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ABSTRACT

Fundamentally, a strategy considering the effective utilization of resources results in the better energy 
efficiency of the system. The aroused interest of users in cloud computing has led to an increased 
power consumption making the network operation costly. The frequent requests from the users asking 
for computing resources can lead to instability in the load of the computing system. To perform the 
load balancing in the host, migration of the virtual machines from the overloaded and underloaded 
hosts needs to be done, which is considered an important facet concerning energy consumption. 
The proposed particle swarm optimization-based resource-aware VM placement (RAPSO_VMP) 
scheme aims to place the migrated virtual machines. RAPSO_VMP takes into consideration multiple 
resources like CPU, storage, and memory while trying to optimize the overall resource utilization 
of the system. According to the simulation analysis, the proposed RAPSO_VMP scheme shows an 
improvement of 5.51% in energy consumption, reduced the number of migrations by 9.12%, and the 
number of hosts shutdowns 22.74%.
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INTROdUCTION

There is a great pace escalation in the introduction of newer technologies in the modern era of 
computing. One such technology is cloud computing which has been able to attract both, the IT 
community and the research society in the last decade. The extensive power, high speed processors 
and the enormous increase in data storage capability have raised the interests of many researchers 
and motivated them to share the resources on the network. This has led to the emergence of cloud 
computing. In cloud computing, the resources are provided to multiple users on the on demand and 
sharing basis. Various services provide by Cloud computing include Infrastructure as a Service 
(IaaS), Software as a Service (SaaS) and Platform as a Service (PaaS) (Beloglazov et al., 2012). 
In order to fulfil the demands of the end users, various resources are provided to them in the form 
of storage, processing and network. This demand has increased exponentially in past years and 
thus has given rise to the concept of virtualization. Virtualization enables a physical machine 
host multiple virtual machines (VMs) each having its own operating system so as to optimally 
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utilise the available resources. The concept of Virtualization enables the end users and the service 
providers to have an efficient utilization of cloud resources with optimum usage and least cost. This 
virtualization technique is responsible for effectively handling the increasing need of the users in 
terms of needed resources in Cloud Data Centres (CDC). Various objectives like balancing of load, 
energy management, consolidation, the sharing of users among multiple users, making the system 
fault free, can be achieved with the help of virtualization (Noshy et al., 2018) However, the aroused 
interest of the users in cloud computing has led to a tremendous growth of demand for various cloud 
resources, making energy consumption a critical issue. The energy demand in hyper scale data 
centers has increased from 31.11 terawatt hours in 2015 to 76.23 in 2020 and is expected to reach 
86.58 by the end of 2021(Energy demand data centers globally by type 2021, 2021). It is predicted 
that 90% of organizations will have personal data on IT systems they don’t own or control and the 
information technology (IT) sector will consume up to 13% of global electricity by 2030 which is at 
present 7% (Gartner Inc., 2013). COVID-19 has also resulted in the acceleration of digital businesses, 
depending upon ruling technologies like cloud computing. According to the recent report by Gartner, 
the spending on remote working during pandemic will increase by 4.9% in the year 2021 (Costello & 
Rimol, 2021). This will, in turn, increase the energy consumption in the data centres due to increased 
workload. One of the main reasons of energy consumption in data centres is the inefficient resource 
utilization. With lower resource utilization, the energy efficiency of the system will also be low. 
Also, the number of active hosts will increase, leading to more cooling employments. According 
to a study by Srikantaiah, optimal resource utilization leads to minimum energy consumption 
(Srikantaiah et al., 2008). Dynamic VM consolidation has proved to be one of the magical solutions 
for reducing energy consumption by improving utilization of resources. VM consolidation is best 
achieved with the help of live VM migration. To minimize the number of the active servers and to 
save the energy consumption, migration of VMs from overloaded/underloaded servers takes place. 
Therefore, the process of consolidation comprises of a) finding overloaded/ underloaded servers b) 
selecting a VM from the server to be migrated c) finding a suitable for the migration of the selected 
VM, also called the VM Placement. Various researches have been done to carry out the process of 
consolidation. VM placement has attracted many academic researchers since it is considered an 
important issue for efficient VM consolidation. Since VM placement is an NP-hard problem(Békési 
et al., 2000), finding a deterministic solution to this problem is quite difficult. Various heuristic and 
meta-heuristic VM placement techniques, proposed by different researchers, to solve the problem 
are discussed in the latter part of the background work. Though it is easy and quick to implement 
the heuristic techniques, they may fall into local optima. Metaheuristic techniques have been proved 
to be able to find near optimal solutions to such NP-hard problems (Donyagard Vahed et al., 2019). 
They have been used in several kinds of researches (Bangyal, Ahmad, et al., 2019) (Pervaiz et al., 
2021) to show their importance. In this paper, a Particle Swarm Optimization based VM Placement 
technique, RAPSO_VMP (Resource Aware Particle Swarm Optimization), has been proposed. The 
robustness of the PSO algorithm towards the control parameters makes its implementation easy with 
a high convergence rate. The proposed scheme considers multiple resources like CPU, storage, and 
memory while trying to optimize many factors like energy efficiency, power consumption, and the 
overall resource utilization of the system. The contributions of the proposed scheme are as follows:

1.  VM placement has been modelled as an optimization problem to improve the energy efficiency 
of the system.

2.  CPU, storage and memory utilizations have been considered to formulate the objective function.
3.  Binary Particle Swarm Optimization with mirrored S shaped transfer function has been used to 

find a near optimal solution.
4.  To avoid falling into local optima, the transfer function is further modified as time varying.
5.  Simulations have been carried out in CloudSim.
6.  Results show the superiority of the proposed scheme over already existing LRMMT scheme.
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BACKGROUNd

VM Placement
VM placement can be considered as a bin packing NP hard problem whose main objective is to 
accommodate the migrated VMs into minimum number of physical machines. The physical machines 
are treated as bins that can house the VMs with the aim of optimizing the usage of the available 
resources such that the system works efficiently and effectively. The VM placement problem can be 
categorised into two categories. One is the initial placement problem while another is the runtime 
placement that occurs during the consolidation process.

