
DOI: 10.4018/IJAMC.298310

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

A Greedy Randomized Adaptive Search
for Solving Chance-Constrained U-Shaped
Assembly Line Balancing Problem
Mohammad Zakaraia, Cairo University, Egypt*

 https://orcid.org/0000-0001-8845-6122

Hegazy Zaher, Cairo University, Egypt

Naglaa Ragaa, Cairo University, Egypt

ABSTRACT

This paper discusses the U-shaped assembly line balancing problem in case of stochastic processing
time. The problem is formulated using chance-constrained programming, and the greedy randomized
adaptive search procedure is used to solve the problem. In order to prove the efficiency of the proposed
algorithm, 71 problems taken from well-known benchmarks are solved and compared with the
theoretical lower bound, and 13 of them were compared with another approach used to solve the same
problem in another paper, which is beam search. The results show that 59 problems are the same as the
theoretical aspiration lower bound. In addition, the results of 11 of 13 problems compared with beam
search are the same, and the results of two problems are better than beam search. The t-test statistics
is applied and showed that there is no significance difference between the proposed algorithm and
the theoretical lower bound; thus, the proposed algorithm shows efficiency when compared with the
aspired values of the theoretical lower bound.

Keywords
Chance-Constrained Programming, Greedy Randomized Adaptive Search Procedure, Local Search, Meta-
Heuristics, Taguchi Method, U-Shaped Assembly Line Balancing Problem

1. INTRODUCTION

The assembly line is of great importance in industry. It simplifies the assembly processes of the
products by implementing them in a set of stations instead of having all the work done by a single
skilled worker. It reduces the learning aspects, and it guarantees a fixed time for completing the
assembled products. The assembly line balancing problem (ALBP) is such a problem that seeks to
optimize the assignment of the assembly tasks to achieve some objectives such as minimizing the
number of stations or minimizing the cycle time. The simplified assumptions of the problem contain
three constraints. The first one is to assign each task in only one station. The second one is to ensure
that each station time does not exceed the cycle time. The third one is to confirm that each task is

https://orcid.org/0000-0001-8845-6122

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

2

assigned after its predecessors. The U-shaped assembly line balancing problem is one of the assembly
line balancing problems that have one of the practical relevance, which is the U-shaped line. In this
type of assembly lines, the precedence constraints are related to both of the predecessors and successors
of the tasks, where any assembly task must be assigned after either its predecessors or its successors.

This paper discusses the U-shaped assembly line balancing problem in case that the processing
times of the tasks are normally distributed random numbers with known means and variances.
Therefore, the cycle time constraints herein are represented as chance-constraints that realized by
minimum probabilities. In order to solve the problem, the chance-constraints are converted to non-
linear deterministic constraints. The proposed algorithm for solving the problem is one of the single-
solution based metaheuristics, which is greedy randomized adaptive search procedure (GRASP). In
order to have the best results of the proposed algorithm, its parameters are optimized using Taguchi
method. The computational results are constructed by implementing the proposed algorithm on 48
adapted problems selected from well-known deterministic benchmarks found in https://assembly-
line-balancing.de/. The adaptation is done by considering the processing times of the selected
benchmark problems as the expected processing times of the tasks and the variances are calculated
using the method of Carraway (1989). In such method, the variance for each task is to be generated

randomly from 0
4

2

,
µ
i

























 for low variances and from 0

2

2

,
µ
i

























 for high variances. The selected

problems of for computational results are solved in case that the chance probabilities are equal to
0.90, 0.95, and 0.975. To proof the efficiency of the proposed GRASP algorithm, the computational
results is compared with the results of constrained programming approach found in (Pınarbaşı, 2021).

The paper is organized as follows: the second section presents a literature review of the U-shaped
assembly line balancing problem. The third section shows the methodology used in the paper. The
fourth section presents the proposed mathematical model for CUALBP-1. The fifth section proposes
a GRASP approach to solve the problem. The sixth section produces an experimental design to
optimize the parameter levels of the proposed algorithm. Eventually, the seventh section shows the
computational results.

2. LITERATURE REVIEW

This section shows some information about the previous work in the U-shaped assembly line balancing
problem. The problem was first presented by Miltenburg and Wijngaard (1994), where they developed
a dynamic programming approach based on a heuristic to solve the problem. Ajenblit and Wainwright
(1998) developed a genetic algorithm to minimize the number of stations. Nakade and Ohno (1999)
solved the problem by using a heuristic approach. Their paper handled multi objectives, where
they minimized the cycle time and the number of assigned workers. Erel et al. (2001) developed
a simulated annealing approach to minimize the number of stations of the problem. Gökçen et al.
(2005) solved the problem by using the shortest route approach, where they sought to minimize the
number of stations. Gökçen and Aǧpak (2006) used a multi-criteria decision-making approach for
achieving several conflicting goals.

