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ABSTRACT

Personalized sequencing and recommendation of pedagogical actions in virtual learning environments 
are relevant aspects in promoting an effective learning process with computer-aided support. Hence, 
this work investigates the use of automated planning to sequence these actions according to student 
profiles. Actions are modeled to correspond to the cognitive process described by Bloom’s taxonomy, 
and the student profile is set using the revised approaches to studying inventory. Both models share 
theoretical foundations linked to the cognitive process, and the mapping of these two theories is one 
of the contributions merged into this study. In planning, through use of a genetic algorithm, and 
the problem formulation as an optimization problem, one can correctly manage the search for good 
solutions, as demonstrated in this work. Through use of digital Bloom’s taxonomy, one arrives at a 
recommend set of actions. Experiments were performed using 41 students. The results were promising 
and demonstrate the viability of the proposal.

Keywords
ASSIST, Automated Planning, Bloom’s Taxonomy, Genetic Algorithm, Pedagogical Recommendation, RASI, 
Sequencing of Pedagogical Actions, Taxonomy of Educational Objectives

1. Introduction

The Revised Bloom’s Taxonomy1 showed in Krathwohl (2002) and the Revised Approaches to 
Studying Inventory (RASI) discussed in Tait and Entwistle (1996) are appropriate for the proposal of 
a pedagogical recommender based on the student cognitive process. BT is a two-dimensional model 
for the learning process. One of these dimensions defines the cognitive process as six categories 
starting from the Lower Order Cognitive Skills (LOCS) to Higher-Order Cognitive Skills (HOCS). 
BT is related to the actions that can be used to develop student skills along the learning process. On 
the other hand, RASI defines the student cognitive profile employing the strengths of the student 
under three axes: Surface, Strategic and Deep. As in BT, the student cognitive process in RASI occurs 
from LOCS to HOCS. A relationship between RASI and BT was partially explored in Brown et al. 
(2015) and Shang (2019).
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The recommendation process assumes the determination of the recommendation itself, which in 
this case is a sequence of actions. Based on the aforementioned theories, these pedagogical actions 
(or sequence of pedagogical actions) can be determined by taking the student RASI profile and the 
BT actions. Searching for a sequence of pedagogical actions is reported in the literature as the well-
known sequencing problem, with Automated Planning (AP) techniques in Artificial Intelligence 
being used to deal with it. Finding such a sequence is similar to planning the steps (actions) that a 
student should perform to reach a particular goal. Planning supposes an initial state that, in this case, 
is the initial student profile and the set of actions that allows for the advancing to other states from 
the current one. A goal state is also necessary to guide the search process.

The feasibility of modeling the teaching-learning process employing AP is presented in Caputi 
and Garrido (2015), Pireva and Kefalas (2018), and Nabizadeh et al. (2020), where AP is related to the 
fulfillment of learning objectives and the problem domain considers the restrictions to achieve these 
objectives. As AP is a difficult problem, bio-inspired algorithms for planning pedagogical sequences 
are an alternative, as can be seen in Ariyaratne and Fernando (2014) and Hssina and Erritali (2019).

Therefore, this work is driven by the following question: Can the pedagogical recommendations 
be independent of the curricular structure? This work proposes pedagogical recommendations 
based on the student cognitive process to answer this question. Additionally, it is assumed that these 
recommendations are automated and customized. Then, we propose a digital activity recommender 
based on personalized and automated pedagogical actions sequencing. The personalization is 
performed considering the RASI cognitive profile of the student. The sequencing of pedagogical 
actions uses automated planning supported by a GA. In addition, the pedagogical actions are modeled 
by the BT from the perspective of the student cognitive process.

In order to elaborate on the proposal presented herein, this paper is organized as follows: Section 
2 shows an overview of studies that employ automated planning in pedagogical sequencing; Section 3 
details the theoretical framework used, such as the RASI profile, the BT, and the GA technique, besides 
describing the proposed methodology; Section 4 presents the experiments and results obtained and the 
analysis of the findings of this research; Finally, Section 5 presents the conclusion and future work.

2. Automated Planning and Action Sequencing

A systematic literature review described in da Costa et al. (2019) presented the AP application 
advances, limitations, and challenges in the pedagogical process and pointed to AP as an essential tool 
for interfacing the e-learning requirements and delivering personalized content. However, suppose there 
are many actions or parameters in the student profile, the state space of action sequences increases. 
In that case, the classical AP with Planning Domain Definition Language (PDDL) is impracticable 
when it comes to the search for a solution. Dwivedi et al. (2018) describe that in this case, GA is more 
suitable for dealing with this PA issue since it can minimize the computational effort.

GAs have been applied to optimize action sequences in the pedagogical context. Lin et al. (2016) 
presented learning map planning using a multi-objective GA, where the objective functions were 
learning time and student performance. In Dwivedi et al. (2018), GA was applied for curricular 
sequencing by considering learning styles, knowledge levels, and learning goals as parameters for 
optimizing learning paths. Curricular sequencing is also addressed in Agbonifo and Olanrewaju 
(2018), where the learning path optimization in an e-learning environment is performed by a GA, 
while taking into account the concept difficulty level and the relationship among concepts as objectives 
to be optimized.

Goyal and Rajalakshmi (2018) proposed a method that generates a set of evaluative activities 
according to BT learning levels, and a GA is used to create test sheets. Hence, the exams presented 
the degree of knowledge held by the student and optimized their performance. Hssina and Erritali 
(2019) developed an adaptive e-learning platform for generating learning paths appropriate to student 
profiles using a GA that considers pedagogical objectives set by the teacher and the student knowledge 
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level. A GA for determining learning paths for student groups is addressed in de Miranda et al. (2019), 
where the optimization criteria were the maximization of student satisfaction and minimization of 
time to fulfill activities.

In the abovementioned studies, the optimization process is related to aspects linked to the 
curriculum, such as LO or activity restrictions and content requirements. Therefore, other research 
fronts that investigate the recommendation feasibility from the perspective of the student cognitive 
process are essential. Such a proposition can bring benefits, such as a recommendation process 
independent of curricular structures, besides focusing the learning control onto the student.