The first problem occurs when the VMs are to be allocated to the hosts for the first time. Assuming 
there are n VMs that need to be created. Instead of placing these n VMs in n hosts out of m available 
hosts where, n<m, it is beneficial to accommodate these VMs into lesser number of hosts such that 
lesser number of hosts remain in active mode, while fulfilling the criteria mentioned in equation 1.
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currently allocated to the Physical machine j .
An example of VM placement is shown in Figure 1. The objective is to place 5 VMs machines 

with resource requirements of 40%, 20%, 75%, 10% and 20% respectively in a manner that optimizes 
the performance of a data center.

In Scenario1 each VM is placed on a single host. This keeps 5 hosts in active mode. Whereas, in 
Scenario 2, instead of placing the VM, one on each host, they have been placed in a way that reduces 
the number of active hosts and therefore, the energy consumption. Scenario 1 makes the system 
extremely inefficient as the resources of the hosts remain underutilized.

The second type of VM placement occurs when the VMs are to be migrated during the process 
of consolidation.
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Figure 1. Example of VM Placement
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Where, A = Set of nVMs  to be migrated.B = Set of m  available physical machines.
The objective is to place the migrated VMs to the respective physical machine according to 

equation 2.
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Where, ¡
ab

= VM-Host mapping variable.
The value of the variable is equal to 1 if VM “ ”a  is allocated to host “ ”b , and zero otherwise. 

Also, each VM “a” can be allocated to a single host only such that
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 considering the mapping between the VMs and the hosts. 

The proposed scheme in the current research focusses on the second type of placement where 
VMs are migrated as a part of the consolidation process.

Particle Swarm Optimization(PSO)
PSO is a meta heuristic optimization technique designed for continuous search space by Eberhart 
and Kennedy in 1995 (Kennedy & Eberhart, 1995). The technique is based on Swarm intelligent and 
tries to mimic the behaviour or flock of birds and fishing school. They live in groups and interact 
with each other that helps them in achieving some tasks. Initially each one in the group is scattered 
and search for the food. The members of the group communicate with one another and update their 
direction according to the group member who is nearest to the food. Similarly, in PSO, the system is 
initialized with a population of certain particles each having a position and a velocity The position 
of any particle i  in D  dimensions is represented as X x
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process is carried out in order to update these positions and velocities The velocities of the particles 
are updated based on the interaction between them and previous information (equation 5). Whereas, 
positions change in accordance to the velocity. (equation 6) Each particle memorises its best solution 
it has attained so far, called the pbest (personal best). And also the best position achieved by whole 
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of the swarm, known as the gbest (global best). The outcome of the iterative process is a near optimal 
solution.
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Where, V
t+1

 = velocity of the particle,X
t+1

= next position of the particle,w  = inertia factor in the 
range (0,1),c 1, c2 = learning coefficients called the cognitive and social factors respectively, andr1 
and r2 = random numbers generated under uniform distribution in the range (0,1).

Binary Particle Swarm Optimization (BPSO)
Developed in 1997, BPSO (Kennedy & Eberhart, 1997) is a modified version of PSO for discrete 
search space. In this model, the position of each particle is restricted by only two values (0 and 1). 
The value of the position is defined by a probability based on the velocity of the particle given by
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Where S V
t+( )1  = velocity dependent sigmoid function,X

t+1
 = next position of the particle

The next position of the particle is computed based on the value of a sigmoid function with 
velocity as its parameter (equation 7). A random number is generated and compared with the value 
of the function. The position is updated according to equation 8. If the value of the random number 
generated comes out to be less than the value of the evaluated sigmoid function, then the next position 
of the particle is set as 0. Otherwise the position of the particle is set as 1.

Existent VM placement Techniques
Various researchers have contributed to the area of VM placement in the literature. Few have proposed 
forecasting techniques, some used greedy methods while many others used meta heuristics. The 
taxonomy of different VM placement techniques is represented in Figure 2.
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The researchers (Beloglazov et al., 2012)(Huang & Tsang, 2012)(Farahnakian et al., 2016)(Hieu 
et al., 2017)(Zhou et al., 2016)(Rajabzadeh & Toroghi, 2017)(Wang & Tianfield, 2018a)(Mapetu 
et al., 2020) considered the problem of VM placement as the bin packing problem. (Beloglazov et 
al.(Beloglazov et al., 2012) proposed a VM placement scheme that chooses the host with a minimal 
rise in the level of power consumption after the placement of the virtual machine. Huang & Tsang 
(Huang & Tsang, 2012) have modelled the virtual machine consolidation as the minimum cost 
optimization problem aims to place the virtual machines on a given group of hosts while reducing the 
service level agreement violations. Farahnakian et al.(Farahnakian et al., 2016) proposed a scheme 
that checks the future load condition along with the current CPU utilization of the host while placing 
the VMs. Mapetu et al.(Mapetu et al., 2020) used Pearson Correlation Coefficient to find correlation 
between resources and the selected the host based upon the correlation coefficient. Many others 
modelled the problem based on constraint satisfaction (Dupont et al., 2012)(L. Zhang et al., 2013)
(Tchana et al., 2016) while few have focussed on linear programming (Tseng et al., 2015)(Zeng et 
al., 2015)(Huang & Tsang, 2016). For improving the placement of VMs on the servers, (Hammer et 
al., 2017) has used a forecasting technique. The technique predicts the resource consumption using 
a Hidden Markov Model (HMM). The time variant version of HMM has remarkably improved the 
prediction capabilities of the system. (Hieu et al., 2017) has also proposed a prediction model for the 
consolidation of VMs. The estimated values of utilizations along with the current usage are integrated 
into VM placement process to improve the performance of the data centre. The workload and the 
number of migrations have been considerably reduced using the proposed scheme. (Rajabzadeh 
& Toroghi, 2017) has also used markov chain integrated with simulated annealing to optimize the 
energy efficiency during the VM placement process. A greedy method has been proposed for VM 
placement during the consolidation process in (Wang & Tianfield, 2018b). The technique selects 
the host with minimum available MIPS after allocating the VM and places the VM on it. In (Chen et 
al., 2018), the authors have used Neural Networks to predict the future demands of the resources and 
depending upon this, correlation aware placement algorithms has been proposed while improving 
the resource utilization. Authors (Rahmanian et al., 2018) have used ensemble prediction along with 
learning automata and correlation coefficients to improve the energy efficiency in the allocation of 
hosts to VMs. Many optimization algorithms have also been proposed by several researchers to chair 
the VMs onto different hosts. One such technique has been developed by the authors (Satpathy et al., 
2018) using crow search. The authors have tried to maintain a balance between resource wastage and 
power consumption during the process of VM Placement. A gravitational search based optimization 

