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ABSTRACT

The information retrieval system is a set of resources and tools that allow users to search for information 
in a given domain. This system permits users to perform their research according to their objectives in 
diverse ways producing different behaviors. Even users with the same objective may follow different 
paths and stand different sub-processes, which are introduced as self-defined business processes 
that vary in terms of structure, objective, and result. This puts forward the difficulty of obtaining 
and studying these user’s behaviors. This paper targets the problem of representing and managing 
self-defined business process variability. A special interest is given to the use of process mining to 
deal with this challenge. In this regard, a case study about citizens in interaction with the electronic 
administration is presented to discover and manage variability of this process type. The main result 
is a set of recommendations to end users.
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INTRODUCTION

Information Retrieval (IR) System (Naouar et al., 2017a; Naouar et al., 2017b) is a set of resources 
and tools that allow users to search for information in a given domain. These systems permit users 
to accomplish their research according to their objectives. In this sense, processes provided by the 
IR systems allow users often to determine their own procedure. In such context, the user’s manner 
to perform a task (purchasing a product from an e-commerce website, searching for a document in a 
digital library, etc.) represents a “self-defined process” (Luengo & Sepúlveda, 2011). Among these 
systems that produce the self-defined BP type, there is the case of digital libraries (Shiri, 2018), 
e-commerce websites (Laudon & Traver, 2016), cyber-physical systems (Seiger et al., 2019), Electronic 
administration services (Kasprzyk, 2018), and others.
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Self-defined BPs are considered as a special category of BPs, with high variability level (Cole, 
2015; Dinh & Tamine, 2015). This category of BPs represents user’s behaviors that may achieve one 
objective in diverse ways to perform a research. Indeed, users in information-seeking situations adopt 
behaviors that depend on many factors (Naouar et al., 2017b; Ruso et al., 2013; Laudon et al., 2016), 
that can change user’s processes. These factors are: 1. User’s objective. 2. User’s Requirement and 
3. Engine’s Knowledge used to search the information.

Therefore, the difficulty of representing self-defined BP emerges from its variability (Athukorala 
et al., 2015; Luengo & Sepúlveda, 2011). The later changes according to different contexts and 
requirement. Even though managing process variability is a non-trivial task because it requires specific 
standards, methods, and technologies, it still involves many parameters that are not always formally 
defined. For example, designing the reference process model, which represent the commonalities 
from the process family, is a challenge, as well as the necessary adjustments to configure a specific 
process variant.

To overcome these challenges, it would be useful to represent users’ behavior (information-
seeking processes), i.e., to define the generic process model, in order to study the self-defined BP 
variability and recommend the suitable path to each user. Also, it is useful to manage the process 
variants through ontologies based on semantic reasoning and Configurable Process Model (CPM) 
(Gottschalk et al., 2007), i.e., to select the appropriate process variant according to the combination 
between different self-defined BP ontologies.

To achieve these objectives, this study uses process mining (Van der Aalst, 2016) algorithms 
to mine user self-defined BPs. Seven process mining algorithms are applied on two real datasets of 
users’ traces interactions with the e-administration. The first step is to select the most preferment 
algorithm, based on process model quality criteria (Buijs et al., 2012; Günther & Van der Aalst, 2007), 
to discover the generic process model. The second step aims at managing existing process variants to 
recommend the suitable path according to user’s objective, requirements, and engine knowledge. This 
is done by using decision miner algorithm to obtain the CPM (process model with variants details) 
and by employing related semantic reasoning of the self-defined BP ontologies.

Mainly, the contribution presented in this paper is about mining self-defined BPs in terms of 
representing users’ behavior in their information-seeking processes and capturing variants paths 
for managing its variability. The novelty, here, consists of using techniques to treat the whole entire 
information retrieval process (a complete process with a beginning and an end activity). The techniques 
differ from others employed in Nouvellet et al. (2017), which have analyzed data related to user 
sessions. It is limited to the deduction of a model based on a Markov chain of order 1. Nevertheless, 
the question of the capacity of these process mining techniques to analyze self-defined processes and 
to determine their structure and variations (Luengo & Sepúlveda, 2011) is not previously tackled. 
In addition, in the literature, there is a lack of research works, in self-defined BP context, treating 
scenarios in which process mining techniques could be combined with ontologies based on semantic 
reasoning, for providing decision choice analysis.