Baykasoǧlu (2006) developed a simulated annealing approach to maximize the smoothness index
and to minimize the number of stations. Kim et al. (2006) presented an endosymbiotic evolutionary
algorithm to maximize workload smoothness. Hwang et al. (2008) developed a genetic algorithm
to optimize multiple objectives, which are minimizing the number of stations and minimizing the
variation of workload. Kara et al. (2009) produced a fuzzy goal programming for U-lines. Özcan
and Toklu (2009) used Simulated annealing and genetic algorithm to maximize the line efficiency
and to maximize the smoothness index. R. Hwang and Katayama (2009) developed an evolutionary
algorithm to minimize the number of stations and the variation of workload. Bagher et al. (2011)
used a hybrid evolutionary algorithm to solve the problem under uncertainty to minimize the number

https://assembly-line-balancing.de/
https://assembly-line-balancing.de/

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

3

of stations, total idle time, and non-completion probabilities of each station. Kazemi et al. (2011)
developed a genetic algorithm to minimize the total costs associated with the number of stations
and task duplication. Hamzadayi and Yildiz (2012) presented a genetic algorithm to minimize the
number of stations and maximize the smoothness index. Rabbani et al. (2012) developed a heuristic
algorithm based on a genetic algorithm to minimize the number of stations and the cycle time. Avikal
et al. (2013) used the critical path method to minimize the number of stations and maximize labor
productivity. Hamzadayi and Yildiz (2013) proposed a simulated annealing approach for minimizing
the number of stations for mixed models u-shaped assembly line balancing problem.

Fattahi et al. (2014) presented a new formulation for the problem, where the objective is to minimize
the number of stations. Jayaswal and Agarwal (2014) developed a simulated annealing approach to
minimize the total annual cost of work station utilization, equipment operation, and assistant employment.
Hazir and Dolgui (2015) proposed a bender decomposition algorithm for minimizing the cycle time.
Ogan and Azizoglu (2015) developed a branch and bound algorithm for minimizing the total equipment
cost. Alavidoost et al. (2016) used a two-phase interactive fuzzy programming approach to minimize the
number of stations and cycle time under uncertainty. Nilakantan and Ponnambalam (2016) developed
a particle swarm optimization approach for minimizing the cycle time and maximizing the production
rate. Alavidoost et al. (2017) developed a modified genetic algorithm that deals with the problem under
uncertainty. The objectives were to minimize the number of stations, maximize the fuzzy balance
efficiency, and minimize the fuzzy idle time percentage.

Li et al. (2017) developed a heuristic approach based on multiple rules to minimize the cycle
time. Oksuz et al. (2017) used an artificial bee colony algorithm and genetic algorithm to maximize
line efficiency. Z. Li et al. (2018) proposed branch, bound and remember algorithm to maximize
the number of stations. Zhang et al. (2019) developed a migrating birds optimization algorithm for
minimizing the cycle time. Aydoğan et al. (2019) developed a particle swarm optimization algorithm
to minimize the number of stations under uncertainty. Pınarbaşı (2021) dealt with the same problem
discussed in this paper through linearinzing the non-linear constraints and he used IBM ILOG CP
solver to solve them.

The literature review shows that most of the researches have developed approaches to deal with
the problem in its deterministic case. Hense, it appears that it is a solid motivation to discuss the
uncertainty of the problem further. Therefore, this paper presents one of the uncertainty cases of
the problem, which is the chance-constrained problem. In addition, it proposes an efficient GRASP
algorithm as a new approach for solving the problem, where its results are compared with the results
found in (Pınarbaşı, 2021) and proofed a high efficiecy in terms of objective values and CPU times.

3. PROBLEM FORMULATION

According to the literature review, it appears that most researches have focused on deterministic
processing time. In this paper, processing times of the tasks are represented as random variables that
are normally distributed and each has an expected value E t

i() and variance Var t
i() . The cycle time

constraints of the problem are realized with a minimum probability. So, the problem can be
reformulated as shown in Table 1.

Minimize y
j

n

j
=
∑

1

	 (1)

s t x i n
j

n

ij
. . , , , ,

=
∑ = ∀ = …{ }

1

1 1 2 	 (2)

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

4

P t x y ct j n
i

n

i ij j j
=
∑ ≤











≥ ∀ = …{ }

1

1 2α , , , , 	 (3)

P S i n
i i
+ ≥ ∀ = …{ }1 1 2, , , , 	 (4)

x i j
ij
∈ { } ∀0 1, , , 	 (5)

Table 1. Notations

i n= …{ }1 2, , , The set of tasks

j n= …{ }1 2, , , The set of stations

t
i The processing time

ct The cycle time

IP i() The set of immediate predecessors of task i

IS i() The set of immediate successors of task i

x
if task i is assigned to station j

otherwiseij
=






1

0

,

,



y
j

 is a variable that indicates the existence of station j :

y
if x

otherwise
j i

n

ij=
≥










=
∑1 1

0
1

,

,

P
i

 indicates the status of assignment of the immediate predecessors of task i :

P
if j x j x k IP i

otherwise
i j

n

k j
j

n

ij=
≤ ∀ ∈ ()









= =
∑ ∑1

0
1 1

11
, ,

,



S
i
 indicates the status of assignment of the immediate successors of task i :

S
if j x j x k IS i

otherwise
i j

n

k j
j

n

ij=
≤ ∀ ∈ ()









= =
∑ ∑1

0
1 1

22
, ,

,



International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

5

The objective function (1) seeks to minimize the number of stations. The set of constraints (2)
represents the assignment constraints, which ensures that each task is assigned in only one station.
The set of chance constraints (3) ensures that the total processing time of any station doesn’t exceed
the cycle time with probability greater than or equal α

j
. Such set of chance constraints can be

converted to the following set of constraints to overcome the probabilities (Taha, 2017):

i

n

i ij
j

n

i ij j j
E t x k var t x y ct j n where k

j
=
∑ ∑() + () ≤ ∀ = …{ }

1

1 2α α, , , , ,
jj
is the z score of

j
 − α 	 (6)

The set of constraints (4) shows that each task has to be assigned after assigning either its
immediate predecessors, or its immediate successors. Eventually, the set of constraints (5) ensures
that the problem is an integer 0-1 programming problem.

