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ABSTRACT

Variable selection is an old topic from regression models. Besides many conventional approaches, 
some metaheuristic approaches from the realm of optimization such as GA (genetic algorithm) or 
simulated annealing have been suggested to date. These methods have a considerable advantage 
to deal with many problems over the classical methods, but they must control relevant fine-tuning 
parameters associated with cross-over or mutation, which can be difficult and time-consuming. In 
this paper, Jaya, one of several parameter-free approaches will be suggested and explored. Several 
metaheuristic methods will be compared using results from a real-world dataset and a simulated 
dataset. The impact of using local search will be analyzed.
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INTRODUCTION

Variable selection is a classical topic in regression which has many applications in several areas 
including, but not limited to, engineering, medicine, psychology, or business.

Among numerous variable selection methods developed, some classical sequential methods such 
as stepwise selection methods (Desboulets, 2018; Lindsey and Sheather, 2010) have been widely 
used because they are simple and work very well if there are not too many variables and they have 
low prediction error. But there are some drawbacks in these methods. Two most serious issues among 
them are (1) they tend to converge to local optima (Hans et al., 2012; Hocking,1976; Kiezun et al., 
2009; Meiri and Zahavi, 2006; Paterini and Minerva, 2010) and (2) they do not work very well in high 
dimensional spaces. (Hand et al., 2012; Kapetanios, 2007). Later in this section, it will be explained 
how these problems can be resolved with ‘metaheuristics’ in optimization research.

The selection of the most adequate variables in regression models can be stated as a combinatorial 
optimization problem with the objective to select explanatory variables that maximize the adequacy 
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of the model according to statistical criteria (objective function). (Meiri, 2006; Paterlini and Minerva, 
2010) Some methods or algorithms from optimization research have been used for variable selection, 
including but not limited to, genetic algorithm (Broadhurst et al., 1997; Kapetanios, 2007; Kiezun et 
al., 2009; Jirapech-Umpai and Aitken, 2005; Mohan et al., 2018; Paterini and Minerva, 2010; Peng 
et al., 2005; Sinha et al., 2015), simulated annealing (Kiezun et al., 2009; Meiri and Zahavi, 2006), 
iterated local search (Hans et al., 2012). These methods are characterized as metaheuristics, a stochastic 
search strategy dedicated to solving difficult problems (NP-hard problems) in optimization research.

In particular, genetic algorithms (GA hereafter) and simulated annealing (SA hereafter) are 
known to be very effective to resolve the two issues mentioned above – (1) convergence to local 
optima (Kapatenios, 2007; Kiezun et al., 2006; Meiri, 2006; Paterini and Minerva, 2010) and (2) 
handling high dimensional spaces. (Kapatenious, 2007; Meiri, 2006) Brief descriptions of GA and 
SA can be found in Appendix.

Even if these metaheuristics (GA or SA) have good properties such as tending to reach the global 
optima and capability to deal with many variables, their performance heavily depend on the choice 
of ‘tuning parameters’, which is very experimental and time-consuming in practice. For example, 
the GA and SA need to fine tune four parameters (crossover type, crossover rate, mutation type, and 
mutation rate) and five parameters (initial temperature, final temperature, cooling ratio, temperature 
function, and accept function), respectively.

To resolve these obvious and practical problems, this paper will suggest using ‘parameter-
free metaheuristics’ for variable selection in regression – Jaya (Rao, 2016) and Teaching Based 
Optimization (TBO hereafter) (Rao et al., 2011).

In the next section, TBO and Jaya will be briefly described.

APPROACH

What is Teaching Based Optimization?
The Teaching-learning-based optimization (TLBO) metaheuristic is a two-phase population-based 
metaheuristic designed to solve continuous nonlinear optimization problems. It was proposed by 
Rao et al. (2011) as a method for solving large constrained mechanical design optimization problems 
which involve no specific parameters to tune. Since the tuning of parameters in other metaheuristics 
can often be time consuming and largely experimental, Rao et al. (2011) describe a procedure in 
which the only parameters that need to be specified are those common to all other metaheuristics--
population size and termination criterion.

TLBO consists of two phases referred to by Rao et al. (2011) as the teaching phase and the 
learning phase. The first phase of TLBO, the teaching phase, utilizes a global search procedure which 
really uses intensification-focused moves as discussed in Hill and Pohl (2019). The “difference mean” 
is created by subtracting the quality of the best solution with the current mean solution. The objective 
here is to improve all solutions by this difference. The operator creating a new solution in the teaching 
phase is given as the formula X X r X T X

new old teacher f mean
= + ×( )� � � –� �  where Xold is a current solution 

of a population being modified, r is a random number in the range [0,1], Xteacher is the best solution 
of a population, Tf = round(1+rand(0.1)) implying that Tf takes on the values 1 or 2 with equal 
probability and Xmean is the mean solution of a population (Rao et al, 2011). Here, two variables r and 
Tf could have been used as parameters; however, they are defined as being random numbers and 
therefore their values are not specified as input parameters. The teaching phase is completed by 
checking if the new solution is better than the current.