Therefore, the paper is organized in order to evaluate the performance of process mining 
algorithms in representing self-defined processes and their ability to generate user’s behaviors and 
identify variation points, alternatives, and rules. Besides, it illustrates the applicability of semantic 
reasoning as a decision task that can be combined with process mining, to recommend one path 
instead another, in the case of interactions between users and e-administration services.

Concerning section 2, it provides the required background knowledge. Section 3 introduces the 
methodology to mine and manage variability of self-defined BP. In Section 4, a concrete case study 
is depicted to simulate the proposed approach. The case study is about interactions between users and 
electronic services of e-administration with self-provided processes, where citizens’ service requests 
can proceed through self-defined processes. Section 5 discusses the obtained results, the related 
works, and the implication of practice examples. Section 6 summarizes the paper and introduces 
future research.
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Theoretical Background
The contribution presented in this paper is about mining self-defined BPs. Indeed, a suitable technique 
for representing users’ behavior in their information seeking processes is required. In this sense, process 
mining seems to be an interesting option to deal with. Also, managing self-defined BP variability 
is essential (CPM). Furthermore, it is important to handle semantic content (Ontologies based on 
semantic reasoning) to recommend one process in the case of variation points.

Process Mining
Process mining is a scientific discipline that falls between data mining and business process analysis 
(Van der Aalst, 2016). The main idea of process mining is to use the execution BPs event logs that are 
recorded in the information system, to automatically generate, check and enhance process models. An 
event log is a collection of traces, which represent process instances that have been executed. Each 
event in an event log is assigned to an activity executed for a singular process instance (one trace). 
For each trace, all events belonging to that case are ordered in a chronological style.

Furthermore, process mining consists of three types (Cf. Figure 1), which are: discovery, 
conformance, and enhancement. Discovery: An automatic process modeling methodology that takes 
event logs as input and produces a BP model as output. Conformance: compares the newly discovered 
process model with the existing process model. The purpose is to detect deviations and identify 
bottlenecks. Enhancement: focuses on improving or extending the existing process model using the 
information recorded in event logs.

Configurable Process Model (CPM)
CPM (Gottschalk et al., 2007) appeared with the objective of integrating different process variants into 
one model. Thus, the CPM enables extracting a process variant, which is a process model different 
from the original one, but that fits better in the application environment. This approach enables to 
represent the commonalities of the process variants. By sharing the particularities among multiple 
variants, this approach also promotes the model reuse (Ayora et al., 2012; Radgui et al., 2013).

Several aspects related to the BP variability have been discussed, such as: management, (re)
design (Kumar & Yao, 2012), modeling (La Rosa et al., 2009), and configuration (Ghoula et al., 
2007). Furthermore, most of the proposed approaches present a low level of automation. Indeed, the 
configuration of the process variant requires the verification of a syntactical and semantically levels of 
resulted models, where existing approaches do not differ between planned execution and real process 
execution, i.e., what happens during the process execution may be not planned to happen. Therefore, 

Figure 1. Overview of process mining and its three types of techniques (Van der Aalst, 2016
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the use of process mining techniques is mandatory because its enable the extraction of information 
from event logs (Gottschalk et al., 2007). Thus, by analyzing the generated process model, process 
variants can be discovered, and problems can be corrected.

For this purpose, a process mining technique called, Decision Miner, is selected to analyze 
decision points that enable detailing variation points, alternatives and rules.

The benefits provided by the semantic enrichment of the BP include the improvement of its 
representation and understanding; the automation of tasks related to the modeling, configuration, 
evolution, and the adaptability of the BP according to different requirements. Therefore, it is possible 
to analyze the CPM in a semantic manner.