Figure 2. VM placement taxonomy
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algorithm has been put forward by the authors in (F. A. W. Zhang, 2019) to reduce power wastage 
in order to improve the efficiency of VM placement. A VM placement policy, PS-ABS, has been 
proposed by authors in (Xu et al., 2013) where the selection process is carried out using Artificial 
Bee Colony(ABC). In order to obtain a uniformity in the initialization process, the authors have 
introduced binary search along with ABC. The incorporation of binary search reduces the amount of 
overhead incurred. The proposed scheme also employs Bayes theorem along with Boltzmann selection 
that helps in achieving the objectives of less consumption of power and less VM migration failures 
making the system more reliable. Tripathi et. al. (Tripathi et al., 2018) have modelled the problem 
of VM placement as an optimization problem with the objective of reducing the resource wastage. 
The authors solved the problem with the help of Dragonfly algorithm. Few evolutionary based VM 
placement techniques (Tang & Pan, 2015)(Kaaouache & Bouamama, 2015)(Sharma & Saini, 2019) 
have also been proposed in literature. Tang and Pan(Tang & Pan, 2015) have proposed a hybrid GA-
based virtual machine placement technique that considers the energy consumed by communication 
network along with the incorporated in the proposed scheme. Kaaouache & Bouamama(Kaaouache & 
Bouamama, 2015) have focussed on the infeasible solution problem arising with one-dimensional bin 
packing problem. To solve this, the authors have put forward a solution combining GA with Best Fit 
Decreasing. Sharma & Saini(Sharma & Saini, 2019) have used NSGA to deal with the VM placement 
aimed at improving the performance of the network while minimizing the energy consumption and 
the number of migrations. The main idea is to sort the individuals on the basis of the levels of their 
dominations. Several other authors have used Ant Colony (Xiao et al., 2019) (Liu et al., 2017) (Liu et 
al., 2018) (Alharbi et al., 2019), Bio Geography based Optimization (Zheng et al., 2016)(Teyeb et al., 
2017)(Li et al., 2017)(Pahlevan et al., 2016) and Particle Swarm Optimization (Tripathi et al., 2018)
(Yan et al., 2018)(Ibrahim et al., 2020) for accomplishing the task of VM Placement. Tripathi et al. 
(Tripathi et al., 2018) have used binary PSO to optimize VM placement by taking energy usage and 
utilization of resources into consideration. Yan et al. (Yan et al., 2018) have concentrated on memory 
and CPU utilization as parameters of the objective function in discrete PSO. OpenStack has been 
used to evaluate the capabilities of the proposed algorithm and has been compared with the native 
VM scheduler of OpenStack. The initialization of the particle is an important step in the execution 
of PSO. Many researchers (Bangyal, Hameed, et al., 2021)(Bangyal, Nisar, et al., 2021)(Bangyal, 
Rauf, et al., 2019) have focussed on this step of particle initialization to optimize the convergence rate 
of the optimization algorithm. (Xiao et al., 2019) and (Alharbi et al., 2019) defined the subject as a 
combinatorial optimization problem and (Liu et al., 2017) also worked on VM placement as a multi 
objective problem, (Xiao et al., 2019) (Liu et al., 2017) aimed at reducing the number of migrations 
and consumed power. The authors (Ibrahim et al., 2020) have tried to minimizing the number of active 
servers, while trying to reduce resource wastage and power consumption simultaneously.

Most of the researchers have focussed on optimizing the power consumption model and the 
resource wastage. However, very few have focussed on resource utilization as a means to improve 
energy efficiency. The proposed scheme essentially tries to make the system energy efficient by 
monitoring the resource utilization of the system with the help of the swarm based metaheuristic 
technique.

Problem Statement
The aim of the VM placement process is to focus on minimizing the number of physical machines 
(PMs) that are active at any given instant of time by making each node work under the maximum 
capacity while maintaining the constraints of threshold. Various system resources contained by a 
machine include CPU, memory, bandwidth, and disk. The resource utilization should be neither below 
the threshold nor should it exceed it. There exists a linear relationship between resource utilization 
and energy consumption (Fan et al., 2007). In order to save energy, the total energy consumption 
of the data centre should be minimized. According to the study of Srikantaiah (Srikantaiah et al., 
2008), the energy efficiency of a physical node can be defined in terms of the Euclidean distances 
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of the resource utilization from their optimal utilizations. Smaller the Euclidean distance, better is 
the energy efficiency.

PSO-based on Resource Aware VM placement (RAPSO_VMP)
RAPSO_VMP focusses on finding a suitable host for VM Placement by finding a near optimal 
solution using PSO. It receives as input the list of n  VMs that need to be migrated and the list of 
m  available hosts. The list of available hosts excludes the overloaded hosts, so as to avoid the selected 
VMs getting placed on the overloaded hosts.

Block diagram of RAPSO_VMP
Once the overloaded servers are detected, some VMs need to migrated and placed to other servers so 
as to make the system keep working under proper conditions. Placement of the VMs to appropriate 
servers is an important task. Thus, the proposed work suggests a technique based on BPSO with the 
intention to find a near optimal solution for VM Placement. The flow of execution of the proposed 
scheme is shown in Figure 3.