The second phase of TLBO adjusts each solution relative to a randomly selected solution (another 
learner). The learning phase involves diversification-focused moves as discussed in Hill and Pohl 
(2019). The operator is given by the following (for a minimization problem):
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where, similar to the teaching phase, r is randomly chosen in the range of [0,1], Xi is the current 
solution and Xj is a randomly chosen solution where i j≠  . For both phases of TLBO, since 
Xj is a vector of real numbers, the actual implementation of TLBO requires the use of these 
update formulas on each component of Xj. For more information on TLBO, the authors suggest 
reading Rao et al. (2011).

In this paper, Teaching-based Optimization (TBO), which is a special case of TLBO with only 
teaching phase will be used because the learning phase will be replaced with a local search which 
will also be incorporated into Jaya.

What is Jaya?
The Jaya metaheuristic by Rao (2016) is a single phase population-based metaheuristic designed 
to solve continuous nonlinear optimization problems. It is very similar to the teaching phase 
of TLBO except that a different transformation formula is used to update each solution in the 
current population. Specifically, if Xj,k,i is the value of the jth variable for the kth candidate 
solution during the ith iteration, then this value is modified based on the equation Xnew

j,k,i = 
Xj,k,i + R1j,i(Xj,best,i - Xj,k,i) – R2j,i(Xj,worst,i - Xj,k,i), where Xj,best,i is the value of the variable j for 
the best candidate solution in the current population and Xj,worst,i is the value of the variable j 
for the worst candidate solution in the current population. Xnew

j,k,i is the updated value of Xj,k,i 
and R1j,i and R2j,i are two random numbers for the jth variable during the ith iteration in the 
range [0,1]. This transformation equation is trying to move the current solution toward the 
best solution and away from the worst solution. The authors suggest reading Rao (2016) for 
more details on Jaya.

Binarization of TLBO and Jaya
Both TLBO and Jaya are designed to solve continuous nonlinear optimization problems; 
whereas variable selection is a zero-one constrained optimization problem (either a variable is 
in the model or not). The solutions in the population of a problem using the original versions 
of TLBO or Jaya will be vectors of real (rational) numbers. The solutions in the population for 
the variable selection problem are bit strings (zeros and ones). To adapt TLBO and Jaya to deal 
with bit strings, the authors used the approach that Lu and Vasko (2015) used successfully for 
the Set Covering Problem. In any of the transformation formulas (teaching, learning, or Jaya), 
the variables are now bits. The random numbers that took on any values between 0 and 1 now 
take on only 0 or 1 with equal probability. As in the original TLBO, the teaching factor in TLBO 
takes on the values 1 or 2 with equal probability. Also, in the teaching phase, the mean solution 
is replaced by the median solution. If, after a transformation formula is performed, a variable 
value is less than 0, it is set to 0. If it is greater than 1, it is set to 1. Intuitively, if the result of a 
transformation formula produces a variable that “wants” to have a value less than 0, the authors 
simply set it to 0. In a like manner, variables that “want” to have a value greater than 1 are set 
to 1. The empirical results will demonstrate that this simple binarization approach yields good 
results. Additionally, it is important to note that there are other (more complicated) approaches in 
the literature for binarization of metaheuristics originally designed to solve continuous nonlinear 
optimization problems (Lanza-Gutierrez, 2016). However, Vasko and Lu (2017) reported that 
the simple approach outlined above performed the best for the set covering problem.
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DATA AND APPLICATION

Real-world Dataset – Crime
Background
This dataset is generated from Communities and Crime Unnormalized Data Set on UCI Machine 
Learning Repository. (Redmond, 2011)

The original dataset combines socio-economic data from the ‘90 Census, law enforcement data 
from the 1990 Law Enforcement Management and Admin Stats survey, and crime data from the 
1995 FBI UCR. This dataset includes 2215 cases and 147 variables, but the ‘crime dataset’ used in 
this section consists of 760 randomly selected cases (communities) with the population size between 
around 14,000 and 43,000 and 31 variables. One variable (the number of burglaries) is used as the 
response variable and the 30 remaining variables, including per capita income and median gross rent, 
are used as explanatory variables for a linear regression model.

Among the 760 cases, 380 randomly selected cases are used for the training set to fit the model 
and the remaining 380 cases are used for the validation set to evaluate the model selected from the 
training set. These two sets are used for analysis and comparisons in the next section.

Analysis and Result
In this section, a multiple linear regression model is used to find a relationship between the response 
variable and the explanatory variables described in the previous section. The programming language 
C++ was used for analysis on the computer with Windows 10 Pro edition (64 bit) and Intel core 
i5-6300U.

The weighted average of the Akaike Information Criterion (AIC) (Akaike, 1974) is used as the 
(ad hoc) objective function for optimization:

AIC pAIC p AIC
w t v�

�= + −( )1 	 (2)

where p and 1-p are the proportions of the training set and the validation set from the whole dataset, 
respectively.

AIC is formulated as follows:

AIC k ln L= + ( )2 2 ˆ �	 (3)

where k is the number of parameters and L̂  is the maximum value of the likelihood function for the 
model. In the crime dataset, p=0.5 because the training set and the validation set have the same size 
of 380. AICt and AICv are the AICs calculated from the training set and the validation set, for each. 

AICt is used to estimate the coefficients in multiple regression with the training set and then 
AICv is used to evaluate a model derived in the previous step with the cases in the validation set.