Ontologies and semantic reasoning
The ontology enables to capture, represent, re (use), share and exchange common understanding in a 
domain (Bogarin et al., 2018). The ontology is composed by commonly agreed terms, thus describing 
the domain of interest. However, knowledge shared and reused among applications and agents are 
only possible through the semantic annotation.

Semantic annotation enables to reasoning over the ontology, thus ensuring the quality of the 
ontology by deducting new knowledge (Liao et al., 2015; Staab & Studer, 2013).

The semantic enrichment of the BP was proposed to increase the level of BPM lifecycle (Hepp & 
Roman, 2007) and to compliance checking (Szabó & Varga, 2014). Regarding to the CPM, semantic 
technologies have been applied for semantic enrichment (El Faquih et al., 2014) and for semantic 
validation (Fei & Meskens, 2008).

Methodology
Self-defined BPs are characterized by variability. This puts forward the difficulty of representing this 
BP type. Therefore, the authors propose an approach for representing and managing self-defined BP. 
Indeed, the applicability of process mining and semantic ontologies, to represent users’ behavior in 
their information-seeking process is required. In this context, the mining self-defined BP approach 
consists of three main steps (Cf. Figure 2).

The self-defined BP approach starts by the event logs preparation step (part a of figure 2). In 
this step, it is important to pass through the extraction and the filtering operations, to obtain cleaned 
event data. In this sense, the authors focus on two main filters: The category filtering (Rafiei, 2018; 
Lamghari et al., 2019) and the deficiencies filtering (Cheng & Kumar, 2015; Tax et al., 2019). The 

Figure 2. Approach for mining self-defined BP (Authors’ work)
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first ignores data with forbidden access, while the second ignores noise (ignores data incorrectly 
logged) and chaotic (ignores data logged by the system even though it is not part of the main process 
flow) behaviors. Accordingly, the authors can proceed to the discovery algorithm selection step 
(part b of figure 2). This step aims at evaluating the capacity of each process discovery algorithm for 
representing self-defined processes. This evaluation can be released based on process models quality 
criteria. This phase’s output can be used in the managing variability step (part c of figure 2). To do 
so, the authors define ontologies and apply the decision miner algorithm. These two operations are 
required for semantic reasoning. At this stage, it is crucial to detail paths variants (CPM) using events 
gathering knowledge and ontologies, to determine the cluster of paths (processes with the same user 
objectives and requirements) on which the refinement activity can be released to choose one path 
instead another. This is done by the reasoning engine activity that can combine the resulted CPM 
with the level of knowledge ontology (semantic reasoning). This recommends a unique process for 
each user according to the inputs’ data. Thus, the unicity of the resulted process is checked. In the 
case of multi-processes result, the reasoning step restarts. All these approach steps will be detailed 
in the following sections.

Discovery Algorithms and Process Model Quality Criteria
A process discovery algorithm constructs a generic process model based on event logs. Indeed, 
the generic model is an abstracted and general representation of real event logs. Several discovery 
algorithms are described with basic representation of process models, like alpha algorithm. Other 
algorithms are representing different abstraction levels combined with clustering and classification 
techniques, to model processes from unstructured and complex events. In this regard, the authors 
conduct a comparative study to nominate the most preferment discovery algorithm to represent 
self-defined processes. In this regard, the authors are inspired by (Augusto et al., 2018; Mans et al., 
2008; Pegoraro & Van der Aalst, 2019) to list the following process discovery algorithms: Alpha ++ 
algorithm, Heuristic Miner (HM), Inductive Miner (IM), Genetic Miner (GM), Fuzzy Miner (FM), 
State Based Regions (SBR), Language Based Regions (LBR).