3. Action Recommender Model

da Costa and Fernandes (2021) proposed sequencing of pedagogical actions, which this work expands 
by including this sequencing in a recommendation model and evaluating the recommendation through 
experiments. This section presents the mapping proposal between BT and RASI theories, which is 
the foundation for the sequencing and the recommendation process.

3.1. Relationship BT and RASI
As mentioned previously, in many studies, customized pedagogical sequencing takes into account 
curriculum structures or learning objects, making these approaches dependent on a specific knowledge 
domain. By proposing independent sequencing on the domain, this work aims to sequence pedagogical 
actions rather than concepts or learning objects. Therefore, its use is more generalized, since it is 
possible to apply it to any domain.

3.1.1. Revised Bloom’s Taxonomy
The BT showed in Krathwohl (2002) provides pedagogical actions for accomplishing the learning 
process since these actions are associated with some position of a two-dimensional framework, where 
the first dimension concerns the cognitive process dimension (CPD) and the second the knowledge 
dimension (KD). Figure 1 illustrates this framework, where CPD is divided into six categories (or 
cognitive states), namely: Remember, Understand, Apply, Analyze, Evaluate and Create. KD is 
divided into four categories (Factual, Conceptual, Procedural, and Metacognitive), according to a 
hierarchy from LOCS to HOCS.

BT’s structure of educational objectives allows it to be employed in various scenarios, as in the 
work presented by Zhang et al. (2021), which classified assessment tasks in an automated manner 
through machine learning. Whereas in the work proposed by Callaghan-Koru and Aqil (2020), 
undergraduate public health courses were designed from the hierarchy of cognitive processes in 
BT. Prasad (2021) exploits BT to identify student performance in online classes by exploring the 
cognitive domain. Thus, we observe that it is possible to use the hierarchy of educational objectives 
provided by the BT in different scenarios. Therefore, in this work, we propose the use of the BT in a 
two-dimensional fashion (CBD x KD) by defining an action for each educational objective according 
to the matrix presented in Figure 1.
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Source: Adapted from da Costa and Fernandes (2021)
In Figure 1, there are 24 positions with pedagogical actions being associated to each. The general 

use of this framework implies attributing each educational objective to the positions that indicate 
which are the most appropriate actions to reach this objective. The most frequent use is manual, which 
is difficult and slow. Although there is a subjacent hierarchy in each dimension, and it is desirable 
that actions closer to LOCS (concrete actions) are sequenced before actions closer to HOCS (abstract 
actions). According to Figure 1, Action 1 is the most concrete, and Action 24 is the most abstract. 
The intermediate actions follow an increasing order of cognitive skills (LOCS to HOCS) required by 
the student. Positions (actions) can be suppressed according to the needs of the student (Krathwohl, 
2002). In other words, it is not necessary to pass through each level, one by one. This leads to many 
action combinations and consequently to a significant number (224) of action sequences. Therefore, 
this study contributes to the automated selection of pedagogical action through planning and sequence 
customization.

3.1.2. Student RASI Profile
As one of the AP requirements is an initial state, in pedagogical sequencing problems, this state is or 
is related to the student profile, which can contain different attributes such as learning styles, time, 
and knowledge (Nabizadeh et al., 2020). In this work, the initial state is the tendency of the student 
to adopt specific learning and study approaches according to RASI defined in Tait and Entwistle 
(1996). This choice was made possible in order to establish an interface between the RASI profile 
of the student and the BT pedagogical actions.

In Entwistle (2018), RASI is a specific section that constitutes the Approaches and Study Skills 
Inventory for Students (ASSIST). This section has often been used as in Entwistle et al. (2013), and 
Fusilier et al. (2021). RASI is related to the description of strategies used by the student to learn 
and study through the mapping of their cognitive profile from the perspective of three axes, namely 
Surface, Strategic and Deep. These axes can be analyzed considering progress from LOCS to HOCS, 
similar to BT’s hierarchy of educational objectives. The axes’ indexes representing each dimension 
are obtained by a questionnaire consisting of 52 short statements (items). Students can express their 
agreement or disagreement on a five-point Likert2 scale, as described in Entwistle (2018). From 
this, one can analyze the cognitive profile of each student described by the RASI, considering the 
variations of these indexes along the three dimensions.

3.1.3. Mapping: BT to RASI
BT, as well as RASI, describe the student cognitive process from LOCS to HOCS. In other words, 
student progress is developed from concrete to abstract abilities. Due to this intersection, some 
studies have tried to understand and make this relationship evident. Brown et al. (2015) pointed out 
the convergence between these theories, identifying student cognitive state and possible pedagogical 
actions considering the Surface RASI axes. Shang (2019) established a relationship between the RASI 
sub-scales for Deep axes and the CPD categories. Inspired by this research, da Costa and Fernandes 

Figure 1. Pedagogical actions defined according to BT
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(2021) determined how significant each CPD category for each RASI axes is by comparing the 
questions of RASI inventory with the definitions of the CPD subcategories. The 52 RASI questions 
were associated with the most compatible CPD category by comparing the key verbs and category 
definitions with the RASI questions. Consequently, the mapping (compatibility) between TB and RASI 
is obtained. In Figure 2, the result is the compatibility rate of each CPD category for each RASI axis.

In Figure 2, each column represents a RASI axis, and the pattern represents CPD categories. 
Remember is predominant for the Surface, Evaluate is prevailing for the Strategic, and Analyze is 
second most relevant. In respect to Deep, the predominant is Analyze, and the second most relevant is 
Evaluate. Note that for the Deep, the relevance of Create is greater than the other axes. This mapping 
uses a different methodology than the strategies presented in Brown et al. (2015) and Shang (2019). 
However, the similarity among these three mappings for the Deep axis was 58.3%, which shows 
some correlation between the strategy adopted by da Costa and Fernandes (2021) and Shang (2019).

Source: Adapted from da Costa and Fernandes (2021)
Through the above mapping, one can sequence actions customized to the student RASI profile. 

However, it is necessary to associate each action in the sequence with a practical activity that students 
can perform. In addition, the intention here is that this activity is accomplished in virtual learning 
environments. The selection of these activities depends on a general attribution of activities digital 
to BT. Through such, Bloom’s Digital Taxonomy (BDT), as proposed in Churches (2010), is suitable 
since it provides digital activities related to BT.