Now, it is explained briefly how to conduct variable selection process (for getting relevant 
variables and the corresponding coefficients) step by step:

Step 1: Generate a population of a fixed size of bit strings for a given metaheuristic method.
Step 2: With a selected bit string from the population in step 1, use the data points in the training 

set, estimate coefficients and calculate the corresponding AICt.
Step 3: Use the data points in the validation set and the coefficients (or model) from step 2, calculate 

the corresponding AICv and then calculate the AICw.
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Step 4: Repeat steps 2-3 as needed and update population as desired until the stopping criteria are 
satisfied (either the limit of 3600 second of running time or no observed improvement in terms 
of AICw, whichever comes first.)

Its flowchart is listed in Figure 1 and its detailed pseudocode can be found in the Appendix.

Basic Comparison of Three Metaheuristics
GA, TBO, and Jaya are used as our main metaheuristics in this section, but specific procedures for 
each method are not given in the steps above due to their complexity. One can easily check them in 
the references mentioned in section 1 for GAs, if needed. For TBO and Jaya, one can check section 2.

These three methods are used for analysis and compared with one another for their performance 
and efficiency in terms of the magnitude of objective function (AICw) and running time, for each. 
Four cases for GA and one case for TBO and Jaya, respectively, are used as described:

Case 1: GA with random selection of parents.
Case 2: GA with random selection of parents plus mutation.

Figure 1. Flowchart
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Case 3: GA with crossover.
Case 4: GA with crossover plus mutation.
Case 5: Jaya.
Case 6: TBO.

Each case used 5 lists with the population size of 300 for calculation.
Table 1 shows the summary from the 5th list. (other lists show similar results.) The five cases 

(Case 1 to Case 5) have the same ‘Best AICw’ with the global optimum (minimum) at 3552.72, which 
means the five cases successfully attain the best possible AICw, so they have the same ‘Explanatory 
variables selected’. The Exhaustive method, which checks all combinations of the variables, confirms 
that the five cases achieve the best possible variable selection even if they are not shown in Table 
1. All GAs (Cases 1 to 4) and Jaya (Case 5) attained the global optimum, but TBO did not. Jaya 
was much faster than GAs (16.07 vs. 36.22 or 64.04 or 63.32 or 103.32) and TBO was fast (19.50) 
comparing with GAs but wound up with a sub-optimum.

More Comparisons With Different Jaya Population Sizes
Based on the results above, Jaya looks superior to other metaheuristic methods. In this section, it will 
be explored how Jaya can be improved with controlling population size, which is one of only two 
parameters (population size and stopping criteria) used in Jaya. Four scenarios are defined as J1, J2, 
J3, and J4 with the different population size of 300, 200, 100, and 50, respectively. Each scenario 
used five lists with the same population size for calculation.

Table 2 shows the results from the four scenarios. J1 and J2 detected the optimum 2 times and 3 
times, respectively, among 5 trials (lists). Neither J3 nor J4 detected the optimum. - J3 and J4 arrived 
at sub-optima of 3556.73 and 3557.62, respectively, as best results. J2 (population size of 200) showed 
the best performance in terms of quality (highest number of detecting) and speed (11.71).

Some may argue if the results are reliable because of the limited number of trials or lists, but 
it must be noted that the main interest of this section is not to calculate a ‘success’ probability 
(probability of getting the global optimum) based on a large number of trials but to check whether 
or not each scenario can achieve the ‘goal’ (detecting the global optimum in reasonably a smaller 
number of trials.)

It provides a clue that Jaya can be improved by a certain amount of population size reduction. 
It also suggests a trade-off between the quality of results and the size of population. If a small-sized 
population is used, running time will be reduced at the cost of more likelihood of getting sub-optima.

Table 1. Comparison of metaheuristic methods I – Crime.

Case Best AICw
1

Explanatory variables selected
Time3

Number Index2

1 3555.72 13 1,2,8,10,12,16,23,24,25,26,27,28,29 36.22

2 3555.72 13 1,2,8,10,12,16,23,24,25,26,27,28,29 64.05

3 3555.72 13 1,2,8,10,12,16,23,24,25,26,27,28,29 63.32

4 3555.72 13 1,2,8,10,12,16,23,24,25,26,27,28,29 103.32

5 3555.72 13 1,2,8,10,12,16,23,24,25,26,27,28,29 16.07

6 3558.65 12 1,2,8,9,10,12,24,25,26,27,28,29 19.50
1Best (smallest) AICw from 5 lists in each case.
2If the indexi is shown, it implies the ith explanatory variable is selected. (i=1,···, 30)
3The unit of time is minute.
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Improving Jaya With Local or Neighborhood Search
Even if the running time of Jaya may be reduced by using a smaller population, it may lower the 
quality of the results. Is there any way to have reliable result still with a small size of population?

Local or neighborhood search is any procedure that perturbs a given solution in order to try to 
improve it. There are entire books written on local search procedures (Hoos and Stutzle, 2005) and it 
refers to a strategy—not a particular algorithm. In this paper, neighborhood search refers to modifying 
a solution by randomly selecting one variable and changing its value—from one to zero or zero to 
one. If the objective function is improved, this becomes the incumbent solution, and the process is 
repeated until there is no improvement in a set number of trials.

In this paper, the neighborhood search is used in two ways. First, it is used “inside” Jaya to try to 
improve the best solution found during the execution of Jaya. Second, it is used “outside” Jaya—the 
best solution found by Jaya has the neighborhood search performed on it.