4. THE PROPOSED ALGORITHM

The proposed approach for solving the problem is the greedy randomized adaptive search procedure.
This algorithm is one of the meta-heuristics that searches for optimized solutions, through a set
of iterations that contains a solution construction and a local search. The solution construction of
this approach begins with a stochastic greedy rule that leads to a candidate solution. The next step
of GRASP is to search around the candidate solution by using a local search. The final step is to
compare the evaluation of the best local solution with the evaluation of the best solution found per
all previous iterations.

4.1. Algorithm 1 (The Solution Construction)
The proposed approach begins with the solution structure, which can be developed as seen in
algorithm 1. Figure 1 shows the flowchart of algorithm 1.

Algorithm 1 illustrates the random solution construction of the proposed algorithm. It begins
by constructing a random arrangement (RA) of the tasks. The iterations of the algorithm find the
assignable tasks according to the problem constraints, and then they choose the top task in the
constructed random arrangement and assign it to the current open station. The assigned task then

Algorithm 1. Solution construction

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

6

will be eliminated from the constructed random arrangement set. A new station in the algorithm is
to be opened when there are existed tasks in the constructed random arrangement set and no more
of them can fit in the current open station. The solution of the algorithm will be returned when all
tasks are assigned. Figure 1 shows the flowchart of algorithm 1.

4.2. Algorithm 2 (The Local Search)
According to the concept of GRASP, the constructed solution should be followed by a local search
that tries to find the optimal local neighbor of it. The proposed mutation technique to find a neighbor
is to swap the tasks of any station either with a forward station or backward station. After swapping,
the sequence of the tasks will be presented to Algorithm 1 as RA to obtain another solution that is
neighbor to the main random constructed solution. Algorithm 2 shows the local search of the proposed
GRASP algorithm for solving the problem. Figure 2 shows the flowchart of the algorithm 2.

4.3. Algorithm 3 (GRASP)
After illustrating the constructed solution procedures, and the local search procedures, the steps of
the proposed GRASP algorithm can be illustrated in Algorithm 3. Figure 3 shows the flowchart of
algorithm 3.

5. EXPERIMENTAL DESIGN

The proposed algorithm is coded using python in a PC that has core 2 due CPU with 2.93 GHz and
4 GB rams. The proposed algorithm has four parameters, which are the number of constructed

Figure 1. Algorithm 1 “Solution Construction”

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

7

solutions (C), the number of local solutions (L), the swapping rate (S), and mutation function (M).
The levels of parameter C are 5, 15, 20 solutions. The levels of parameter L are 10, 20, and 30.The
levels of parameter S are 0.2, 0.3, and 0.4, where in such parameter the number of swapped tasks is
obtained by multiplying the swapping rate by the number of tasks and rounding up the output to the

Algorithm 2. Local search

Figure 2. Algorithm 2 “Local Search”

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

8

Algorithm 3. GRASP for solving CUALBP-1

Figure 3. Algorithm 3 “GRASP for Solving CUALBP-1”

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

9

nearest integer. The levels of parameter M are forward swapping (FS), backward swapping (BS), and
bi-directional swapping (DS). The required trails to make full factorial design are 4 643 = � trails. In
Taguchi method, such number of trails can be reduced after calculating the degrees of freedom for
each parameter to select the right orthogonal array. Equation (7) shows the required number of trails
N
Taguchi

, where L
i
 represents level i and NV is the number of levels:

N L
Taguchi

i

NV

i
= + −

=
∑1 1

1

() 	 (7)

So, the required number of trails should be greater than or equal 9. Therefore, the selected
orthogonal array for this experiment is L

9
, which is in Table 3.

The response in this experimental design includes the CPU time beside the objective function
value as seen in equation (8). The selected test optimization problems are taken from a well-known
benchmark found in https://assembly-line-balancing.de/. Table 4 shows the selected optimization
problems and their associated cycle times and sizes. Table 5 shows the normalized results for each
trail in each problem. The normalization of the results is done due to the variation of the objective
functions from problem to another:

Response y
CPU timej

n

j
= −

=
∑

1

1

	 (8)

Table 3. The selected orthogonal array for experimental design

M S L C

FS 0.2 10 5

BS 0.3 20 5

DS 0.4 30 5

DS 0.3 10 15

FS 0.4 20 15

BS 0.2 30 15

BS 0.4 10 20

DS 0.2 20 20

FS 0.3 30 20

Table 2. Notations

M Mutation function

S The number of swapped stations

L The number of local search solutions

C The number of constructed solutions

https://assembly-line-balancing.de/

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

10

In order to obtain a robust setting that minimizes the response with a higher accuracy, the main
effects for means and standard deviations are studied. Figure 4 shows the main effects plot for means
and Figure 5 shows the main effects plot for standard deviations. From the figures, it can be stated
that the optimized parameter levels can be summarized in Table 6, where each selected level has the
minimum response and standard deviation.