On one hand, the Alpha ++ detects non-free choice relation by describing activities of the selected 
relation that depends on other activities (Wen et al., 2007). It cannot detect invisible tasks. Therefore, 
this algorithm gives unsound results. In this sense, an extended version of the alpha algorithm has 
been created, to take into consideration the patterns’ frequency. Indeed, the HM algorithm (Weijters 
& van der Aalst, 2003) can discover main behaviors and abstract exceptional and noisy ones leaving 
out less important activities. This later cannot group traces with sub-logs representation. Accordingly, 
the IM algorithm has been developed to treat events by grouping them into sub-logs. For each sub-log, 
a sub-process is generated. Then, a combination between the resulted sub-processes are released to 
obtain the generic process model. In this respect, the IM algorithm produces sound models (Bogarin 
et al., 2018), i.e., less none-conformities detected and it fits with the majority of present logs. Besides, 
it cannot identify complex and non-local process control patterns.

On the other hand, new algorithms have been developed to treat event logs in their uncertainty, 
for example the GM algorithm. This algorithm uses the genetic concept in creating process models 
from logs. This is done randomly. For each process, the precision metric is calculated. Then, sound 
models are combined based on the mutation operation. The main limitation of this approach is their 
complexity in discovering and representing process models from real data sets (Vanden Broucke & 
Weerdt, 2017). From the same complexity standpoint, the FM deals with unstructured processes 
(Günther & Van der Aalst, 2007). In this sense, FM simplifies unstructured processes by preserving 
significant behavior, while less significant but highly correlated behaviors are aggregated into clusters, 
and less significant or less correlated behaviors are abstracted.

Furthermore, the SBR algorithm generates a Petri net from a Transitions System (ST) based on 
specific abstractions, such as: Set, Multi-Set, Sequence and other types of abstractions, in which each 
state of the ST can be represented by a complete or partial trace. This algorithm ensures the fitness 
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metric, as well as the identification of complex control structures. Besides, SBR is unable to process 
incomplete and noisy logs (Van der Werf et al., 2008), while the LBR algorithm can find process 
model places based on the language process. Indeed, the LBR algorithm uses properties derived from 
logs (causal relationships), to determine the final model by describing different places. Unfortunately, 
this algorithm is unable to process incomplete and noisy logs (Van der Aalst et al., 2010).

In summary, obtaining a quality model is the main goal of a process discovery algorithm. There 
are various metrics and approaches for estimating process model quality criteria (Günther & Van der 
Aalst, 2007; Buijs et al., 2012), which are:

• 	 Fitness: This metric quantifies how much the observed behavior captured by the model. i.e., it 
quantifies the ðt of a log in a model.

• 	 Generalization: The model should generalize the present behavior in the log. This metric 
quantifies how well the model explains unobserved behaviors. The main difficulty with the 
generalization metric is the need of unobserved behaviors treatment.

• 	 Precision: The model ignores unrelated behavior that is stored in the log. This metric quantifies 
how much behavior exists in the model that are not observed. A high level of generalization 
model could represent much more behavior than once presented in the log (underfitting model 
vs overfitting model).

• 	 Simplicity: The model should be represented in a simplified structure. This metric quantifies 
the model complexity, and it is not treated in this paper.

For the fuzzy miner algorithm, the output model is a fuzzy model. To evaluate the fuzzy model, 
two metrics are available: Node detail and conformance.

• 	 The Node Detail describes activities displayed in the Fuzzy model, related to the aggregated or 
deleted activities. Nodes of visible activities are called explicit nodes, while nodes corresponding 
to an activity are denoted as implicit ones.

• 	 Compliance is a measure that describes the alignment between the Fuzzy model F and the logs 
T. Each activity in the logs that does not exist in the Fuzzy model will be counted as a deviation.

In table 1, the authors classify process mining discovery algorithms, according to quality criteria. 
This is based on the logic of the final representation, i.e., Algorithms producing Petri net models are 
suitable with fitness, generalization, and precision metrics, while algorithms producing fuzzy models 
are adequately evaluated using the node detail and the conformance metrics.

In this regard, this sub-section paves the way for a comparative study that can demonstrate the 
process discovery algorithms efficiencies and limitations, related to self-defined BP, where process 
model quality values can determine the suitable algorithm to represent self-defined processes. This 
is can be achieved by comparing the quality values of each resulted process model.