In Table 3, “outside” and “inside” are referred to as NSO and NSI, for each. The detail of how 
they work in the algorithm is described:

1. 	 NSO (Neighborhood Search Outside): It runs Jaya a minimum of 5 loops until no improvement, 
then it runs neighborhood search on the best value until no improvements after 10 loops. It 
switches back to conducting Jaya until 5 operations of no improvements, then do neighborhood 
search for the 10 operations of no improvement. It keeps switching between operating 5 Jayas 
and 10 neighborhood searches until best value does not improve after 5 loops.

2. 	 NSI (Neighborhood Search Inside): It runs Jaya once and then runs neighborhood search on 
the best value until no improvements after 10 loops. It switches back to running Jaya once and 
then do neighborhood search for 10 operations of no improvements. It continues doing more 

Table 2. Comparison of Jaya with different population sizes – Crime

Scenario Number of lists detecting the optimum1 Time2

J1 2 14.10

J2 3 11.71

J3 0 13.44

J4 0 2.91
1Number of trials in which the minimum AICw is detected among 5 lists.
2The unit of time is minute.

Table 3. Comparison of Jaya with neighborhood search

Population Methods of Neighborhood 
Search

Number of lists detecting the 
optimum1 Time2

50
NSO 0 0.04

NSI 0 2.52

100
NSO 0 0.03

NSI 2 3.45

150
NSO 1 0.04

NSI 2 5.53
1Number of trials in which the minimum AICw is detected among 5 lists
2The unit of time is minute.
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loops of one Jaya followed by 10 neighborhood searches until the best value does not improve 
after a total of 5 loops.

Table 3 summarizes the results of the two neighborhood searches with different population sizes. 
When the population size is 150, both NSO and NSI detected the optimum once and twice, for each. 
NSI detected the optimum two times, but NSI did not when the size of population is 100. Neither 
NSO nor NSI detected the optimum when the population size is very small (=50).

NSO was much faster than NSI in all cases, but it detected the minimum AICw once when the 
population size is 150. NSI was slower than NSO in each case but successfully detected the minimum 
AICw consistently with a high likelihood (2 out of 5) except the case of the populations size of 50. 
The results suggest that it will be better using NSI if the population size is relatively small and NSO 
if the population size is relatively big.

It must be noted that both NSO and NSI demonstrated remarkable improvement from the results 
with the initial population size of 300 (the scenario J1 in Table 2), in terms of performance and 
running time when local or neighborhood search was adapted.

Simulated Dataset
In this section, a simple simulation is conducted to check the sensitivity of the change of initial 
population size and the ability to detect the ‘right’ relationship among variables when Jaya is run.

A hypothetical dataset with 500 cases and 41 variables (40 explanatory variables (x x
1 40
,� ) and 

one response variable (y) was generated. All variables are randomly generated from the standard normal 
distribution except the first explanatory variable x1 which has the following relationship with others:

x y x x x x
1 2 3 4 5

2= − + + +( )� 	 (4)

In other words, the ‘answer’ relationship between the explanatory variables and the response 
variable is:

ŷ x x x x x= + + + +
1 2 3 4 5
2 2 2 2 	 (5)

This dataset will be considered as a ‘training’ set and the Bayesian Information Criterion (BIC) 
(Schwarz, 1978) will be used as the objective function for optimization in this section. The term BICt 
will be used to be consistent with notations in section 3.1.2.

In Tables 4 and 5, four instances are defined as S1, S2, S3, and S4 with the different population 
size of 50, 100, 200, and 300, respectively. Each instance uses five lists with the same population 
size for calculation. The running mechanism of Jaya is the same as section 3.1.2.

Table 4 shows similar results from Table 2. – The bigger population size, the higher chance to 
detect the right model. It shows that even with smaller size of population such as 50, it is likely to 
detect the global optimum.

Table 5 illustrates many aspects of the analysis. The best BICt are ranged from -19855.90 to 
-19874.20 and the running time are ranged from 5.05 to 35.38.

All the lists in S1 to S4 detected the intended explanatory variables (x1, x2, x3, x4, and x5), which 
implies that in many situations Jaya can detect a close-to-optimized solution at least. But many of 
them also include ‘noise’ or redundant explanatory variables. For example, the list 1 in S1 selected 
9 variables among which 4 variables are wrongfully selected. It can be observed that S1, S2, S3, and 
S4 selected the right model 1 time, 0 time, 3 times and 4 times from the corresponding 5 lists, for 
each. It reinforces the finding in section 3.1.2.- the larger population, the higher likelihood to get the 
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Table 4. Jaya with different population size (summary) – Simulation

Instance Number of lists detecting the optimum1 Average Time2

S1 1 5.86

S2 0 10.65

S3 3 14.92

S4 4 17.86
1Number of lists in which the minimum BICt is detected among 5 lists.
2The average running time in minute.