Figure 2. Compatibility rate between profiles (RASI) and cognitive states (BT)

Table 1. Mapping of digital activities for the BT two dimensions

CPD1 KD2 A3 Digital Activity

Remember

Factual 1 Search for basic concepts on the Web or social networks.

Conceptual 2 Read e-book.

Procedural 3 Answer online quiz (quiz).

Metacognitive 4 Post academic content on blogs or social networks.

CPD1 KD2 A3 Digital Activity

Table 1 continued on next page
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Churches (2010) presented BDT, a Bloom Taxonomy version composed by only a cognitive 
process dimension, where activities specified to each CPD category are digital activities. This 
study extends Churches (2010) proposal to the second dimension (KD) by ranking the BDT digital 
activities from concrete to abstract and assigning them to one of the four KD categories according to 
the rank order, as shown on Table 1. Noteworthy here is that extended mapping is a contribution of 
this study, as it allows the use of two-dimensional BT in virtual learning environments. In addition, a 
practical application of the approach for sequencing developed in this study becomes viable through 
the recommendation of digital activities. An example of an activity sequence and the use of Table 1 
is shown in the following subsection.

3.2 Sequencing with a Genetic Algorithm
As the BT hierarchy can be changed according to the learning objectives, there are 24 possible 
pedagogical actions and 224 different sequences of actions. Therefore, evolutionary algorithms, such as 

CPD1 KD2 A3 Digital Activity

Understand

Factual
5

Perform an advanced search on the Web or in specific 
databases.

Conceptual 6 Summarize or highlight excerpts in a digital document.

Procedural 7 Laying out ideas, using Prezi, PowerPoint, etc.

Metacognitive 8 Carry out a video or audio recording of the content.

Apply

Factual 9 Implement diagrams.

Conceptual
10

Conduct demonstrations using graphic and/or audio/video 
tools.

Procedural 11 Run simulation or interact with an educational game.

Metacognitive 12 Participate in an interview or podcast.

Analyze

Factual 13 Organize mapping over the content.

Conceptual 14 Structure database through lists and/or summaries.

Procedural 15 Write reports with graphs and/or spreadsheets.

Metacognitive 16 Draw diagrams with a relationship of ideas.

Evaluate

Factual 17 Participate in discussions using tools on the Web.

Conceptual 18 Interact with the network using web tools.

Procedural 19 Review group activities using web tools.

Metacognitive
20

Evaluate content or moderate posts and comments from 
social networks.

Create

Factual 21 Present content using digital tools.

Conceptual 22 Publish content to the Web.

Procedural 23 Develop a project or model using digital tools.

Metacognitive
24

Create digital media such as a game, a video, audio, or an 
image.

Subtitle: 1. Cognitive process dimension; 2. Knowledge dimension; 3. Action number

Table 1 continued
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GAs, are suitable for searching over a large search space. Recent studies demonstrated the GA ability 
for pedagogical sequencing. As such, this work proposes a GA to find the adequate sequence of BT 
actions for the student RASI profile. The GA specification consists of the individual representation, 
the objective function (optimization criterion), and genetic operators. The criterion definition for 
evaluating each sequence during the search process depends on the pedagogical aspects concerning 
sequencing. One then sees that this criterion is a research contribution since it is a proposal for 
analyzing and evaluating a specific combination of pedagogical features.

An individual is a problem solution, and a solution is a sequence of actions. An individual is a 
binary vector composed of 24 bits, where each bit represents a pedagogical action, as pictured on 
Table 2. Bits set to 1 indicate the corresponding actions are present at the sequence, otherwise not. 
As the goal is to find a more adequate sequence for the student RASI profile, the objective function 
measures how near the sequence is to the student RASI profile. Therefore it is necessary to determine 
the RASI indexes of the sequence which express the strength of each cognitive state (Remember, 
..., Create) in the sequence weighted by the relevance of this state for each RASI axis (Surface, 
Strategic and Deep). Formally, these indices are given by the product between the cognitive state 
weight (Pcognitive_state) and the RASI axis indices (Dcategory) in Figure 2, where Pcognitive_state is the product 
of the number of bits set to 1 in the cognitive state and 0.25.

Let’s assume there is an individual described only by bits set to 1, 1–2–4–5–6–7–8–15–17–18–
19–20–22–24, the first cognitive state (Remember) presents 3 bits (1, 2 and 4) set to 1, the second 
presents 4 (5, 6, 7, 8) and so on. From the first to the sixth state, the number of bits set to 1 are 3, 4, 0, 
1, 4 and 2, respectively, so the weights of cognitive states are 0.75, 1.0, 0, 0.25, 1.0 and 0.5. According 
to Figure 2, the Surface RASI indexes are 0.625 0.125 0.0 0.125 0.0 and 0.125, respectively, for each 
cognitive state. Therefore, the Surface RASI indexes for the individual are su = 0.75 x 0.625 + 1.0 x 
0.125 +… + 0.5 x 0.125 = 0.6875. Likewise, Strategic and Deep indexes are calculated, resulting in 
I = (su = 0.6875; st = 0.09375; de = 0.2121). Now, it assumes the student RASI profile is given by 
S = (su = 0.34375; st = 0.5; de = 0.65), then the objective function (fitness) is given by Eq. 1, where 
I and S are as before, dist(I, S) is the Euclidean distance and pnlt(I, S) is a penalty.

fitness I dist I S pnlt I S( ) = ( )+ ( ), , 	 (1)

Note that only Euclidean distance does not allow for identification if the sequence is close to 
the student profile in respect to each RASI axis, then pnlt(I, S) adds to fitness(I) a penalty for each 
RASI axis that is violated. Table 3 presents an example where the Deep axis is more relevant for the 
student, and the Surface axis is more relevant for the sequence. To consider this relevance, weights 
are attributed to each axis, W1 = 1 for the least relevant; W2 = 2 for the intermediate axis; and W3 
= 3 for the most relevant. At each RASI axis where there is a divergence of relevance between the 
student and the sequence, the corresponding weight is multiplied by 1/6 of the Euclidean distance, 
as shown in Eq. 2. Thus, the penalty is at most the Euclidean distance and, consequently, the fitness 
is at most double the Euclidean distance. If there is no difference in the relevance order on any RASI 
axis, W1, W2, or W3 are set to 0.