Managing Variability
To overcome the variability challenge, this work manages the process variants through ontologies 
based on semantic reasoning (Cf. Figure 3). Th authors propose to select the appropriate process 
variant according to the user’s objective, the user’s requirements, and the engine level of knowledge. 
To this end, the semantic annotation aims at reasoning over ontologies, to recommend final decision 
to each user.

Analyzing event logs by process mining techniques provides all process instances. The instances 
properties can be used in the process model generation. At this stage, it is important to detail the 
generic model into a CPM emerged with the objective of integrating different process variants into 
one model.
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The CPM can be obtained by applying the decision miner algorithm. In this sense, decision 
point analysis allows identifying variation points (parts of the model that are subjects to variation), 
alternatives (available for the variation points), and rules enabling to choose one path instead another 
(Ayora, 2012). By identifying these aspects, the process variants can be extracted.

Table 1. Process model quality criteria according to discovery algorithms (Authors’ work)

Produced Models Quality Metric Formulas Definition

 HM, IM, GM, LBR, 
SBR and Alpha++

 Fitness

 Fitness L M
L

L

opt

M

worst

M
,

2
1

2

2

( ) = −
( )( )
( )( )

δ λ

δ λ

 With δ is the cost function, λ
opt

M L2 ( )  is the 
worst case where there is no possible 
synchronization between the trace and the 

model. λ
opt

M L2 ( )  represents the obtained 
costs for each optimal alignment.

 Quantifies how 
much behavior 
captures the model.

 HM, IM, GM, LBR, 
SBR and Alpha++

 Precision

 Precision L M
E

en e

en ee E

T

M

,( ) = ( )
( )∑

1



 With E is the set of events in the T logs, A is 

the set of activities, en e A
T ( ) ⊆  is the set 

of activities presented in the traces and in 
M(e) ⊆  A the set of activities presented in 
the model.

 Quantifies how 
much behavior 
exists in the model 
that was not 
observed.

 HM, IM, GM, LBR, 
SBR and Alpha++

 Generalization  Quantifies how 
well the model 
explains observed 
system behavior.

 HM, IM, GM, LBR, 
SBR, 
 Alpha++

 Simplicity  Verifies the simple 
structure of the 
process model

 Fuzzy Miner  Node detail

 Node Detail
v V

n V

s v

s n
=
∑ ∈

∑ ∈

( )

( )

 Where N corresponds to all the primitive 
nodes (present, aggregated or deleted 
activities) of the Fuzzy model F, V N⊆  is 
the subset of all visible nodes and s is a 
function that associates each primitive node F 
with a measure of importance.

 Quantifies 
activities displayed 
in the Fuzzy model, 
relatively to the 
aggregated or 
deleted activities

 Fuzzy Miner  Conformance

 Conformance
M T d

M T
=

( )− +

( )+
1

1
 With M the total number of activities present 
in the logs T and d is the number of 
deviations identified.

 Describes the 
alignment between 
the Fuzzy model F 
and the logs T
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From a technical standpoint, the user provides information related to daily objectives and 
requirements. Indeed, the questionnaire-model approach (La Rosa et al., 2009) is applied to guide 
the configuration process. Here, each variation point is associated to a question, whose alternatives 
determine the path selection. Thus, by selecting an alternative related to a question, the system 
configures a process variant. In the proposed approach, the questionnaire is developed using the 
decision point analysis.

After discovering process variants, it is required to combine them with ontologies. Here, a 
focus is given on self-defined BP factors, to define ontologies, which are: 1. Objective ontology, 2. 
Requirements ontology and 3. Level of knowledge ontology. Respectively, variation points, available 
alternatives and rules related to citizen and e-administration interaction must be formalized. Therefore, 
process mining can enrich ontologies definition by extracting knowledge from event logs in order to 
recommend one variant to each user. For this purpose, the authors illustrate the step of combining 
CPM with ontologies through semantic annotation in figure 3.