Table 5. Jaya with different population size (detailed) – Simulation

Population 
(Instance) List Best BICt

1

Explanatory variables selected
Time5

Index2 No. 
All3

No. 
Error4

50 
(S1)

1 -19855.90 1,2,3,4,5,12,28,32,38 9 4 8.05

2 -19874.20 1,2,3,4,5 5 0 6.60

3 -19854.50 1,2,3,4,5,6,7,14,35 9 4 5.05

4 -19862.90 1,2,3,4,5,32,35 7 2 4.78

5 -19868.10 1,2,3,4,5,28 6 1 4.83

100 
(S2)

1 -19863.70 1,2,3,4,5,31,32 7 2 14.10

2 -19871.90 1,2,3,4,5,9 6 1 9.63

3 -19860.80 1,2,3,4,5,12,31,39 8 3 8.45

4 -19867.30 1,2,3,4,5,12,38 7 2 11.53

5 -19872.00 1,2,3,4,5,12 6 1 9.52

200 
(S3)

1 -19871.90 1,2,3,4,5,9 6 1 23.88

2 -19869.80 1,2,3,4,5,38 6 1 16.48

3 -19874.20 1,2,3,4,5 5 0 13.30

4 -19869.30 1,2,3,4,5,20 5 0 11.10

5 -19874.20 1,2,3,4,5 5 0 9.83

300 
(S4)

1 -19862.00 1,2,3,4,5,9,35,38 8 3 35.38

2 -19874.20 1,2,3,4,5 5 0 23.07

3 -19874.20 1,2,3,4,5 5 0 10.27

4 -19874.20 1,2,3,4,5 5 0 8.53

5 -19874.20 1,2,3,4,5 5 0 12.07
1Best (smallest) BICt in each list.
2If the indexI is shown, it implies the ith explanatory variable is selected. (i=1,···, 40)
3Number of all selected explanatory variables.
4Number of falsely selected explanatory variables.
5The unit of time is minute.
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optimum. It can be observed that the number of ‘noise’ variables tends to decrease as the populations 
size increases. Also, it must be noted that S3 can compete S4 in terms of quality of the results with 
a considerably reduced size of population (200 vs. 300).

CONCLUSION

In this paper, variable selection, one of the classical topics in regression, was dealt with using 
metaheuristic methods. It can be stated as a combinatorial optimization problem with the goal to select 
variables that maximize (or minimize) the given objective function. Even if some metaheuristics such 
as Genetic Algorithm (GA) or Simulated Annealing (SA) have shown better performance in many 
problems over conventional methods, it turned out that ‘fine tuning of parameters’ is very challenging.

This paper explored some ‘parameter-free’ metaheuristics like Teaching-Based Optimization 
(TBO) and Jaya and compared them to GA. The previous sections illustrated that Jaya is superior to 
other metaheuristic methods in terms of performance and efficiency when it is properly used with 
relatively small population and neighborhood search.

It must be noted that one of the main purposes of this paper is not to develop a complete package 
to solve many different problems but to suggest how parameter-free metaheuristics such as Jaya can 
be used for variable selection.

Also, it must be admitted that the algorithms used for the datasets serve as an initial trial for the 
development of better parameter-free metaheuristic algorithms to come. Even if some simulations in 
high dimensional, say 100, space were conducted, their results were not included in the paper, due 
to issues arising from complexity and too much ‘noise’, which implies that there is a lot of room for 
improvement.

Lastly, a possible direction for future research may include, but is not limited to, handling 
highly correlated variables, and developing stronger computing methods to manage ‘the curse of 
dimensionality’ to some extent.
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APPENDIX

What is the Genetic Algorithm?
The genetic algorithms (GAs) are evolutionary and search-based optimization procedures 
based on the principles of genetics and natural selection, inspired by Darwin’s theory of 
evolution. It is often used to find optimal or sub-optimal solutions to difficult problems 
such as NP-hard problems.

Even if there is no rigorous definition of “genetic algorithm” accepted by all in the evolutionary−
computation community that differentiates GAs from other evolutionary computation methods, it can 
be said that most methods called “GAs” have at least the following elements in common: populations 
of chromosomes, selection according to fitness, crossover to produce new offspring, and random 
mutation of new offspring. (Mitchell, 2016)

GAs are methods for moving from one population of “chromosomes” (strings of ones and 
zeros, or “bits”) to a new population by using a kind of “natural selection” together with the 
genetics−inspired operators of crossover, and mutation. Each chromosome consists of “genes” 
(bits), each gene being an instance of a particular “allele” (0 or 1). The selection operator chooses 
those chromosomes in the population that will be allowed to reproduce, and on average the fitter 
chromosomes produce more offspring than the less fit ones. Crossover exchanges subparts of two 
chromosomes, roughly mimicking biological recombination between two single−chromosome 
(haploid) organisms. Mutation randomly changes the allele values of some locations in the 
chromosome. (Mitchell, 2016)

What is the Simulated Annealing?
The simulated annealing (SA) is a metaheuristic local search algorithm which can escape from 
local optima. Its ease of implementation, convergence properties and its use of hill-climbing 
moves to escape local optima have made it a popular technique over the past two decades. It is 
typically used to address discrete, and to a lesser extent, continuous optimization problems. The 
main advantage of SA is its simplicity. SA avoids the drawback of the Monte-Carlo approach 
(which can be trapped in local minima), thanks to an efficient Metropolis acceptance criterion. 
(Delahaye et al., 2018)