6. COMPUTATIONAL RESULTS

The computational results show the implementation of the proposed GRASP algorithm in 48 adapted
problems taken from https://assembly-line-balancing.de/. The problems vary in their sizes from 7 to
148 tasks. The comparison is done with a constrained programming approach (CP) proposed by
Pınarbaşı (2021). The problems in the benchmark are deterministic. Therefore, the adaptation is done
by considering the expected processing times of the tasks are the same as the original processing
times in benchmark and the variances are calculated using a modified version of the method of
Carraway (1989), which is mentioned in the introduction section. The reason for modifying the method
is that it found that sometimes the generated variance causes violating the cycle time constraints.
Therefore, the modified version of the mehtod of Carraway (1989) is shown in equation 10, where

it based on the generated value Var t
test i() from either the low variances interval 0 4

2
,(_E t i() ⁄()











or the high variances interval 0 2
2

,(_E t i() ⁄()










. The computational results table has a column for

Table 4. Test optimization problems

Problem Cycle time Size

JACKSON 9 11

MITCHELL 14 21

HESKIA 138 28

SAWYER30 25 30

ARC83 5048 83

ARC111 5755 111

Table 5. The normalized results for each trail

JACKSON MITCHELL HESKIA SAWYER30 ARC83 ARC111

0.1269 0.1110 0.1224 0.1138 0.1166 0.1140

0.1089 0.1111 0.1226 0.1139 0.1099 0.1107

0.1092 0.1112 0.1076 0.1140 0.1105 0.1118

0.1091 0.1110 0.1076 0.1138 0.1094 0.1109

0.1093 0.1111 0.1073 0.1067 0.1119 0.1101

0.1095 0.1112 0.1084 0.1082 0.1103 0.1104

0.1090 0.1110 0.1090 0.1138 0.1094 0.1102

0.1089 0.1111 0.1077 0.1080 0.1107 0.1114

0.1090 0.1112 0.1075 0.1078 0.1113 0.1104

https://assembly-line-balancing.de/

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

11

Figure 4. Mean effects plot for means

Figure 5. Mean effects plot for standard deviations

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

12

the deterministic lower bound for each problem to show how far the uncertainty results from the
deterministic lower bound, which can be found by equation (11). The problems are solved in case of
chance probabilities that are equal to 0.90, 0.95, and 0.975. Table 7 shows the computational results
in case of low variances and Table 8 shows the computational results in case of high variances. Note:
all CPU times in Tables 7 and 8 are in seconds:

Var t rand
E t

Var
Var

test i
i

size
size() = () ()










=0 1

2

, ,* 22 4 or 	 (9)

Var t

Var t if Var t ct

ct E ti

test i test i

i() =
() () ≤

− ()







,

.

1 96 













2

,Otherwise
	 (10)

LB
E t

ct
where x is the largest integer greater thai

n

i
= =∑ 1

()
, nn x 	 (11)

The proposed GRASP algorithm proofs a high efficiency in terms of objective values and CPU
times when compared to CP approach (Pınarbaşı, 2021). In case of low variances, the objective values
shows that the GRASP algorithm is better than CP approach in 33 problems. In case of high variances,
the GRASP algorithm is better than CP approach in 45 problems. In terms of CPU times, Pınarbaşı
(2021) reported in his research that the minimum CPU time for the small sized problems, which are
lower than or equal 70 tasks, is 0.01 and the maximum CPU time is 300. The large sized problems
in CP approach have minimum CPU time approximately equal to the maximum CPU time, where
both equal to 900. While in GRASP algorithm, the minimum CPU time is 0.01 and the maximum
CPU time is 1.69 for all problems.

7. CONCLUSION

This paper presents a GRASP algorithm as a new approach for solving the U-shaped assembly line
balancing problem under uncertainty. The uncertainty herein is related to having the processing times
of the tasks as normally distributed random variables with known means and variances. Therefore,
the problem is formulated as chance-constrained programming by considering that the cycle time

Table 6. The optimized parameters

Parameter Level

M DS

S 0.4

L 30

C 15

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

13

continued on following page

Table 7. Computational results (low variances)

Problem ct LB

α = 0 90. α = 0 95. α = 0 975.