Description of each component given in the block diagram:

VM List: This component comprises of the list of n  VMs  that are to be migrated.
Host List: A list of all m  available hosts  is contained in this component.
Initial Mapping: The input to this block is the list of nVMs  and mavailablehosts  . Mapping has 

been done by this block to generate the initial population. In RAPSO_VMP, the population has 
been initialized using greedy method.

RAPSO_VMP Initial Mapping Example
The initial mapping produced by RAPSO_VMP comprises of particles, where each particle has few 
dimensions. The number of dimensions is equal to the number of VMs  to be migrated. Each dimension 
holds a value that refers to the index of the VMs . A PM can host several VMs  but the reverse does 
not hold, i.e., a VM can only be placed on one PM. The mappings between VMs and hosts have been 
further evaluated until reaching the best fitness function. An example of the generation of initial 
mapping has been explained below. The assumptions under consideration are:

Figure 3. Block diagram of RAPSO_VMP
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VirMach
list

[list of n VMs to be migrated] = {VM VM VM VM
1 2 3 4
, , , }  

Host
list

[list of total number of hosts] = H H H H H H H H H H
1 2 3 4 5 6 7 8 9 10
, , , , , , , , ,{ }  

OLHost
list

 [list of overloaded hosts] = H H H H
3 6 7 10
, , ,{ }  

AvailHost
list

[list of available hosts, m] = H H H H H H
1 2 4 5 8 9
, , , , ,{ }  

VM VM VM1 2 3, ,  and VM 4�need to be placed (Table 1) on the available hosts. H3, H6, H7 and H10 
are overloaded. Thus, the list of available hosts comprises of H1, H2, H4, H5, H8 and H9 (Table 2).

Table 3 represents 6 random sequences of the VMs that need to be placed. The placement of the 
random sequences to available hosts on first fit basis have been shown in Table 4, Table 5, Table 6, 
Table 7, Table 8 and Table 9 respectively.

Table 1. List of VMs to be migrated

VM
1

VM
2

VM
3

VM
4

Table 2. List of available hosts

H
1

H
2

H
4

H
5

H
8

H
9

Table 3. Sequences of VMs

1234 2341 3412 4123 2134 1342

Table 4. Placement sequence 1

For Sequence 1

VM
1

VM
2

VM
3

VM
4

H
1

H
2

H
4

H
5
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Table 7. Placement sequence 4

For Sequence 4

VM
4

VM
1

VM
2

VM
3

H
1

H
8

H
4

H
5

Table 8. Placement sequence 5

For Sequence 5

VM
2

VM
1

VM
3

VM
4

H
5

H
2

H
4

H
8

Table 9. Placement sequence 6

For Sequence 6

VM
1

VM
3

VM
4

VM
2

H
5

H
2

H
1

H
9

Table 6. Placement sequence 3

For Sequence 3

VM
3

VM
4

VM
1

VM
2

H
2

H
2

H
1

H
5

Table 5. Placement sequence 2

For Sequence 2

VM
2

VM
3

VM
4

VM
1

H
2

H
5

H
8

H
9
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Table 10. Initial mapping

VM
1

VM
2

VM
3

VM
4

H
1 1 0 0 0

H
2 0 0 1 1

H
3 0 0 0 0

H
4 0 0 0 0

H
5 0 1 0 0

H
6 0 0 0 0

H
7 0 0 0 0

H
8 0 0 0 0

H
9 0 0 0 0

H
10 0 0 0 0

Table 11. Particle representation

VM
1

VM
2

VM
3

VM
4

H
1

H
2

H
4

H
5

H
9

H
2

H
5

H
8

H
1

H
5

H
2

H
2

H
8

H
4

H
5

H
1

H
2

H
5

H
4

H
8

H
5

H
9

H
2

H
1
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Table 10 represents the arrangement of the above-obtained placements in ascending order of VM 
index, thus, providing the initial mapping of particles. The matrix [0,1] representation of a particle 
is shown in Table 11. Thus, Figure 4 pictorially explains the initial mapping between the VMs to be 
migrated and the available hosts.

Fitness Function Evaluation: This component calculates the fitness function (FF) of all the mappings 
done in the previous step.

Fitness function(FF): To reach to a quality solution, the optimization techniques depend on a fitness 
function. Depending upon the value of the fitness function, the position of the particles in the 
population is updated until the best value is achieved. The fitness function can be either a 
minimizing or maximizing function. In the proposed technique, the goal is to minimize the total 
power consumption by trying to make the resource utilizations work at their best. The idea here 
is to reduce the Euclidean distance between the current and optimal utilizations. Equation 9 is 
the mathematical expression to evaluate the energy efficiency l  of a host .

λ σ σ
j

i

d

j jbesti i
= −( )

=
∑�� �
1

2
2  (9)

Where, d  = 3 corresponding to the type of resource for e.g. CPU, RAM, Disk
l
j
=  Energy efficiency of a single host j

Ã = current utilization of resources under consideration i.e. CPU, RAM and the disk.

Figure 4. RAPSO_VMP initial mapping
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Ã
ji

 = current resource utilization of the resource i  for host j , and

Ã
jbesti

 = optimal utilization of the resource i  for host j .

In order to bring the utilizations of different resources to a common scale, their normalised values 
need to be evaluated. Energy efficiency of a host j  after the normalization of resources has been 
achieved with the help of equation 10.
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Where, =l
jnormalised

 normalised energy efficiency of host j ,

w
j currenti

= current utilization of resource i  for host j ,

w
j mini

= lower utilization threshold of resource i  for host j ,

w
j min j maxi i

 = upper utilization threshold of resource i  for host j , and

w
j besti

= optimal utilization of the resource i for host j  

Equation 11 signifies the current utilization of a host j  . which is equal to the summation of 
utilizations of k VMs residing on that host. Therefore, 

w w
j current

x

k

j xi i
=

=
∑�
1

 (11)

Where,w
j xi

= utilization of VM x  corresponding to resource i  for host j ,

k = total number of VMs on host j

Equation 12 presents the mathematical expression for calculating the energy efficiency factor.
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The summation of Euclidean distances of all the active nodes simultaneously gives the estimate 
of the total energy consumption of the entire system. The objective of the current research is to make 
the active hosts work at the maximum capacity by minimizing the value of the total energy efficiency 
factor obtained in equation 12. The fitness function (FF) shown in equation 13 can be obtained by 
substituting the value of energy efficiency factor,l

jnormalised
 ,from equation 12. 