Simulated annealing is so named because of its analogy to the process of physical annealing with 
solids, in which a crystalline solid is heated and then allowed to cool very slowly until it achieves its 
most regular possible crystal lattice configuration (i.e., its minimum lattice energy state), and thus is 
free of crystal defects. If the cooling schedule is sufficiently slow, the final configuration results in a 
solid with such superior structural integrity. Simulated annealing establishes the connection between 
this type of thermodynamic behavior and the search for global minima for a discrete optimization 
problem. Furthermore, it provides an algorithmic means for exploiting such a connection. (Henderson 
et al., 2003)

At each iteration of a simulated annealing algorithm applied to a discrete optimization 
problem, the objective function generates values for two solutions (the current solution and 
a newly selected solution) are compared. Improving solutions are always accepted, while a 
fraction of non-improving (inferior) solutions are accepted in the hope of escaping local optima 
in search of global optima. The probability of accepting non-improving solutions depends on a 
temperature parameter, which is typically non-increasing with each iteration of the algorithm. 
(Henderson et al., 2003)
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Pseudocode
GET TrainingDataSetFile 
GET ValidationDataSetFile 

SET VariableSize FROM TrainingDataSetFile 

INPUT ListSize, maxIterations, maxTries, fitnessValueType 

SET Lists AS Array OF 5 list 
FOR each Lists 
     INPUT ListPath 
     IF ListPath exist 
          GET list FROM ListPath 
     ELSE 
          CALL Generate 
     END IF 
END FOR 

INPUT MethodUsing 

FOR each Lists 
     IF MethodUsing IS Generate 
          CALL Generate 
     ELSE IF MethodUsing IS Random 
          CALL Random 
     ELSE IF MethodUsing IS Random_Mutate 
          CALL Random_Mutate 
     ELSE IF MethodUsing IS Crossover 
          CALL Crossover 
     ELSE IF MethodUsing IS Crossover_Mutate 
          CALL Crossover_Mutate 
     ELSE IF MethodUsing IS NeighborhoodSearch 
          CALL NeighborhoodSearch 
     ELSE IF MethodUsing IS Jaya 
          CALL Jaya 
     ELSE IF MethodUsing IS NeighborhoodSearch_Inside_Jaya 
          CALL NeighborhoodSearch_Inside_Jaya 
     ELSE IF MethodUsing IS Jaya_Then_NeighborhoodSearch 
          CALL Jaya_Then_NeighborhoodSearch 
     ELSE IF MethodUsing IS TBO 
          CALL TBO 
     END IF 
     Save list 
END FOR 

Save reportFile 
Exit Program 

FUNCTION Generate 
     SET currentAmount TO 0 
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     WHILE currentAmount TO ListSize 
          FOR 0 TO VariableSize 
               SET bit IN variable TO 0 OR 1 randomly. 
          END FOR 
          CALL CalculateFitnessValue 
          IF FIND variable IN list 
               CONTINUE LOOP 
          ELSE 
               ADD variable TO list 
               INCREMENT currentAmount 
          END IF 
     END WHILE 
END FUNCTION 

FUNCTION Random 
     SET tries TO 0 
     WHILE tries IS less than maxTries AND less than 2 hours THEN 
          SET P1 AND P2 TO random selected variables IN list 
          FOR each bit IN Child 
               IF P1 bit equal P2 bit THEN 
                    SET bit TO P1 
               ELSE 
                    SET bit TO 0 OR 1 randomly 
               END IF 
          END FOR 
          CALL CalculateFitnessValue 
          IF Child exists IN List OR FitnessValue IS less than middle FitnessValue IN 
            List 
               INCREMENT tries 
          ELSE 
               SET tries TO 0 
               SET r TO random value between ListSize AND (ListSize / 2) 
               SET variable AT r IN list TO Child 
          END IF 
     END WHILE 
END FUNCTION 
 
FUNCTION Random_Mutate 
     SET Child FROM CALL Random 
     SET ChildMutate TO Child 
     SET tries TO 0 
     WHILE tries IS less than maxTries AND less than 2 hours THEN 
          SET rbit TO 0 TO VariableSize randomly 
          IF ChildMutate bit AT rbit IS 0 THEN 
               SET ChildMutate bit AT rbit TO 1 
          ELSE 
               SET ChildMutate bit AT rbit TO 0 
          END IF 
          CALL CalculateFitnessValue 
          IF ChildMutate exists IN List OR FitnessValue IS less than middle 
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            FitnessValue IN List 
               INCREMENT tries 
          ELSE 
               SET tries TO 0 
               SET r TO random value between ListSize AND (ListSize / 2) 
               SET variable AT r IN list TO ChildMutate 
          END IF 
     END WHILE 
END FUNCTION 

FUNCTION Crossover 
     SET tries TO 0 
     WHILE tries IS less than maxTries AND less than 2 hours THEN 
          SET P1 AND P2 TO random selected variables IN list 
          SET splitHalf TO random value between 1 AND (VariableSize - 1) 
          SET currentBit TO 0 
          WHILE currentBit less than VariableSize 
               IF currentBit less than splitHalf THEN 
                    SET child1 bit TO P1 
                    SET child2 bit TO P2 
               ELSE 
                    SET child1 bit TO P2 
                    SET child2 bit TO P1 
               END IF 
               INCREMENT currentBit 
          END WHILE 
          CALL CalculateFitnessValue OF child1 
          IF child1 exists IN List OR FitnessValue IS less than middle FitnessValue IN 
            List 
               INCREMENT tries 
          ELSE 
               SET tries TO 0 
               SET r TO random value between ListSize AND (ListSize / 2) 
               SET variable AT r IN list TO child1 
          END IF 
          CALL CalculateFitnessValue OF child2 
          IF child2 exists IN List OR FitnessValue IS less than middle FitnessValue IN 
            List 
               INCREMENT tries 
          ELSE 
               SET tries TO 0 
               SET r TO random value between ListSize AND (ListSize / 2) 
               SET variable AT r IN list TO child2 
          END IF 
     END WHILE 
END FUNCTION 
 