CP
Number

of stations
(GRASP)

CPU time
(GRASP) CP

Number
of stations
(GRASP)

CPU time
(GRASP) CP

Number
of stations
(GRASP)

CPU time
(GRASP)

B 8 4 5 5 0.01 5 5 0.01 5 5 0.01

MERTENS 10 3 4 3 0.01 4 3 0.00 4 3 0.01

MERTENS 15 2 3 2 0.01 3 2 0.00 3 2 0.00

MERTENS 18 2 2 2 0.01 2 2 0.00 2 2 0.00

BOWMAN8 20 4 6 5 0.01 6 5 0.01 5 5 0.01

JAESCHKE 6 7 8 8 0.01 8 8 0.01 8 8 0.01

JAESCHKE 7 6 7 7 0.01 7 7 0.01 7 7 0.01

JAESCHKE 8 5 7 6 0.01 7 6 0.01 7 6 0.01

JAESCHKE 10 4 5 4 0.01 5 4 0.01 5 4 0.01

JAESCHKE 18 3 3 3 0.01 3 3 0.02 3 3 0.01

JACKSON 9 6 7 6 0.03 7 6 0.03 7 6 0.01

JACKSON 10 5 7 5 0.01 7 5 0.01 7 5 0.01

JACKSON 13 4 5 4 0.01 5 4 0.01 5 4 0.01

JACKSON 14 4 4 4 0.01 4 4 0.01 4 4 0.01

JACKSON 21 3 3 3 0.01 3 3 0.01 3 3 0.01

MITCHELL 15 7 NFS 8 0.03 NFS 8 0.03 9 8 0.03

MITCHELL 21 5 6 6 0.02 6 6 0.02 6 6 0.03

MITCHELL 26 5 5 5 0.02 5 5 0.02 5 5 0.02

MITCHELL 35 3 4 3 0.25 4 3 0.07 4 3 0.14

MITCHELL 39 3 4 3 0.02 4 3 0.02 3 3 0.02

HESKIA 205 5 6 6 0.06 6 6 0.06 6 6 0.06

HESKIA 216 5 6 5 0.11 6 5 0.05 6 5 0.11

HESKIA 256 4 5 5 0.06 5 5 0.05 5 4 0.33

HESKIA 324 4 4 4 0.05 4 4 0.05 4 4 0.05

HESKIA 342 3 4 4 0.05 4 4 0.05 4 3 0.44

SAWYER30 33 10 15 11 0.11 14 11 0.19 14 11 0.06

SAWYER30 41 8 11 9 0.05 11 9 0.05 10 9 0.05

SAWYER30 47 7 10 8 0.05 9 8 0.05 8 8 0.05

KILBRID 79 7 9 8 0.11 8 8 0.11 8 8 0.11

KILBRID 92 6 7 7 0.10 7 7 0.11 7 7 0.11

KILBRID 110 6 6 6 0.12 6 6 0.11 6 6 0.11

KILBRID 138 4 5 4 0.83 5 5 0.10 5 5 0.11

KILBRID 184 3 4 3 0.52 4 4 0.10 4 3 0.21

TONGE70 207 17 22 19 0.61 20 19 2.79 20 19 3.41

TONGE70 234 15 19 17 0.29 19 17 0.63 18 17 0.30

TONGE70 320 11 14 12 0.27 13 12 0.28 13 12 0.28

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

14

continued on following page

Table 8. Computational results (high variances)

Problem ct LB

α = 0 90. α = 0 95. α = 0 975.

CP
Number

of stations
(GRASP)

CPU time
(GRASP) CP

Number
of stations
(GRASP)

CPU
time

(GRASP)
CP

Number
of stations
(GRASP)

CPU
time

(GRASP)

MERTENS 8 4 NFS 5 0.01 NFS 5 0.01 5 5 0.01

MERTENS 10 3 5 3 0.01 5 3 0.01 5 4 0.01

MERTENS 15 2 3 2 0.00 3 2 0.00 3 2 0.01

MERTENS 18 2 3 2 0.00 3 2 0.00 2 2 0.00

BOWMAN8 20 4 6 5 0.01 6 5 0.01 6 5 0.01

JAESCHKE 6 7 NFS 8 0.01 NFS 8 0.01 NFS 8 0.01

JAESCHKE 7 6 NFS 7 0.01 NFS 7 0.03 NFS 7 0.01

JAESCHKE 8 5 7 6 0.01 7 6 0.01 7 7 0.01

JAESCHKE 10 4 7 5 0.01 7 5 0.01 7 5 0.01

JAESCHKE 18 3 3 3 0.01 3 3 0.01 3 3 0.01

JACKSON 9 6 NFS 6 0.02 NFS 6 0.01 NFS 6 0.01

JACKSON 10 5 NFS 5 0.01 NFS 5 0.01 6 5 0.01

JACKSON 13 4 5 4 0.01 5 4 0.01 5 4 0.01

JACKSON 14 4 5 4 0.01 5 4 0.01 5 4 0.01

JACKSON 21 3 3 3 0.01 3 3 0.01 3 3 0.01

MITCHELL 15 7 NFS 8 0.03 NFS 8 0.03 NFS 8 0.03

MITCHELL 21 5 8 6 0.03 7 5 0.10 7 6 0.02

Problem ct LB

α = 0 90. α = 0 95. α = 0 975.