International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

14

FF Min
j

m

jnormalised
� � .���� ��=











=
∑
1

l  (13)

Thus, minimizing the summation of energy efficiency factor of all m  available hosts can achieve 
the optimum value of the FF.

Solution Space Updation: The generated population by the “initial mapping” component acts 
as an input to this block. The initial mapping corresponds to the initial position of the particles. The 
iterative process of binary PSO is carried out in this component to update the solution space. Thus, 
the updation of particle position and velocity takes place in this step. In order to reach an optimum 
solution, the use of transfer function plays a vital role in a binary optimization algorithm. With the 
help of the transfer function, the continuous search space is mapped to the discrete search space. The 
existing S shaped, V shaped and various other linear transfer function sometimes get trapped into 
local optima which leads to poor exploration resulting in premature convergence. However, in order 
to achieve a good result, the transfer function should essentially provide a balance between exploration 
and exploitation. Considering the limitations of the existing transfer function, a mirrored S transfer 
function has been used, in the proposed scheme. The time varying nature of the transfer function 
helps in avoiding local optima in the initial steps by performing strong exploration which gets switched 
to exploitation in the final steps for finding the best results. Equation 14 and 16 denote the two 
different components of the mirrored transfer function, S

1
 and S

2
, that has been utilized to update 

the position of the particle. The mirrored transfer function helps in evaluating the two intermediate 
positions, y

t+1
 and z

t+1
 of the particle, based on equation 15 and 17. Equation 18 helps in finding 

the best among these two calculated positions. 

S V
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1 1
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Where, S V
t1 1+( )( ),ϒ = first time varying sigmoid function and �y

t+1  is the first intermediate position 

of the particle.ϒ = time varying factor.random1= random number ∈

� ,0 1
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1 1
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Where, S V
t2 1+( )( ),ϒ  = second time varying sigmoid function and z

t+1
 is the second intermediate 

position of the particle.random2�= random number ∈

� ,0 1

X
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Where, X
t+1

 = next position of the particle,FF y
t+( )1  = fitness of the particle at position y

t+1
, and 

FF z
t+( )1  = fitness of the particle at position z

t+1

If the value of fitness function evaluated at y
t+1

 is better than z
t+1

, then y
t+1

 is selected as the 
next position of the particle otherwise the position of the particle is update with z

t+1
.

Optimal Placement: This role of this component is to represent the best VM-Host mapping by 
evaluating the minimum value for the fitness function.

Modifications in BPSO
This section describes various modifications that have been incorporated in the traditional binary 
PSO for mapping the problem of VM placement to BPSO.

Population Initialization
Figure 5 describes the Initial Population Generation Algorithm explaining the steps involved in the 
generation of swarm of particles constituting the initial population.

To get started, RAPSO_VMP is initialized by defining few parameters namely, number of 
particles, number of iterations, number of dimensions, the minimum and maximum limits of time 
varying variable, the values for cognitive parameter and the social parameter. The population size N 
refers to the number of particles where each particle represents a mapping of VM and the available 
hosts. The dimension of each particle equals the number of VMs that need to be migrated and placed. 
In order to generate the N particles, create N random sequences of VMs. Then, for each sequence 

Figure 5. Initial population generation algorithm
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find a suitable host on first fit basis (greedy method). It will lead to N VM-host distributions. Arrange 
them in increasing order of VM

id
. Each such mapping, arranged in increasing VM

id
, constitutes to 

the list of the particles and the generated sequences form the initial position. 

Particle Representation
Each particle P is represented in the form of a n m´  matrix with n  VMs are mapped to m  PMs. 
Each entry a

ij
 of the matrix is either 0 or 1. If ith  VM is assigned to j th  PM, then the corresponding 

entry is 1 otherwise 0.

0 1 0 0

1 0 0 1 0

0 0 0

0 0 1 1

0 0

0 0 1 0 0

� �
�

� � �
� �

� � � �
�

































 

Checking Constraints

1.  Capacity Constraint: Once the position has been updated, one must ensure that the new position 
satisfies the constraints as mentioned in equation 2. According to equation 2, the allocated host 
should have the capacity to accommodate the new Virtual machine. Thus, the requirements of the 
VM should be checked against the remaining capacity of the server before updating the position 
to 1.

2.  Placement Constraint: Equation 4 holds that a VM can be allocated only to a single host. If the 
host has the capacity to house the VM and if the same VM has not been yet hosted by any other 
server, only then the position of the VM in the particle can be updated to 1. For this purpose, an 
array of size j (equal to the number of rows/VM) is maintained that keeps track of the entries of 
the particle. When a VM is allocated to a server then the value of the corresponding array index 
is set to 1. Thus the position a

ij
 of a particle is updated to 1 if and only if ith  server has the 

capacity to hold j th  VM and ith  column does not contain any entry equal to 1.

RAPSO_VMP Algorithm
Figure 6 shows the RAPSO_VMP Algorithm explaining the flow of execution of RAPSO_VM 
placement.
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The set of VMs that are to be migrated are fed as input which ultimately provides the best VM-
host mapping as the solution. The algorithm begins with the particle generation and initialization. 
This is followed by the start of the iterative process where velocity and position is updated until the 
stopping criteria is met. Each iteration also includes the best position and best values calculations.