FUNCTION Crossover_Mutate 
     SET Child1 AND Child2 FROM CALL Crossover 
     SET Child1Mutate TO Child1 
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     SET Child2Mutate TO Child2 
     SET tries TO 0 
     WHILE tries IS less than maxTries AND less than 2 hours THEN 
          SET rbit1 TO 0 TO VariableSize randomly 
          IF Child1Mutate bit AT rbit1 IS 0 THEN 
               SET Child1Mutate bit AT rbit1 TO 1 
          ELSE 
               SET Child1Mutate bit AT rbit1 TO 0 
          END IF 
          SET rbit2 TO 0 TO VariableSize randomly 
          IF Child2Mutate bit AT rbit2 IS 0 THEN 
               SET Child2Mutate bit AT rbit2 TO 1 
          ELSE 
               SET Child2Mutate bit AT rbit2 TO 0 
          END IF 
          CALL CalculateFitnessValue OF Child1Mutate 
          IF Child1Mutate exists IN List OR FitnessValue IS less than middle 
            FitnessValue IN List 
               INCREMENT tries 
          ELSE 
               SET tries TO 0 
               SET r TO random value between ListSize AND (ListSize / 2) 
               SET variable AT r IN list TO Child1Mutate 
          END IF 
          CALL CalculateFitnessValue OF Child2Mutate 
          IF Child2Mutate exists IN List OR FitnessValue IS less than middle 
            FitnessValue IN List 
               INCREMENT tries 
          ELSE 
               SET tries TO 0 
               SET r TO random value between ListSize AND (ListSize / 2) 
               SET variable AT r IN list TO Child2Mutate 
          END IF 
     END WHILE 
END FUNCTION 

FUNCTION NeighborhoodSearch 
     SET iteration TO 0 
     WHILE iteration IS less than maxIterations AND less than 2 hours THEN 
          SET update TO variable AT list OF index 0 
          SET rbit TO random value between 0 AND VariableSize 
          IF update bit AT index rbit equal 0 THEN 
               SET update bit AT rbit TO 1 
          ELSE 
               SET update bit AT rbit TO 0 
          END IF 
          CALL CalculateFitnessValue OF update 
          IF update value less than variable value AT list OF index 0 THEN 
               SET variable AT list OF index 0 TO update 
               SET iteration TO 0 
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          ELSE 
               INCREMENT iteration 
          END IF 
     END WHILE 
END FUNCTION 
 
FUNCTION Jaya 
     SET iteration TO 0 
     WHILE iteration IS less than maxIterations AND less than 2 hours THEN 
          SET pastTop TO variable AT list OF index 0 
          SET bottom TO variable AT list OF index (listSize - 1) 
          FOR each variable IN list 
               SET update TO variable 
               FOR each bit IN update 
                    SET r1 TO random value between 0 AND 1 
                    SET r2 TO random value between 0 AND 1 
                    UPDATE bit TO bit + (r1 * (pastTop - bit)) - (r2 * (bottom–bit)) 
               END FOR 
               CALL CalculateFitnessValue OF update 
               IF update value less than variable value THEN 
                    SET variable TO update 
               END IF 
          END FOR 
          IF variable AT list OF index 0 value less than pastTop value THEN 
               SET iteration TO 0 
          ELSE 
               INCREMENT iteration 
          END IF 
     END WHILE 
END FUNCTION 

FUNCTION NeighborhoodSearch_Inside_Jaya 
     SET iteration TO 0 
     WHILE iteration IS less than maxIterations AND less than 2 hours THEN 
          SET pastTop TO variable AT list OF index 0 
          SET bottom TO variable AT list OF index (listSize - 1) 
          FOR each variable IN list 
               SET update TO variable 
               FOR each bit IN update 
                    SET r1 TO random value between 0 AND 1 
                    SET r2 TO random value between 0 AND 1 
                    UPDATE bit TO bit + (r1 * (pastTop - bit)) - (r2*(bottom–bit)) 
               END FOR 
               CALL CalculateFitnessValue OF update 
               IF update value less than variable value THEN 
                    SET variable TO update 
               END IF 
          END FOR 
          IF variable AT list OF index 0 value less than pastTop value THEN 
               SET iteration TO 0 
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          ELSE 
               INCREMENT iteration 
          END IF 
     END WHILE 
END FUNCTION 
 
FUNCTION Jaya_Then_NeighborhoodSearch 
     SET iteration TO 0 
     WHILE iteration IS less than maxIterations AND less than 2 hours THEN 
          SET pastTop TO variable AT list OF index 0 
          CALL Jaya 
          CALL NeighborhoodSearch 
          SET newTop TO variable AT list OF index 0 
          IF newTop value less than pastTop value THEN 
               SET iteration TO 0 
          ELSE 
               INCREMENT iteration 
          END IF 
     END WHILE 
END FUNCTION 
 