Table 2. Individual Representation as a binary GA value

A1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

B2 1 1 0 1 1 1 1 1 0 0 0 0 0 0 1 0 1 1 1 1 0 1 0 1

Subtitle: 1. Action Number; 2. Bit value
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pnlt(I,S)=dist(I,S)/6×W1+dist(I,S)/6×W2+dist(I,S)/6×W3	 (2)

The penalty for the example of Table 3 considers the weights 3, 2 and 1 since the relevance order 
for all axes is divergent, where dist(I, S) = 0.352526. Then fitness (I) = 0.705032.

pnlt I S
dist I S dist I S dist I S

,
, , ,

.( ) = ( )
×

+
( )
×

+
( )
×

=
6 3 6 2 6 1

0 352516

Finally, we present an example of a sequence of digital activities recommendations. Consider the 
individual on Table 2, and for each bit set to 1, the digital activity corresponding to this bit on Table 
1 is one of the activities in the sequence. For example, on Table 2, the first bit set to 1 corresponds 
to the first row of Table 1. Therefore, the digital activity “Search for basic concepts on the Web or 
social networks.” is the first activity of the sequence, and so on. The complete sequence of digital 
activities corresponding to the individual on Table 2 is given by the activities in rows 1, 2, 4, 5, 6, 7, 
8, 15, 17, 18, 19, 20, 22, and 24 on Table 1.

A flowchart for the GA is termed in Figure 3. We used in its implementation the parameters 
defined in Engelbrecht (2007) as having the following structure: i) Initial population generation; 
ii) Fitness evaluation; iii) Checking the stop criteria; iv) If the check of step iii is affirmative, the 
solution is returned, and algorithm execution stops; v) If the check of step iii is negative, crossover 
and mutation are performed, and the execution algorithm returns to step ii.

For the steps shown in Figure 3, parameters were set, as described in the following. The initial 
population is the size MAXI. The maximum number of generations (MAXG) is used as the stop 
criterion for the GA. The tournament method is used to select the individuals that will be part of 
the next generation. In this process, three individuals are randomly selected, and the best of these is 
chosen according to a probability rate PT. The crossover is performed in adjacent 4-bit blocks, thus 

Figure 3. Genetic Algorithm Flowchart

Table 3. Example of the order of relevance of RASI indexes

RASI Indices Relevance Order

su st de Weight 3 Weight 2 Weight 1

Individual I( ) 0.687500 0.578125 0.65000 su de st

Student S( ) 0.343750 0.500000 0.65000 de st su
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considering the six subcategories of CPD for BT. After the new individuals are ranked, the MAXI 
best ranked will make up the next generation population. The mutation, performed randomly in the 
population and considering a PM rate, inverts a random bit from an individual.

For the proposed GA, the population size MAXI = 1000 and the number of generations MAXG 
= 100 were defined. For the selection of individuals per tournament, the probability PT was 60%, 
and the probability of mutation PM, was 10%. These values were defined from exploratory tests. 
We observed that values different from those presented for the mentioned parameters did not cause 
significant changes or deteriorate the results.

3.3. Architecture Overview
In Figure 4, the pedagogical recommendation comprises of two modules: Pedagogical Actions 
Sequencing (PAS) and Activities Selection and Recommendation (SAR). The first module is 
responsible for the customized sequencing of pedagogical actions. The second is responsible for 
selecting activities, recommending, and evaluating the sequence of activities delivered to the student.

Process 1 in the PAS Module is responsible for sequencing pedagogical actions carried out by the 
GA specified in the previous section. Process 2 in the SAR module selects a digital activity for each 
action in the sequence, using the mapping BDT versus BT. Process 3 is responsible for delivering the 
sequence to the student, and in Process 4, the student evaluates the recommendation by answering 
a satisfaction questionnaire.

4. Experiments, Results, AND DISCUSSION

The sequencing and recommendation evaluation was performed by real experiments conducted during 
a degree course in computer science at a federal institute of education, science, and technology, located 
in the state of Minas Gerais, Brazil, to participate in the research. A total of 200 students over 18 
years old were invited, of which 41 voluntarily participated in the experiments. The sampling was 
below the expected proportion for a homogeneous population (134 students for sampling error of 5%). 
Therefore, the expected margin of error in the responses is 11.41% and a confidence level of 90%.

The authors assured the students that their answers would be treated anonymously, using a random 
identifier and that no students’ personal information would be disclosed under any circumstances. 
The experiments were developed in three stages:

i) 	 Identification of the student RASI profiles, provided by Entwistle and Tait (2013).
ii) 	 Sequencing of pedagogical actions for each student
iii) 	 Recommendation of digital activity sequences for students and satisfaction analyses.

Figure 4. Recommendation model for the pedagogical actions
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In step i, the students answered the RASI questionnaire3, and their RASI profiles were calculated. 
In step ii, the sequences of activities were determined by the proposed GA and sent to the students. 
In step iii, the students answered an agreement questionnaire in accordance with their profiles and 
satisfaction questionnaire4 concerning the received sequence of activities. The answers to these three 
questionnaires were formulated considering a 5-level Likert scale. All questionnaire links were sent 
to the students by email.

4.1 Identification of the Student RASI Profile
This first experiment stage consisted of collecting the RASI questionnaire answers of the 41 students. 
Each RASI student profile was determined using the questionnaire answers, resulting in 18 students 
with Surface as the predominant RASI profile, 17 were identified as Strategic, and 6 were Deep. 
These students received their respective profiles, along with another questionnaire to evaluate the 
degree of agreement with their RASI profiles. Only 24 students voluntarily answered this second 
questionnaire, and the degrees of agreement are seen in Figure 5. The 24 students evaluated whether 
each axis should be higher or lower in percentage points, according to the following Likert scale: 
Very Low - at least 7 points less; Low - between 3 and 6 points less; Equal - up to 2 points more or 
less; High - between 3 and 6 more points; Very High - at least 7 more points.