CP
Number

of stations
(GRASP)

CPU time
(GRASP) CP

Number
of stations
(GRASP)

CPU time
(GRASP) CP

Number
of stations
(GRASP)

CPU time
(GRASP)

LUTZ2 18 27 36 31 0.49 34 31 0.50 33 31 1.96

LUTZ2 21 24 30 26 0.45 29 26 0.46 28 26 0.92

LUTZ2 32 16 20 16 3.59 19 17 0.41 18 16 2.03

MUKHERJE 351 12 15 13 0.60 15 13 0.61 14 13 0.61

MUKHERJE 471 9 11 10 0.58 11 10 0.57 11 10 0.60

MUKHERJE 704 6 8 7 0.57 8 6 6.20 7 7 0.59

ARC111 9554 16 20 17 0.82 19 17 1.63 18 17 5.03

ARC111 11570 13 16 14 0.87 16 14 1.61 15 14 1.64

ARC111 15040 10 13 11 0.78 12 11 0.78 12 11 0.80

BARTHOLD 470 12 15 13 1.65 15 13 1.58 14 13 1.63

BARTHOLD 795 8 9 8 1.63 9 8 1.65 9 8 1.63

BARTHOLD 1127 5 7 6 1.71 6 6 1.67 6 6 1.67

Table 7. Continued

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

15

constraints as probabilistic constraints that are restricted by predetermined chance probability. After
optimizing the parameter of the algorithm using Taguchi method, the computational results are done
to compare the proposed algorithm with CP approach proposed by Pınarbaşı (2021). The results of
the proposed GRASP algorithm show high efficiency in terms of objective values and CPU times.
The future points of research may consider the following points:

Problem ct LB

α = 0 90. α = 0 95. α = 0 975.

CP
Number

of stations
(GRASP)

CPU time
(GRASP) CP

Number
of stations
(GRASP)

CPU
time

(GRASP)
CP

Number
of stations
(GRASP)

CPU
time

(GRASP)

MITCHELL 26 5 6 5 0.02 6 5 0.02 5 5 0.02

MITCHELL 35 3 4 3 0.14 4 4 0.02 4 4 0.02

MITCHELL 39 3 NFS 3 0.02 NFS 3 0.03 NFS 3 0.02

HESKIA 205 5 8 6 0.06 7 6 0.06 7 6 0.06

HESKIA 216 5 7 5 0.06 7 5 0.05 6 5 0.17

HESKIA 256 4 6 5 0.05 6 5 0.09 5 5 0.05

HESKIA 324 4 5 4 0.05 4 4 0.05 4 4 0.06

HESKIA 342 3 4 3 0.33 4 3 0.31 4 4 0.05

SAWYER30 33 10 NFS 11 0.06 NFS 11 0.05 NFS 11 0.11

SAWYER30 41 8 13 9 0.05 13 9 0.05 11 9 0.05

SAWYER30 47 7 11 8 0.05 11 8 0.05 10 8 0.05

KILBRID 79 7 NFS 8 0.11 NFS 8 0.11 NFS 8 0.11

KILBRID 92 6 8 7 0.11 8 7 0.11 8 7 0.11

KILBRID 110 6 7 6 0.11 7 6 0.11 6 6 0.10

KILBRID 138 4 6 5 0.10 6 5 0.11 5 5 0.10

KILBRID 184 3 4 4 0.10 4 3 0.32 4 4 0.11

TONGE70 207 17 NFS 19 4.01 NFS 19 1.54 NFS 20 0.30

TONGE70 234 15 NFS 17 0.60 NFS 17 0.60 NFS 17 0.29

TONGE70 320 11 16 12 0.28 15 12 0.28 14 12 0.28

LUTZ2 18 27 40 30 0.49 39 31 3.48 35 31 0.46

LUTZ2 21 24 32 26 2.30 32 26 5.49 29 26 2.71

LUTZ2 32 16 24 17 0.41 23 17 0.41 20 17 0.41

MUKHERJE 351 12 18 13 0.62 17 13 0.61 16 13 0.61

MUKHERJE 471 9 13 10 0.60 13 10 0.59 12 10 0.60

MUKHERJE 704 6 9 7 0.59 9 7 0.59 8 7 0.58

ARC111 9554 16 24 17 4.20 22 17 1.69 21 17 2.53

ARC111 11570 13 20 14 0.81 19 14 1.68 17 14 0.81

ARC111 15040 10 15 11 0.79 15 11 0.79 13 11 0.79

BARTHOLD 470 12 18 13 1.64 17 13 1.65 16 13 1.65

BARTHOLD 795 8 11 8 1.62 10 8 1.63 10 8 1.63

BARTHOLD 1127 5 8 6 1.65 7 6 1.67 7 6 1.69

Table 8. Continued

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

16

•	 Solving other types of assembly line balancing problems under uncertainty using the
same algorithm.

•	 Adding space constraints that are related to having area for each task.
•	 Considering that each station has chance probability differs from the other stations, since there

are operators more skillful than the others and they should have different chance probability.
•	 Solving the same problem in case that the number of stations is given and the cycle time is

required to be minimized.
•	 Solving the problem in case that both of the number of stations and the cycle time are not given

and the required objective is to maximize the line efficiency.

FUNDING AGENCY

The publisher has waived the Open Access Processing fee for this article.