RAPSO_VMP Pseudocode

1.  Initialize parameters: N
p

, N
t
, c

1
, c

2
, w , ¡

max
, ¡

min

2.  Input VirMach
list

, AvailHost Host OLHost
list list list
= −

3.  Generate initial population using Initial Population Generation Algorithm.
4.  gBestValue Max Value¬ .
5.  for each particle p  є P  do
6.  {
7.  pBestValue MaxValue¬ .
8.  }
9.  t ¬ 0
10.  while t N

t
<  

11.  {
12.  for each particle p  є P  do
13.  {
14.  Calculate FF  for p  based on eq. (13)
15.  if ( )FF pBestValue>  then
16.  {
17.  pBestValue FF ¬
18.  pBestPosition X

t
 ¬

19.  }
20.  if ( )FF gBestValue>  then
21.  {
22.  gBestValue FF ¬
23.  gBestPosition X

t
 ¬

24.  }
25.  }
26.  for each particle p  є P  do

Figure 6. RAPSO_VMP algorithm
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27.  {
28.  r random

1
0 1� ,← ( )

29.  r random
2

0 1� ,← ( )
30.  r random

3
0 1� ,← ( )

31.  r random
4

0 1� ,← ( )
32.  V w v r c pBestPosition X r c gBestPosition X

t t t+ ← ×( )+ −( )+ −
1 1 1 2 2
� � � �

tt( )
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1 1

39.  }
40.  t t← +1
41.  }
42.  return gBestPosition

The very first step is to initialize number of particles, number of iterations, number of dimensions, 
the minimum and maximum limits of time varying variable, the values for cognitive parameter and 
the social parameter. Thus, the algorithm begins with the initialization of these parameters (line 1). 
Next step is responsible for excluding the overloaded hosts from the process of placement, thereby 
producing a list of the available hosts for receiving the migrated VMs (line 2). The flow then 
continues by generating the initial population (line 3). The goal is to find out the best particle among 
the swarm. Since the fitness function is the minimization one, the best position has been initialized 
with a maximum value (line 4). The best position of each particle has also been initialized with a 
maximum value (line 7). After the initializations are done, the technique iterates through a number 
of steps until the goal is achieved (reaching the goal), beginning with the initialization of iteration 
number to 0 (line 9). The iteration process continues until the iteration counter does not reach the max 
number of iterations (line 10). Each particle is then evaluated for fitness function using equation 13 
(lines 12-14). If the particles’ new fitness value is better than its best value, then updates are required 
in the particles’ best position and particles’ best value (lines 15-19). The best position in the swarm is 
found out by evaluating the particle for which fitness function has the best value (lines 20-24). This 
is followed by updating each particle positions (lines 26-49). In the updating process, few random 
numbers are used (lines 28-31). A new speed is calculated using PSO velocity updating equation (line 
32). The time varying variable is updated depending upon the current iteration number (line 33). Next 
step is to update the position using the velocity evaluated in the previous step, using a time varying 
transfer function (lines 34-48). The value for time varying sigmoid function is calculated (line 34). 
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This value is compared with a random number generated to compute first intermediate position (line 
35). Second sigmoid function is also calculated (line 36) to find out the value of second intermediate 
position (line 37). The position with better fitness is considered as the new position (line 38). Before 
jumping to the next iteration, the iteration counter is incremented by 1 (line 40). Once the set of 
iterations is over, the position of the best particle is returned (line 42).

EXPERIMENTATION ANd RESULTS

This section details about the simulation test bench and the analysis of the results obtained on executing 
the proposed scheme in the simulation environment.

Simulation Test Bench
In order to evaluate the efficiency of the proposed algorithm, CloudSim 3.0.3 has been used. CloudSim 
is an open source toolkit developed by CLOUDS laboratory at the University of Melbourne. CloudSim 
provides an appropriate environment for virtualization, resource management, VM migration and 
energy efficiency along with evaluation of SLA violations (SLAV). The simulation experiments 
have been carried out on a PC with Inter Core(TM) i5-8250U CPU @1.60 GHz and 8 GB of RAM 
based on windows environment with Eclipse IDE. The servers and VMs used for simulation are 
heterogeneous in nature. Two types of servers have been used: HP ProLiant ML110 G4 server and 
HP ProLiant ML110 G5 server.

Experimental Setup
Table 12 represents the three different test cases, with different number of VMs and hosts, that have 
been used for performing the experiments. Random workload has been used by the test cases.

Each experiment has been executed 10 times and the average of the results have been compared 
with the well-known placement algorithm PABFD(Beloglazov & Buyya, 2012). Four types of VMs 
have been incorporated, each being single core. The parameters have been initialized with the values 
as shown in Table 13.

Table 12. Evaluated test cases

Test Cases W1 W2 W3

Number of VMs 50 75 100

Number of PMs 50 75 100

Table 13. Parameter values for RAPSO_VMP

N
p

N
t

c
1

c
2

w s
max

s
min

30 50 1.49 1.49 0.7298 1.0 0.1
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The characteristics of servers and VMs have been presented in Table 14 and Table 15. Performance 
metrics show that RAPSO_VMP outperforms the existing scheme.

Analysis of Results
To analyse the performance of RAPSO_VMP, the proposed algorithm has been compared with 
different benchmark algorithms (Beloglazov & Buyya, 2012). The major metrics for evaluating 
the performance of the consolidation schemes are: Energy Consumption, SLA time per active host, 
SLA performance degradation due to migration, SLAV and Energy performance metric (ESV and 
ESM). The authors (Beloglazov & Buyya, 2012) have proved the dominance of LRMMT over other 
schemes. In our experiments also, with LRMMT as the DVMC scheme, RAPSO_VMP shows that 
maximum improvement against PABFD (Table 16).