Figure 5 shows the degree of agreement with their cognitive profiles was satisfactory. However, 
8.33% of participants consider the Surface axis should be much lower. Whereas, 8.33% of the students 
identified as Strategic, and 20.83% among the Deep students consider these axes should be much 
higher than that pointed out by the RASI profile calculus. These results demonstrated that the RASI 
profiles of the 24 students are, in general, their real profiles. The following steps of the experiments 
are sequencing and recommendation. Using such, the promising and expected result is the satisfaction 
of these students with the recommendation since it would indicate that this proposal can recommend 
suitable sequences for RASI profiles.

4.2 Action Sequencing
The student profiles, as previously calculated, were considered for sequencing pedagogical actions 
using GA (Process 1 in Figure 4), specifically in fitness function (Eq. 1). Next, one sequence was sent 
to each of the 41 students who responded to the RASI questionnaire, independent of their answering 
the second questionnaire. In this experiment stage, the sequences are expected to be in conformance 
with the predominant RASI axis. According to the mapping BT and RASI, sequences for students 
considered Surface should contain, preferentially, actions of Remember, which is the most relevant 

Figure 5. Degree of agreement with the RASI profile



International Journal of Distance Education Technologies
Volume 20 • Issue 1

11

CPD category for Surface axis. In order to analyze this sequence aspect, relevance degrees of the 
CPD categories for each RASI axis was defined and presented on Table 3.

The mapping defined in Figure 2 guided the definition of relevance degrees shown on Table 4. 
The categories with smaller indexes on each RASI axis were classified as low relevance to the profile. 
Those with the most relevant indexes were classified as high relevance. The remaining catergories 
were classified as moderate relevance. Based on Table 4, the classification of the sequences returned 
by GA for the 41 students was analyzed, as shown on Table 4. Noted from the mean (first row) among 
these 41 sequences, the GA was able to select principally the more relevant actions for Deep and 
Surface axis. Although the actions of high relevance for Strategic were not the most sequenced; 
moderate actions were. Noteworthy here is that this analysis aims to evaluate the proposed BT and 
RASI mapping, since the degrees of relevance are consequences of this mapping. Statistical tests 
were performed to verify the significance of the relationship expressed in this mapping. The Shapiro-
Wilk Test 5 on Table 5 revealed that the data did not present a normal distribution for all relevance 
degrees, as there are p  indexes greater than 0.05. At this point, the Kruskal-Wallis Test6 was applied, 
as shown on Table 6.

Table 4. Relevance of CPD categories for each RASI axis

RASI Axis
Degree of Relevance

Low Moderate High

Surface Apply, Evaluate Understand, Analyze, Create Remember

Strategic Remember, Create Understand, Apply Analyze, Evaluate

Deep Remember, Apply Understand, Create Analyze, Evaluate

Table 5. Analysis of GA sequences in relation to relevance degrees

Relevance of the activities sequenced by profile

RASI Axis Low Moderate High

Mean

deep 0.333 0.667 0.688

strategic 0.507 0.897 0.625

surface 0.757 0.500 0.903

Standard Deviation

deep 0.171 0.219 0.0685

strategic 0.0934 0.173 0.133

surface 0.289 0.167 0.125

Shapiro-Wilk W

deep 0.927 0.797 0.683

strategic 0.787 0.667 0.922

surface 0.812 0.937 0.624

Shapiro-Wilk p

deep 0.554 0.055 0.004

strategic 0.001 < .001 0.159

surface 0.002 0.255 < .001
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Note that the p  index was below 0.05, revealing the statistical significance of the sequenced 
actions when grouped by degree of relevance to each student profile. This means that the GA prioritizes 
sequencing activities that are more relevant to the cognitive profile of the student over less relevant 
activities, thus corroborating the effectiveness of the proposed algorithm. Noted here was that the 
proposed GA maintains expected technical objectives for a recommendation system, such as relevance, 
novelty, serendipity, and diversity, as described in Aggarwal et al. (2016). Although the most relevant 
actions were more recommended, there is a need for adjustments in GA to minimize the recommendation 
of less relevant actions to the student profile.

If the strata per RASI axis is analyzed separately, the Surface axis had the best recommendation 
rate of actions with high relevance to the cognitive profile. On the other hand, the Strategic axis had 
the worst recommendation rate of activities with high relevance. Given the analysis of the measures 
presented on Table 4, one is able to use this as a parameter to implement improvements to the proposed 
GA so that recommended actions are adjusted more effectively to the student profile.

4.3 Pedagogical Recommendations
According to student RASI profiles, each action in the sequences returned by GA represents a 
general view of what the students need to do in order to learn. However, these actions do not specify 
which activities they should perform. As such, before proceeding to this experiment stage, the 
recommendation itself (Process 3 in Figure 5), the digital activity corresponding to each action, based 
on Table 1, must be assigned to the sequences (Process 2 in Figure 4), building the sequences for 
the activities to be recommended. The student was presented with the sequence through an activity 
list on a web page. Once again, the results were evaluated by a satisfaction questionnaire, where the 
students evaluated the recommended sequences (Process 4 in Figure 4). Only 24 students responded 
to this third questionnaire regarding the respective pedagogical sequence received. The following 
criteria were used to evaluate the sequences: i) Number of recommended activities (sequence size) 
in Figure 6a; ii) Degree of agreeability with activities in Figure 6b; iii) Possibility of completing all 
activities in Figure 6c.

Figure 6. Evaluation of the recommended sequences

Table 6. Kruskal-Wallis Test for the relevance of sequenced actions

χ2 df p

Moderate 23.0 2 < 0.1%

High 22.6 2 < 0.1%

Low 16.0 2 < 0.1%
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The performance criteria presented in Figure 6a consider evaluating the items offered to the 
students through the of these items. According to its use, Chen et al. (2020) state that this parameter 
may be desirable in recommender systems. In Figure 6a. The students presented their opinion on the 
number of activities received, whose answers could be:

• Very High (has at least 6 activities more than considered ideal).
• High (has between 3 and 5 activities more than considered ideal).
• Sufficient (has 2 activities more or less what one would consider ideal).
• Low (has between 3 and 5 activities less than considered ideal).
• Very Low (has at least 6 activities less than considered ideal).