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

17

REFERENCES

Ajenblit, D. A., & Wainwright, R. L. (1998). Applying genetic algorithms to the U-shaped assembly line balancing
problem. Proceedings of the IEEE Conference on Evolutionary Computation, ICEC, 96–101. doi:10.1109/
ICEC.1998.699329

Alavidoost, M. H., Babazadeh, H., & Sayyari, S. T. (2016). An interactive fuzzy programming approach for
bi-objective straight and U-shaped assembly line balancing problem. Applied Soft Computing, 40, 221–235.
doi:10.1016/j.asoc.2015.11.025

Alavidoost, M. H., Zarandi, M. H. F., Tarimoradi, M., & Nemati, Y. (2017). Modified genetic algorithm for
simple straight and U-shaped assembly line balancing with fuzzy processing times. Journal of Intelligent
Manufacturing, 28(2), 313–336. doi:10.1007/s10845-014-0978-4

Avikal, S., Jain, R., Mishra, P. K., & Yadav, H. C. (2013). A heuristic approach for U-shaped assembly line
balancing to improve labor productivity. Computers & Industrial Engineering, 64(4), 895–901. doi:10.1016/j.
cie.2013.01.001

Aydoğan, E. K., Delice, Y., Özcan, U., Gencer, C., & Bali, Ö. (2019). Balancing stochastic U-lines using particle
swarm optimization. Journal of Intelligent Manufacturing, 30(1), 97–111. doi:10.1007/s10845-016-1234-x

Bagher, M., Zandieh, M., & Farsijani, H. (2011). Balancing of stochastic U-type assembly lines: An imperialist
competitive algorithm. International Journal of Advanced Manufacturing Technology, 54(1–4), 271–285.
doi:10.1007/s00170-010-2937-3

Baykasoǧlu, A. (2006). Multi-rule multi-objective simulated annealing algorithm for straight and U type assembly
line balancing problems. Journal of Intelligent Manufacturing, 17(2), 217–232. doi:10.1007/s10845-005-6638-y

Carraway, R. L. (1989). A Dynamic Programming Approach to Stochastic Assembly Line Balancing. 10.1287/
mnsc.35.4.459

Erel, E., Sabuncuoglu, I., & Aksu, B. A. (2001). Balancing of U-type assembly systems using simulated annealing.
International Journal of Production Research, 39(13), 3003–3015. doi:10.1080/00207540110051905

Fattahi, A., Elaoud, S., Sadeqi Azer, E., & Turkay, M. (2014). A novel integer programming formulation with
logic cuts for the U-shaped assembly line balancing problem. International Journal of Production Research,
52(5), 1318–1333. doi:10.1080/00207543.2013.832489

Gökçen, H., & Aǧpak, K. (2006). A goal programming approach to simple U-line balancing problem. European
Journal of Operational Research, 171(2), 577–585. doi:10.1016/j.ejor.2004.09.021

Gökçen, H., Aǧpak, K., Gencer, C., & Kizilkaya, E. (2005). A shortest route formulation of simple U-type assembly
line balancing problem. Applied Mathematical Modelling, 29(4), 373–380. doi:10.1016/j.apm.2004.10.003

Hamzadayi, A., & Yildiz, G. (2012). A genetic algorithm based approach for simultaneously balancing and
sequencing of mixed-model U-lines with parallel workstations and zoning constraints. Computers & Industrial
Engineering, 62(1), 206–215. doi:10.1016/j.cie.2011.09.008

Hamzadayi, A., & Yildiz, G. (2013). A simulated annealing algorithm based approach for balancing and
sequencing of mixed-model U-lines. Computers & Industrial Engineering, 66(4), 1070–1084. doi:10.1016/j.
cie.2013.08.008

Hazir, Ö., & Dolgui, A. (2015). A decomposition based solution algorithm for U-type assembly line balancing
with interval data. Computers & Operations Research, 59, 126–131. doi:10.1016/j.cor.2015.01.010

Hwang, R., & Katayama, H. (2009). A multi-decision genetic approach for workload balancing of mixed-
model U-shaped assembly line systems. International Journal of Production Research, 47(14), 3797–3822.
doi:10.1080/00207540701851772

Hwang, R. K., Katayama, H., & Gen, M. (2008). U-shaped assembly line balancing problem with genetic
algorithm. International Journal of Production Research, 46(16), 4637–4649. doi:10.1080/00207540701247906

Jayaswal, S., & Agarwal, P. (2014). Balancing U-shaped assembly lines with resource dependent task
times: A Simulated Annealing approach. Journal of Manufacturing Systems, 33(4), 522–534. doi:10.1016/j.
jmsy.2014.05.002

http://dx.doi.org/10.1109/ICEC.1998.699329
http://dx.doi.org/10.1109/ICEC.1998.699329
http://dx.doi.org/10.1016/j.asoc.2015.11.025
http://dx.doi.org/10.1007/s10845-014-0978-4
http://dx.doi.org/10.1016/j.cie.2013.01.001
http://dx.doi.org/10.1016/j.cie.2013.01.001
http://dx.doi.org/10.1007/s10845-016-1234-x
http://dx.doi.org/10.1007/s00170-010-2937-3
http://dx.doi.org/10.1007/s10845-005-6638-y
http://dx.doi.org/10.1080/00207540110051905
http://dx.doi.org/10.1080/00207543.2013.832489
http://dx.doi.org/10.1016/j.ejor.2004.09.021
http://dx.doi.org/10.1016/j.apm.2004.10.003
http://dx.doi.org/10.1016/j.cie.2011.09.008
http://dx.doi.org/10.1016/j.cie.2013.08.008
http://dx.doi.org/10.1016/j.cie.2013.08.008
http://dx.doi.org/10.1016/j.cor.2015.01.010
http://dx.doi.org/10.1080/00207540701851772
http://dx.doi.org/10.1080/00207540701247906
http://dx.doi.org/10.1016/j.jmsy.2014.05.002
http://dx.doi.org/10.1016/j.jmsy.2014.05.002