Table 15. VM characteristics

VM type Frequency of Core 
(MIPs)

Number of 
Cores

Memory 
(MB)

Bandwidth (Mb/s) Storage (MB)

High CPU VM 2500 1 870 100 2.5

Extra Large VM 2000 1 1740 100 2.5

Medium VM 1000 1 1740 100 2.5

Micro VM 500 1 613 100 2.5

Table 14. Server characteristics

Server type Frequency of 
Core (MIPs)

Number of 
Cores

Memory (GB) Bandwidth 
(Gb/s)

Storage (GB)

HPProLiantML110G4 1860 2 4 1 1000

HPProLiantML110G4 2660 2 4 1 1000

Table 16. Comparison with different existing schemes

DVMC Scheme
Energy 

Consumption 
(KWh)

Number 
of VM 

Migrations

Number 
of Host 

Shutdowns
SLAV (%) Energy 

SLAV

Energy 
SLAV 

Migrations

LRMMC PABFD 50.12 3771.67 1063 0.000038 0.00002 0.085

RAPSO_VMP 48.08 3456.7 856.48 0.000032 0.000017 0.069

LRMMT PABFD 51.58 5002.67 1256 0.000035 0.000019 0.113

RAPSO_VMP 48.74 4545.93 970.34 0.000030 0.000016 0.09

LRMU PABFD 51.92 4758.33 1267.67 0.000040 0.000022 0.121

RAPSO_VMP 49.39 4503.7 1010.37 0.000037 0.00002 0.103

LRRS PABFD 49.96 3811 1057.33 0.000041 0.000021 0.088

RAPSO_VMP 49.35 3599.82 972.93 0.000037 0.000018 0.071

MADMMC PABFD 66.01 7315.33 2164.33 0.000067 0.000044 0.345

Table 16 continued on next page
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Energy Consumption
Energy consumption is a major metric and can be defined as the sum of the energy consumed by all 
the hosts in the cloud data centre. It is obtained using the integral of the consumption of power over 
a time period. Figure 7 shows the minimized average energy consumption for all three test cases. The 
X-axis represent the amount of energy consumed in KWh against each workload, represented on the 
Y-axis. There is an average improvement of 5.51% when RAPSO_VMP is compared with PABFD.

Power P x t dt
t

t

= ( )∫
0

1

(  

DVMC Scheme
Energy 

Consumption 
(KWh)

Number 
of VM 

Migrations

Number 
of Host 

Shutdowns
SLAV (%) Energy 

SLAV

Energy 
SLAV 

Migrations

RAPSO_VMP 64.29 7316.81 1987.98 0.000067 0.000043 0.342

MADMMT PABFD 67.02 7860.67 2220.67 0.000045 0.000031 0.257

RAPSO_VMP 64.94 7881.51 1977.28 0.000042 0.000027 0.225

MADMU PABFD 69.55 8367.67 2370.67 0.000064 0.000044 0.394

RAPSO_VMP 67.54 8496.97 2187.82 0.000066 0.000044 0.401

MADRS PABFD 65.77 7311.33 2172 0.000067 0.000045 0.354

RAPSO_VMP 63.99 7220.07 1964.68 0.000063 0.000041 0.32

IQRMMC PABFD 69.18 7666.67 2242 0.000055 0.000038 0.313

RAPSO_VMP 67.4 7690.2 2015.05 0.000055 0.000037 0.306

IQRMMT PABFD 70.07 8248 2279.33 0.000039 0.000027 0.238

RAPSO_VMP 68.19 8085.06 2053.31 0.000033 0.000022 0.196

IQRMU PABFD 72.37 8838 2409.33 0.000057 0.000042 0.398

RAPSO_VMP 70.31 8815.26 2209.69 0.000056 0.00004 0.379

IQRRS PABFD 68.89 7625.67 2254.67 0.000058 0.000041 0.335

RAPSO_VMP 67.66 7604.33 2061.43 0.000059 0.00004 0.323

THRMMC PABFD 60.32 6513 2013.67 0.000098 0.000059 0.41

RAPSO_VMP 58.81 6521.29 1850.83 0.000099 0.000059 0.415

THRMMT PABFD 61.89 7136 2033 0.000061 0.000037 0.275

RAPSO_VMP 60.03 7165.07 1793.88 0.000053 0.000031 0.234

THRMU PABFD 65.43 7821.67 2269 0.000087 0.000055 0.452

RAPSO_VMP 63.32 7889.78 2023.89 0.000081 0.00005 0.409

THRRS PABFD 60.88 6633.33 2022 0.000094 0.000057 0.409

RAPSO_VMP 59.66 6617.58 1845.28 0.000090 0.000054 0.387

Table 16 continued
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Number of VM Migrations
Number of VM migrations represent the total number of VMs that have been migrated during 
the process of consolidation. Minimal number of migrations is desirable for reduced performance 
degradation and lesser consumption of bandwidth. Large number of migrations can also lead to the 
violation of SLA and system degradation. RAPSO_VMP tends to increase the utilization of the 
hosts, thereby reducing the number of underloaded hosts. The proposed scheme reduces the number 
of migrations as compared to PABFD. The number of incurred VM migrations are depicted along 
the X-axis whereas the corresponding workload is shown along the Y-axis. There is an improvement 
of 9.13%.

The results for the number of VM migrations incurred have been shown in Figure 8.

Figure 7. Energy consumption vs VM placement scheme

Figure 8. Number of VM migrations vs VM placement scheme
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Number of Host Shutdown
Number of hosts shutdown is another important that should be minimized performing the consolidation. 
Frequent host on-off leads to poor consolidation. However, fewer and longer shutdowns make the 
system more energy efficient. The reduced number of hosts shutdown for the proposed scheme has 
been depicted in Figure 9.

SLA Violation (SLAV)
SLA violation is the product of SLA time per active host (SLATAH) and performance degradation 
(PDM) due to migrations. This metric should be kept as minimum as possible to meet the QoS 
requirements.

SLAV SLATAH PDM= ×  

SLATAH
N

T

Ti

N
f

a

i

i

=
=
∑�
1

1

 

SLATAH is the percentage of time for which active hosts have experienced 100% utilization.
Where N  is the total number of servers, T

fi
 is the time period for which the server experiences full 

utilization and the total activation time of server is denoted by   T
ai

.

PDM
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M
d
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j

j

=
=
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1
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C
dj

 is the estimated performance degradation due to migration, C
rj

 is the total requested capacity 
during the migration operation, M  is the number of VMs. To ensure that the desired QoS is maintained 
in the cloud environment. there should be no violation of SLA. According to the experimental results, 
RAPSO_VMP does not violate SLA. However, in few cases it has been observed that the proposed 

Figure 9. Number of host shutdown vs VM placement scheme
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scheme avoids the SLA violations. It can be seen from figure 10 that the performance degradation 
remains the same for both the cases.

Figure 11 and figure 12 represent the results for SLAPDM, SLATAH and SLAV.