FUNCTION TBO 
     SET iteration TO 0 
     WHILE iteration IS less than maxIterations AND less than 2 hours THEN 
          SET pastTop TO variable AT list OF index 0 
          SET middle TO variable AT list OF index (listSize / 2) 
          FOR each variable IN list 
               SET update TO variable 
               FOR each bit IN update 
                    SET r TO random value between 0 AND 1 
                    SET Tf TO random value between 1 AND 2 
                    UPDATE bit TO bit + (r * (pastTop - (Tf * middle))) 
               END FOR 
               CALL CalculateFitnessValue OF update 
               IF update value less than variable value THEN 
                    SET variable TO update 
               END IF 
          END FOR 
          IF variable AT list OF index 0 value less than pastTop value THEN 
               SET iteration TO 0 
          ELSE 
               INCREMENT iteration 
          END IF 
     END WHILE 
END FUNCTION 

FUNCTION CalculateFitnessValue 
     SET m FROM TrainingDataSetFile 
     SET Y_training FROM TrainingDataSetFile 
     SET Y_validation FROM ValidationDataSetFile 
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     SET n TO 0 
     FOR each bit IN variable 
          IF bit equal 1 THEN 
               INCREMENT n 
     END FOR 
 
     INITIALIZE X_training AS matrix OF (m AND (n + 1)) 
     INITIALIZE X_validation AS matrix OF (m AND (n + 1)) 
 
     SET col TO 0 
     SET currentColumn TO 1 
     FOR col less than VariableSize 
          IF bit AT col IS 1 THEN 
               FOR each rows IN TrainingDataSetFile 
                    SET X_training AT (row AND currentColumn) TO 
                         TrainingDataSetFile AT (row AND col) 
                    SET X_validation AT (row AND currentColumn) TO 
                         ValidationDataSetFile AT (row AND col) 
               END FOR 
               INCREMENT currentColumn 
          END IF 
     END FOR 
     FOR each rows IN TrainingDataSetFile 
          SET X_training AT (row AND 0) TO 1 
          SET X_validation AT (row AND 0) TO 1 
     END FOR 
 
     SET X_transpose TO (transpose OF X_training) 
     SET X_transTimesX TO (X_transpose * X_training) 
     SET X_inverse TO (inverse OF X_transTimesX) 
     SET X_invTimesTrans TO (X_inverse * X_transpose) 
     SET O TO (X_invTimesTrans * Y_training) 
 
     INITIALIZE h_training AS matrix OF (m AND 1) 
     FOR each rows IN TrainingDataSetFile 
          SET h TO 0 
          SET col TO 0 
          WHILE col less than (n + 1) 
               SET h TO h + ((O AT (col AND 0)) * (X_training AT (row AND col))) 
               INCREMENT col 
          END WHILE 
          SET h_training AT (row AND 0) TO h 
     END FOR 
 
     INITIALIZE h_validation AS matrix OF (m AND 1) 
     FOR each rows IN ValidationDataSetFile 
          SET h TO 0 
          SET col TO 0 
          WHILE col less than (n + 1) 
               SET h TO h + ((O AT (col AND 0)) * (X_validation AT (row AND col))) 
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               INCREMENT col 
          END WHILE 
          SET h_validation AT (row AND 0) TO h 
     END FOR 
 
     INITIALIZE RSS_training TO 0 
     FOR each rows in TrainingDataSetFile 
          SET RSS_training TO RSS_training + 
               (POWER OF ((h_training AT (row AND 0) - (Y_training AT (row AND 0))) TO 2))
     END FOR 
 
     INITIALIZE RSS_valiation TO 0 
     FOR each rows in ValidationDataSetFile 
          SET RSS_valiation TO RSS_valiation + 
               (POWER OF ((h_validation AT (row AND 0) - (Y_validation AT (row AND 0))) TO 2))
     END FOR 
 
     SET AIC_T TO (m * (log OF (RSS_training / m))) + (2 * (n + 1)) 
     SET AIC_V TO (m * (log OF (RSS_valiation / m))) + (2 * (n + 1)) 
     SET AIC_M TO (0.5 * AIC_T) + (0.5 * AIC_V) 
 
     SET BIC_T TO (m * (log OF (RSS_training / m))) + ((log OF m) * (n + 1)) 
     SET BIC_V TO (m * (log OF (RSS_valiation / m))) + ((log OF m) * (n + 1)) 
     SET BIC_M TO (0.5 * BIC_T) + (0.5 * BIC_V) 
 
     IF fitnessValueType IS AIC_Training THEN 
          RETURN AIC_T 
     ELSE IF fitnessValueType IS AIC_Validation THEN 
          RETURN AIC_V 
     ELSE IF fitnessValueType IS AIC_Middle THEN 
          RETURN AIC_M 
     ELSE IF fitnessValueType IS BIC_Training THEN 
          RETURN BIC_T 
     ELSE IF fitnessValueType IS BIC_Validation THEN 
          RETURN BIC_V 
     ELSE IF fitnessValueType IS BIC_Middle THEN 
          RETURN BIC_M 
     END IF 
END FUNCTION
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