Note in Figure 6a that most students (92%) consider the number of activities High, or Very High. 
According to the proposed modeling, the maximum number of activities possible is 24, but on average 
15 activities were recommended for each student. This represents almost 2/3 of the maximum number 
of activities that can be recommended. The analysis of this evaluation can be used to improve the GA 
and adapt the number of sequenced activities to the cognitive profile of the student.

Figure 6b describes the analysis of agreeability. The students were questioned about how 
agreeable the sequences of activities received would be in terms of leading them toward learning new 
content. One notes that 79% of the students answered Agree or Strongly Agree that the sequence of 
activities would lead them to learn new content. Despite the satisfactory results, it is possible to use 
this evaluation to personalize the adequacy of the pedagogical recommendation to the student since 
4% Strongly Disagree and 17% responded Neither.

In Figure 6c, the student was asked about the possibility of performing all the activities from the 
recommended sequence. The answer options were Very High (over 80%), High (between 61% and 
80%), Moderate (between 41% and 60%), Low (between 20 and 40%), and Very Low (below 20%). 
Note that 29% of students consider Low or Very Low the possibility of performing all recommended 
pedagogical activities. Furthermore, 42% consider Moderate, and 29% consider High or Very High the 
possibility of completing all the activities. This result is related to the number of activities considered 
high by most students. Accordingly, this evaluation corroborates the need to adjust the number of 
activities to each student profile.

Figure 7. The acceptance rate for each recommended educational activity
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Another factor analyzed was the acceptance rate of each pedagogical activity recommended. 
This rate was calculated from the responses of 16 students, who gave details concerning which 
activities they would not like to perform. In evaluating the sequence of activities, this question was 
optional for the students so that these answers may be of better quality. This analysis is seen in Figure 
7. Note that the activities are recommended respecting the order of the most concrete (Activity 1) 
to the most abstract (Activity 24). In Figure 7, activities 1 and 20 were the most recommended (23 
times), but Activity 1 had a higher acceptance rate (95.65%) by students. Nevertheless, one notes a 
slight predilection of the participants for the more abstract activities over the less abstract, since the 
average acceptance rate of the first 12 activities was 81.44% and the last 12 activities were 87.97%.

Overall, 24 students responded to the evaluation on the recommended pedagogical sequences. 
Regarding the RASI profile axis predominant to these students, 11 Surface, 9 Strategic and 4 Deep 
profiles were noted. The rejection rate of the activities by the grouping defined on Table 4 shows that 
most of the students who specified which activities they would not like to do, pointed out those that 
have a low or moderate degree of relevance to the respective predominant cognitive profile (Deep = 
4 profiles; Strategic = 9 profiles; Surface = 11 profiles), as presented on Table 7.

On Table 7, the Shapiro-Wilk test shows that there is no normal distribution among all groups. 
Based on this, the Kruskal-Wallis test was applied, as shown on Table 8, to verify the statistical 
significance of the results found. Note that on Table 8, statistical significance was seen only for 
activities in the Low group. This means that one can state that the rejection rate observed for the 
RASI profiles concerning the Moderate and High groups follows a decreasing trend. Nevertheless, 
when looking at the average for activity rejection rates, according to Figure 8, one notes a greater 
tendency to reject activities with Low and Moderate relevance.

Table 7. Activity rejection rate by RASI profile according to the relevance of the activities

Activity rejection rate by RASI profile

RASI Axis Low Moderate High

Mean

deep 0.00 0.182 0.175

strategic 0.148 0.0900 0.0556

surface 0.307 0.254 0.121

Standard deviation

deep 0.00 0.213 0.236

strategic 0.190 0.130 0.167

surface 0.277 0.347 0.141

Shapiro-Wilk W

deep --- 0.802 0.848

strategic 0.784 0.749 0.390

surface 0.915 0.770 0.719

Shapiro-Wilk p

deep --- 0.105 0.220

strategic 0.13 0.5 < .001

surface 0.277 0.4 < .001



International Journal of Distance Education Technologies
Volume 20 • Issue 1

15

From the results presented in Figure 8, the average rejection rate of the activities according to 
the relevance for the predominant axis of the RASI profile was High - 10.56%, Moderate - 17.95%, 
Low - 19.64%. This shows that, in general, the GA recommendation prioritizes activities closer to 
the needs of the student profile. In addition, students prefer activities more relevant to the profile 
over less relevant activities.

In Figure 8, one notes that the rejection rate was zero on the Deep axis for activities of low 
relevance. In this experiment, four students presented the predominant Deep axis, however, according to 
Table 8, the remaining students (who were not predominantly Deep) presented comparable indexes for 
Deep axis. Moreover, two of these four students presented Surface indexes near to Deep indexes. Note 
that some activities with high relevance for Surface are the opposite of the Deep profile. As such, the 
results presented in Figure 8 are coherent with the RASI theory. The reduced version of RASI inventory 
can increase accuracy in identifying the RASI profiles. Due to the smaller number of questions, the 
student will be more motivated to answer them. In employing this version, the expectation is that 
if there are a more significant number of responses, it will be possible to improve the RASI profile 
identification and, consequently, the other processes that pertain to the recommendation model.

Based on the aforementioned considerations, these results corroborate the degree of cohesion 
in the mapping between BT and RASI, as described in Subsection 3.1.3. Another finding was the 
classification of the digital activities from BDT under the perspective of the two-dimensional BT, as 
proposed in this work. On the other hand, such results can support improvements in both the proposed 
mapping and classification.

Table 8. Kruskal-Wallis Test for the activity rejection rate

χ2 df p

Low 6.06 2 0.048

Moderate 1.19 2 0.550

High 2.28 2 0.320

Figure 8. The average rate of rejection of activities by the RASI axis according to relevance
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The GA adapts a pedagogical sequence to the student profile during the sequencing process 
without considering the number of activities. This is an essential aspect for the student, according to the 
answers to the satisfaction questionnaire. Based on the results, it was noted that the number of activities 
influences student perception when it comes to the pedagogical recommendation. Thus, including 
other optimization objectives in the GA, such as the number of activities and student satisfaction, may 
bring benefits. This work and the suggestions for improvement present a recommendation perspective 
focused on the cognitive process, preferences, and goals of the student.

