1 1 2 2
+ + + ≤...  

( )( ... ) ( ... )n x x x
n
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Note that the number of constraints increases by only one as given in (17).

4. NUMERICAL ILLUSTRATIoN

Solve the quadratic assignment problem given in (18):

Minimize 

       

z x x x x x x x x x x= + + + + + +25 21 22 19 14 15 17
1 2 3 4 1 2 1 3 1 4

                  + + +17 21 20
2 3 2 4 3 4
x x x x x x

 

such that:

13 21 19 20 52
1 2 3 4
x x x x+ + + ≥  (18)

23 17 21 26 57
1 2 3 4
x x x x+ + + ≥  

20 24 17 22 54
1 2 3 4
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x j
j
∈ ={ , }, , , ,0 1 1 2 3 4  

4.1 Making the Model Linear

Using x x
j j
= 2  and x x

i j r
= δ , t linear model in the numerical illustration becomes as given in (19):

Minimize z x x x x= + + + + + + + + +47 45 45 40 14 15 17 17 21 20
1 2 3 4 1 2 3 4 5

δ δ δ δ δ δδ
6

 

such that:
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23 17 21 26 57
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3 3 3 3 6
1 2 3 4 1 2 3 4 5 6
x x x x+ + + − − − − − − ≤δ δ δ δ δ δ  

where:

δ
i

i∈ ={ , }, , , , , ,0 1 1 2 3 4 5 6  
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4.2 Solving as a Linear Integer Model
Solving as a linear model, the optimal solution is obtained as given in (20):

x x x

x
2 3 4 1 2 3

1 4 5 6

1

0

= = = = = =
= = = =

δ δ δ
δ δ δ

,
 (20)

5. CoNCLUSIoN

One of the reasons why the quadratic assignment problem appears to be difficult, is because of the 
huge numbers of extra constraints and variables that result after the linearization process. In the 
proposed approach the number of extra constraints is one. The resulting linear integer problem after 
the linearization process is a zero-one problem and this problem can be solved efficiently by interior 
point algorithms as given in Munapo (2016 & 2020). The quadratic assignment problem presented 
in this paper is not as difficult as was believed to be.
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