In this context, figure 3 illustrates the proposed approach for managing variability into self-
defined BP. This figure presents two aspects: the front-end aspect and the back-end aspect. The first 
aspect concerns the user’s inputs, which are the user’s objective and requirements. These two points 
will lead, later, to obtain the final decision process. The second aspect encompasses the analysis and 
the engine parts. The analysis part details the generic model and the CPM, based on historic data, 
ontologies, and the decision miner algorithm (Decision tree). Consequently, the self-defined BP 
ontologies, guidelines and process variants attributes are emerged. In this context, the use of semantic 
reasoning (Detro et al., 2017) is required, to recommend the suitable process that the user must be 
achieved, based on the engine knowledge, and learned from the user’s objective and requirements.

In this way, when the user (Front-end) provides an information related to the user’s objective 
and requirements, a cluster of activities is performed. In addition, the knowledge of the reasoning 
engine will be used to recommend the unique process to achieve.

For example, when the user asks for a document, usually the first operation is the evaluation of 
the document type. Thus, some required information must be performed, such as, identity, reason 
of the request, etc. The objective and requirements presented by the user determine multi-processes. 
Their refinement must be released with ontologies based on semantic reasoning. In this regard, the 
unique result must be enriched by the level of knowledge ontology (Reasoning Engine), according 
to these steps (a), (b), (c), (d) and (e) of figure 3.

Figure 3. Approach for managing self-defined business process variability (Authors’ work)
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Case Study: Analysis and Results
In this section, a case study about citizens in interaction with the Electronic Administration is presented, 
to illustrate the applicability of the mining self-defined BP approach (Cf. Figure 2).

Preparing Event Logs
The definition of e-administration or electronic administration refers to any of the mechanisms, 
which are meant to transform what in a traditional office, based on paper processes, into a paperless 
office based on electronic ones. This is an ICT (Information and Communications Technology) tool 
intended to improve productivity and performance.

Administration processes are characterized by the fact that several organizational units 
(community, municipalities, etc.) can be involved in the process treatment of citizens (Ruso et al., 
2013). These organizational units often have their own specific IT applications; it becomes clear that 
getting data, which is related to e-administration processes, is not an easy task because the latter are 
characterized by variability. Indeed, this sub-section aims at extracting and filtering events, in order 
to prepare data (part a of figure 2) for next steps.

The process between citizen and government is a particular example of electronic administration. 
In this sense, figure 4 illustrates interaction process between the citizen and the government that can 
be partially predefined since this interaction between them depends on specific objective, level of 
knowledge and requirements. This can vary the process and produce different user behaviors that 
cannot be predefined. These processes need advanced analysis to understand user’s behavior in their 
interaction with the e-administration services.

As shown in figure 4, the e-administration is a system that allows navigating through large 
volumes of administrative documents created in interaction with other parties. These documents are 
often heterogeneous. The information search activity carried out by users is a process (Cole et al., 
2015) that relies mainly on search engine queries, filters and consulted documents. These elements 
depend on users’ requirements, types of information handling strategies, as well as the way how 
data are indexed. Indeed, the use of a user-guided system, in relation to electronic administration, 
produces many processes with different variations and self-identification. These two characteristics 
describe self-defined BPs.

Generally, as mentioned in (Hai, 2007), electronic services related to e-administration are defined 
in three categories: public, voluntary and private. The private events are with forbidden access 
(accessible only by the data owner) like services between the citizen and the police entity. The public 

Figure 4. Interactions between e-administration and citizens (example of e-government) (Authors’ work)
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and voluntary services are accessible to the data analyst. Therefore, this case study focuses on two 
event logs categories: public and voluntary.

According to the data volume, some filters must be applied to obtain clean and specific data (Cf. 
Table 2). Indeed, the authors use two filters: The first filter aims at ignoring forbidden (Rafiei, 2018; 
Lamghari et al., 2019) noise and chaotic data. The second filter aims at filtering events on specific 
period. A focus is given to the period defined by behaviors with high level of variability. This level 
distinguishes self-defined BPs structure (Cf. Figure 5).