5. Conclusion and Future Works

This work presented an approach for automatizing and customizing the sequencing based on Revised 
Bloom’s Taxonomy and student RASI profile. These cognitive theories allowed for the proposal of a 
model where the sequencing takes advantage of the cognitive aspects of the learning process instead 
of curricular structure. Therefore, it can be applied to any knowledge domain due to its independence 
of content to be learned. The sequences determined by a GA-based planner were recommended in 
the experiments, and a questionnaire evaluated student satisfaction.

The most important finding of this paper is related to the feasibility of personalized 
recommendations in digital activities to students by sequencing pedagogical actions prioritizing 
a cognitive domain. Consequently, the relationship between BT and RASI was confirmed as an 
interesting framework for solving this problem. In experiments, the authors observed that the number 
of activities is essential in terms of increasing or decreasing student satisfaction.

The relevant contributions were the mapping between BT and RASI, including the three axes, the 
mapping of digital activities into the two-dimensional BT, and a GA-based planner of pedagogical 
actions. As future studies, we propose to automate the recommendation process into a virtual learning 
environment, proceed with more experiments and specify other objective functions to model a multi-
objective GA.
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Table 9. RASI index averages, grouped by predominant axis

 
Predominant RASI Axis

Average per Axis

Surface Strategic Deep

Surface 0.7852 0.6918 0.5199

Strategic 0.7417 0.8090 0.4809

Deep 0.5875 0.4766 0.6797



International Journal of Distance Education Technologies
Volume 20 • Issue 1

17

REFERENCES

Agbonifo, O. C., & Olanrewaju, A. O. (2018). Genetic algorithm-based curriculum sequencing model for 
personalized e-learning System. International Journal of Education and Management Engineering, 5(8), 27–35.

Aggarwal, C. C. et al. (2016). Recommender systems (Vol. 1). Springer. doi:10.1007/978-3-319-29659-3

Ariyaratne, M. K., & Fernando, T. G. (2014). A comparative study on nature inspired algorithms with firefly 
algorithm. IACSIT International Journal of Engineering and Technology, 4(10), 611–617.

Brown, S., White, S., Wakeling, L., & Naiker, M. (2015). Approaches and study skills inventory for students 
(ASSIST) in an introductory course in chemistry. The University of Wollongong. doi:10.53761/1.12.3.6

Callaghan-Koru, J. A., & Aqil, A. R. (2020). Theory-Informed Course Design: Applications of Bloom’s Taxonomy 
in Undergraduate Public Health Courses. Pedagogy in Health Promotion, 2020(December). Advance online 
publication. doi:10.1177/2373379920979684

Caputi, V., & Garrido, A. (2015). Student-oriented planning of e-learning contents for Moodle. Journal of 
Network and Computer Applications, 53, 115–127. doi:10.1016/j.jnca.2015.04.001

Chen, J., Dong, H., Wang, X., Feng, F., Wang, M., & He, X. (2020). Bias and debias in recommender system: 
A survey and future directions. Computing Research Repository. abs/2010.03240, 1-20.

Churches, A. (2010). Bloom’s digital taxonomy. Australian School Library Association NSW Incorporated.

da Costa, N. T., & Fernandes, M. A. (2021). Sequenciamento de Ações Pedagógicas baseadas na Taxonomia de 
Bloom usando Planejamento Automatizado apoiado por Algoritmo Genético. Revista Brasileira de Informática 
na Educação, 29, 485–501. doi:10.5753/rbie.2021.29.0.485

da Costa, N. T., Junior, C. X., Araujo, R. D., & Fernandes, M. A. (2019). Application of AI planning in the 
context of e-learning. 2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT), 
2161, 57-59. doi:10.1109/ICALT.2019.00021

de Miranda, P. B., Ferreira, R., Castro, M. S., Neto, G. F., Souza, S. J., Santos, L. A., & Silva, L. L. (2019). Uma 
abordagem multiobjetivo para recomendação de caminhos de aprendizagem para grupo de usuários. Brazilian 
Journal of Computers in Education (Revista Brasileira de Informática na Educação-RBIE), 27(3), 336-350.

Dwivedi, P., Kant, V., & Bharadwaj, K. K. (2018). Learning path recommendation based on modified variable 
length genetic algorithm. Education and Information Technologies, 23(2), 819–836. doi:10.1007/s10639-017-
9637-7

Engelbrecht, A. P. (2007). Computational intelligence: an introduction. John Wiley & Sons. 
doi:10.1002/9780470512517

Entwistle, N. (2018). Student learning and academic understanding: a research perspective with implications 
for teaching. Academic Press.

Entwistle, N., McCune, V., & Tait, H. (2013). Approaches and study skills inventory for students (ASSIST) 
(incorporating the Revised Approaches to Studying Inventory - RASI). Centre for Research on Learning and 
Instruction, University of Edinburgh.

Fusilier, M., Bhuyan, R., Russell, J., Lin, S., & Yang, S. (2021). Studying approaches: Samples in China, 
Kuwait, and USA. Journal of Applied Research in Higher Education. Advance online publication. doi:10.1108/
JARHE-11-2020-0385

Goyal, M., & Rajalakshmi, K. (2018). Personalization of test sheet based on bloom’s taxonomy in e-learning 
system using genetic algorithm. In Recent Findings in Intelligent Computing Techniques (pp. 409–414). Springer. 
doi:10.1007/978-981-10-8636-6_42

Hssina, B., & Erritali, M. (2019). A personalized pedagogical objectives based on a genetic algorithm in an 
adaptive learning system. Procedia Computer Science, 151, 1152–1157. doi:10.1016/j.procs.2019.04.164

Junior, C. X. P., Dorça, F. A., & Araujo, R. D. (2019, July). Towards an Adaptive Approach that Combines 
Semantic Web Technologies and Metaheuristics to Create and Recommend Learning Objects. 2019 IEEE 19th 
International Conference on Advanced Learning Technologies (ICALT), 2161, 395-397.