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

18

Kara, Y., Paksoy, T., & Ter Chang, C. (2009). Binary fuzzy goal programming approach to single model
straight and U-shaped assembly line balancing. European Journal of Operational Research, 195(2), 335–347.
doi:10.1016/j.ejor.2008.01.003

Kazemi, S. M., Ghodsi, R., Rabbani, M., & Tavakkoli-Moghaddam, R. (2011). A novel two-stage genetic
algorithm for a mixed-model U-line balancing problem with duplicated tasks. International Journal of Advanced
Manufacturing Technology, 55(9–12), 1111–1122. doi:10.1007/s00170-010-3120-6

Kim, Y. K., Kim, J. Y., & Kim, Y. (2006). An endosymbiotic evolutionary algorithm for the integration of
balancing and sequencing in mixed-model U-lines. European Journal of Operational Research, 168(3), 838–852.
doi:10.1016/j.ejor.2004.07.032

Li, M., Tang, Q., Zheng, Q., Xia, X., & Floudas, C. A. (2017). Rules-based heuristic approach for the U-shaped
assembly line balancing problem. Applied Mathematical Modelling, 48, 423–439. doi:10.1016/j.apm.2016.12.031

Li, Z., Kucukkoc, I., & Zhang, Z. (2018). Branch, bound and remember algorithm for U-shaped assembly line
balancing problem. Computers & Industrial Engineering, 124, 24–35. doi:10.1016/j.cie.2018.06.037

Miltenburg, G. J., & Wijngaard, J. (1994). U-line line balancing problem. Management Science, 40(10),
1378–1388. doi:10.1287/mnsc.40.10.1378

Mukund Nilakantan, J., & Ponnambalam, S. G. (2016). Robotic U-shaped assembly line balancing using particle
swarm optimization. Engineering Optimization, 48(2), 231–252. doi:10.1080/0305215X.2014.998664

Nakade, K., & Ohno, K. (1999). Optimal worker allocation problem for a U-shaped production line. International
Journal of Production Economics, 60, 353–358. doi:10.1016/S0925-5273(98)00145-5

Ogan, D., & Azizoglu, M. (2015). A branch and bound method for the line balancing problem in U-shaped
assembly lines with equipment requirements. Journal of Manufacturing Systems, 36, 46–54. doi:10.1016/j.
jmsy.2015.02.007

Oksuz, M. K., Buyukozkan, K., & Satoglu, S. I. (2017). U-shaped assembly line worker assignment and balancing
problem: A mathematical model and two meta-heuristics. Computers & Industrial Engineering, 112, 246–263.
doi:10.1016/j.cie.2017.08.030

Özcan, U., & Toklu, B. (2009). A new hybrid improvement heuristic approach to simple straight and U-type
assembly line balancing problems. Journal of Intelligent Manufacturing, 20(1), 123–136. doi:10.1007/s10845-
008-0108-2

Pınarbaşı, M. (2021). New chance-constrained models for U-type stochastic assembly line balancing problem.
Soft Computing, 25(14), 9559–9573. Advance online publication. doi:10.1007/s00500-021-05921-z

Rabbani, M., Moghaddam, M., & Manavizadeh, N. (2012). Balancing of mixed-Model two-Sided assembly
lines with multiple u-Shaped layout. International Journal of Advanced Manufacturing Technology, 59(9–12),
1191–1210. doi:10.1007/s00170-011-3545-6

Zhang, Z., Tang, Q., Han, D., & Li, Z. (2019). Enhanced migrating birds optimization algorithm for U-shaped
assembly line balancing problems with workers assignment. Neural Computing & Applications, 31(11),
7501–7515. doi:10.1007/s00521-018-3596-9

http://dx.doi.org/10.1016/j.ejor.2008.01.003
http://dx.doi.org/10.1007/s00170-010-3120-6
http://dx.doi.org/10.1016/j.ejor.2004.07.032
http://dx.doi.org/10.1016/j.apm.2016.12.031
http://dx.doi.org/10.1016/j.cie.2018.06.037
http://dx.doi.org/10.1287/mnsc.40.10.1378
http://dx.doi.org/10.1080/0305215X.2014.998664
http://dx.doi.org/10.1016/S0925-5273(98)00145-5
http://dx.doi.org/10.1016/j.jmsy.2015.02.007
http://dx.doi.org/10.1016/j.jmsy.2015.02.007
http://dx.doi.org/10.1016/j.cie.2017.08.030
http://dx.doi.org/10.1007/s10845-008-0108-2
http://dx.doi.org/10.1007/s10845-008-0108-2
http://dx.doi.org/10.1007/s00500-021-05921-z
http://dx.doi.org/10.1007/s00170-011-3545-6
http://dx.doi.org/10.1007/s00521-018-3596-9