Figure 12. SLA violation vs VM placement scheme

Figure 11. SLA time per active host vs VM placement scheme

Figure 10. Performance degradation due to migration vs VM placement scheme
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Energy-SLA Violation (ESV)
ESV denotes the product of energy consumption and SLA violation. The data centre aims at minimizing 
this metric. The cloud service providers have observed a trade-off between energy consumption and 
SLAV. Thus, to evaluate the efficiency of VM Placement schemes, a combined metric, ESV, has 
been formulated.

The ESV parameter for RAPSO_VMP in comparison to PABFD has been depicted in Figure 13.

dISCUSSION

The energy consumed by a cloud data center has a direct relationship with resource utilization (Fan et 
al., 2007)(Kusic et al., 2008). Low server utilization and idle power consumption are the major reasons 
for poor energy efficiency. The reason behind low server utilization can be either overutilization or 
underutilization of resources. Better resource utilization can lead to improved energy efficiency. In 
RAPSO_VMP, an effort has been made to make the hosts work at their best utilization levels during 
consolidation. This helps in reducing the energy consumption of the whole system. The number of host 
shutdowns taking place in the cloud data center is an important factor for measuring the effectiveness 
of a consolidation scheme. Whenever a host becomes underloaded, the VMs placed on it are migrated 
to other machines, to turn off the underloaded machines. However, there is a chance of these machines 
getting turned on again during the process of live migration to accommodate the migrated machines. 
This frequent turning on/off of the low-loaded machines increases the energy consumption and also 
leads to the degradation of the system performance. With the proposed scheme, RAPSO_VMP, the 
VMs from the overloaded hosts are migrated to the active hosts, excluding the underloaded ones. In 
case no suitable host is found, then the placement is done in one of the underloaded hosts or the new 
ones are created. Thereby, reducing the chances of an increase in the number of underloaded hosts 
and a decrease in the number of host shutdowns, as shown in Table 16. Also, more migrations lead 
to degradation of performance thereby violating the service level agreements. The simulation results 
show that there is a dip in the number of VM migrations. The reason behind the decreased value 
of migrations is majorly is the reduced number of host shutdowns. The observations from Table 16 
depict that RAPSO_VMP exhibits best results with MMT as the VM selection policy. According to 
the results, ESM achieved for LRMMT < IQRMMT < THRMMT < MADMMT. RAPSO_VMP works 
best with LRMMT having a maximum improvement of 18.37% in respect to the combined metric of 
Energy, SLAV and the number of VM migrations.

Figure 13. ESV vs VM placement scheme
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CONCLUSION ANd FUTURE wORK

The ease in the availability of services offered by cloud computing has commanded to the doubling of 
cloud data centres across the world. However, such expanded use has led to high resource utilization 
and energy consumption. Consequently, there arises a need to properly manage both, the resources 
and the energy efficiency. Dynamic consolidation has proved to be of great significance in this 
respect. Consolidation comprises of finding overloaded/underloaded hosts and migrating one or few 
VMs from then to another suitable hosts. Thus, finding an appropriate host through VM placement 
is a vital task. In the current work, RAPSO_VMP has been proposed with the purpose of improving 
energy efficiency while making the system more resource aware. The objective has been achieved 
by incorporating PSO in VM Placement problem. The fitness function has been defined in terms of 
resource utilizations to improve the energy efficiency. Modifications in transfer function and initial 
population generator function have also been applied to basic BPSO to map well to the defined 
VM Placement problem. The simulation results show that RAPSO_VMP outperforms LRMMT in 
terms of energy consumption, number of migrations of VMs and number of hosts shut down. As a 
future research direction, the implementation of RAPSO_VMP can be implemented in real cloud 
environment. PlanetLab workload has been used in the current research. However, other types of 
workloads along with different parameters like GPU can also be used in future for testing the efficiency 
of the proposed scheme.
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APPENdIX A - ABBREVIATIONS

Table 17. Abbreviations and their meanings

Abbreviation Meaning

VM Virtual Machine

PM Physical Machine

PSO Particle Swarm Optimization

CPU Central Processing Unit

RAM Random Access Memory

BW Bandwidth

BPSO Binary PSO

l
j

Energy efficiency of a single host j

Host
list List of hosts

VirMach
list List of VMs ready for migration

OLHost
list List of Overloaded hosts

AvailHost
list List of hosts excluding overloaded hosts

N
p Population size

N
d Dimension count (Number of migrated VMs)

N
t Iteration count

c
1 Cognitive parameter

c
2 Social parameter

w Inertia weight coefficient

¡ Time varying variable

¡
min

   Minimum value of ¡

Table 17 continued on next page
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Abbreviation Meaning

¡
max

Maximum value of ¡

FF Value of fitness function

P Swarm of particles

gBestValue Best FF value among all particles

pBestValue Best FF value of a particle

pBestPosition Position of a particle with best FF value

gBestPosition Best position for VMs among the swarm

p A specific particle

t The current iteration

r
1

A random value between 0 and 1

r
2

A random value between 0 and 1

r
3

A random value between 0 and 1

r
4

A random value between 0 and 1

X
t

Current position of a particle

X
t+1

Particle new position

V
t

Speed of a particle in current iteration

V
t+1

Speed of a particle in the next iteration

Table 17 continued on next page
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Abbreviation Meaning

S
1

A Sigmoid function

S
2

A Sigmoid function

HMM Hidden Markov Model

ABC Artificial Bee Colony

MIPS Million Instruction per Second

SLA Service Level Agreement

SLAV SLA Violation

LR Linear Regression

IQR Inter Quartile Range

MAD Median Absolute Deviation

THR Static Threshold

MMT Minimum Migration Time

MC Maximum Correlation

MU Minimum Utilization

RS Random Selection

PABFD Power Aware Best Fit decreasing

DVMC Dynamic Virtual Machine Consolidation

ESV Energy and SLAV

ESM Energy, SLAV and number of VM Migration

SLAPDM SLA Performance Degradation due to Migration

SLATAH SLA Time per Active Host
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