http://dx.doi.org/10.1007/978-3-319-29659-3
http://dx.doi.org/10.53761/1.12.3.6
http://dx.doi.org/10.1177/2373379920979684
http://dx.doi.org/10.1016/j.jnca.2015.04.001
http://dx.doi.org/10.5753/rbie.2021.29.0.485
http://dx.doi.org/10.1109/ICALT.2019.00021
http://dx.doi.org/10.1007/s10639-017-9637-7
http://dx.doi.org/10.1007/s10639-017-9637-7
http://dx.doi.org/10.1002/9780470512517
http://dx.doi.org/10.1108/JARHE-11-2020-0385
http://dx.doi.org/10.1108/JARHE-11-2020-0385
http://dx.doi.org/10.1007/978-981-10-8636-6_42
http://dx.doi.org/10.1016/j.procs.2019.04.164


International Journal of Distance Education Technologies
Volume 20 • Issue 1

18

Krathwohl, D. R. (2002). A revision of Bloom’s Taxonomy: An overview. Theory into Practice, 41(4), 212–218. 
doi:10.1207/s15430421tip4104_2

Lin, Y.-S., Chang, Y.-C., & Chu, C.-P. (2016). An innovative approach to scheme learning map considering 
tradeoff multiple objectives. Journal of Educational Technology & Society, 19(1), 142–157.

Lu, J., Wu, D., Mao, M., Wang, W., & Zhang, G. (2015). Recommender system application developments: A 
survey. Decision Support Systems, 74, 12–32. doi:10.1016/j.dss.2015.03.008

Nabizadeh, A. H., Leal, J. P., Rafsanjani, H. N., & Shah, R. R. (2020). Learning path personalization and 
recommendation methods: A survey of the state-of-the-art. Expert Systems with Applications, 159, 113596. 
doi:10.1016/j.eswa.2020.113596

Pireva, K., & Kefalas, P. (2018). A recommender system based on hierarchical clustering for cloud e-learning. 
In International Symposium on Intelligent and Distributed Computing (pp. 235-245). Springer International 
Publishing. doi:10.1007/978-3-319-66379-1_21

Prasad, G. N. R. (2021). Evaluating student performance based on bloom’s taxonomy levels. Journal of Physics: 
Conference Series, 1797(1), 12063. doi:10.1088/1742-6596/1797/1/012063

Shang, H. (2019). Cultural interpretation of deep approach to learning: an empirical analysis in a Chinese 
university. Cross-Cultural Business Conference, 207-218.

Tait, H., & Entwistle, N. (1996). Identifying students at risk through ineffective study strategies. Higher Education, 
31(1), 97–116. doi:10.1007/BF00129109

Tarus, J. K., Niu, Z., & Mustafa, G. (2018). Knowledge-based recommendation: A review of ontology-based 
recommender systems for e-learning. Artificial Intelligence Review, 50(1), 21–48. doi:10.1007/s10462-017-
9539-5

Zhang, J., Wong, C., Giacaman, N., & Luxton-Reilly, A. (2021). Automated Classification of Computing 
Education Questions using Bloom’s Taxonomy. Australasian Computing Education Conference, 58-65. 
doi:10.1145/3441636.3442305

http://dx.doi.org/10.1207/s15430421tip4104_2
http://dx.doi.org/10.1016/j.dss.2015.03.008
http://dx.doi.org/10.1016/j.eswa.2020.113596
http://dx.doi.org/10.1007/978-3-319-66379-1_21
http://dx.doi.org/10.1088/1742-6596/1797/1/012063
http://dx.doi.org/10.1007/BF00129109
http://dx.doi.org/10.1007/s10462-017-9539-5
http://dx.doi.org/10.1007/s10462-017-9539-5
http://dx.doi.org/10.1145/3441636.3442305


International Journal of Distance Education Technologies
Volume 20 • Issue 1

19

Newarney Torrezão da Costa has a bachelor’s degree in Computer Science (2010) and a master’s degree in 
Computer Science (2013) and pursuing his Ph.D. in Computer Science at the Federal University of Uberlândia 
(UFU). Since 2013, he has been a professor at Goiano Federal Institute of Education, Science, and Technology 
(IF Goiano). He is interested in the areas of Artificial Intelligence and Computers in Education.

Denis José Almeida has a bachelor’s degree in Information Systems at the State University of Minas Gerais in 2007 
and is currently pursuing a masters in Computer Science at the Federal University of Uberlândia. Since 2010 he 
has worked as an Information Technology Analyst at the Federal University of Uberlândia, having worked in web 
development projects and the implementation and maintenance of Virtual Learning Environments at this institution. 
He has experience in the field of Distance Education, acting as a tutor in undergraduate courses since 2013.

Gustavo Prado Oliveira has a bachelor’s degree in Computer Science from Federal University of Goiás (2003), a 
master’s degree in Mechanical Engineering from Federal University of Uberlândia (2007) and is currently pursuing 
his Ph.D. at Federal University of Uberlândia. He is currently a professor of basic technical and technological 
education at the Federal Institute of Education, Science and Technology of the Triângulo Mineiro. He has experience 
in Computer Science, with emphasis on programming and software engineering, working mainly on the following 
topics: programming, information technology, commercial programming, software engineering, and Internet systems.

Márcia Aparecida Fernandes has a bachelor’s degree in Mathematics from the Federal University of Uberlândia 
(1985), a master’s degree in Systems Engineering and Computing from the Federal University of Rio de Janeiro 
(1989), and a Ph.D. in Systems Engineering and Computing from the Federal University of Rio de Janeiro (1996), 
having done a Sandwich doctorate at LAAS/CNRS in Toulouse (France) in 1995. He is currently a professor at 
the Faculty of Computing at the Federal University of Uberlândia. She has experience in Computer Science, with 
emphasis on Artificial Intelligence, working mainly in Evolutionary Computing, Swarm Intelligence, Multiobjective 
Optimization, Artificial Intelligence Planning, Intelligent Tutor Systems, and Adaptive Computing Systems for 
Education.

ENDNOTES

1	  In this paper, we refer to the Revised Bloom’s Taxonomy as BT, or Bloom’s Taxonomy.
2 	 Likert, R. (1932). A technique for the measurement of attitudes. Archives of psychology.
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4 	 Link to the RASI agreement and safisfaction questionnaires: https://bit.ly/3oymVWc
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