Figure 6. The Processing steps (Source: Authors)

Figure 5. Event logs preparation (Source: Authors’ work)

Table 2. An example of event logs

Case_ID User Date Activity Category

1 Citizen1 2018-05-17|14:23:25 Trustprofil Public

2 Citizen2 2018-05-17|14:24:25 Trustprofil Public

1 Citizen1 2018-05-17|14:24:26 Scroll Public

1 Citizen1 2018-05-17|14:24:28 ResourceAccess Public

3 Citizen3 2018-05-17|14:26:26 request Voluntary
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In this work, the authors use raw data collected by the IR of electronic services. The data contain 
information about a group of interaction between citizens and the e-administration (municipalities, 
prefectures, and ministries) treated in 2018, for which all diagnostic and treatment activities have 
been recorded. The data distinguish two events logs categories that encompass a set of activities for 
both public and voluntary categories. The public category contains 110 traces, 1755 events, while 
the voluntary category contains 39 traces, 1570 events.

Indeed, the logs in the public category contain 110 process instances (traces) of 80 variants. 10 
traces appear more than once while 70 are unique. In the logs of the voluntary category, there are 39 
unique traces. This is an important property of self-defined processes, where recurrent traces are rare 
and not very redundant. Process discovery algorithms have the advantage of finding generic models 
from non-redundant traces. Another important aspect of user self-defined process is the repetition 
of an activity within the same trace. Therefore, long traces can be generated.

Discovery Algorithm Selection and Process Evaluation
After the data preparation step (part a of figure 6), the authors proceed to the process discovery 
algorithms application (part b of figure 6), in order to select the suitable algorithm for the self-defined 
BP representation. Therefore, in this sub-section, the authors compare and evaluate each resulted 
process model with the aforementioned quality criteria (part c of Figure 6), to deduct the most generic, 
representative, and performing one, by necessity defining the suitable discovery algorithm related to 
the e-administration citizen’s behaviors (part b of Figure 2).

Table 3. Fitness, Precision and Generalization for all models

Public Voluntary

Fitness Precision Generalization Fitness Precision Generalization

HM 0.00 0.00 0.00 0.00 0.00 0.00

IM 0.98 0.24 0.99 0.93 0.15 0.99

GM 0.99 0.18 0.99 0.62 0.80 0.99

LBR 0.62 0.38 0.97 0.78 0.19 0.96

SBR 0.90 0.42 0.99 0.96 0.29 0.99

Alpha++ 0.00 0.00 0.00 0.00 0.00 0.00

FM

Source: Authors

Figure 7. Heuristic Miner algorithm applied on the voluntary category (Source: Authors’ work)
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To discover the generic process model and to evaluate its quality, the authors use the ProM tool 
(Van der Aalst et al. 2009). In this sense, the fitness is calculated using the “PNetReplayer” package, 
while the Precision and the Generalization metrics are calculated using the “PNetAlignementAnalysis” 
package.

All discovered models, using HM, IM, GM, LBR, SBR and Alpha++ algorithms, must be 
transformed into a Petri net form, to check model’s conformance. The simplicity of these process 
models is not checked in this paper. To this end, Petri net representations are evaluated with 
three process model quality metrics: fitness, precision, and generalization, while the fuzzy miner 
representation based on two metrics: Node detail and conformance.

The Petri net discovered with the Alpha++ algorithm is an unsound model because it contains 
deadlocks and insignificant traces (few traces are generated and none of them correspond to those 
presented in the logs). The same limitations are observed for the models generated by the HM algorithm 

Figure 10. LBR algorithm applied on the public category (Source: Authors’ work)

Figure 9. Generic Miner algorithm applied on the public category (Source: Authors’ work)

Figure 8. Inductive Miner algorithm applied on the public category (Source: Authors’ work)
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(Cf. Figure 7 and Cf. Table 3). The heuristic model has no initial and final marking, i.e., the model 
has no departure or arrival points, but it is readable. However, it helps understanding links between 
different stages of the studied process.

Figure 8 illustrates the process model discovered from the public logs, using the inductive miner 
algorithm. In this respect, the fitness value is excellent on both public and voluntary logs (more than 
0.90). In addition, the obtained models have a high Generalization and a low precision (Cf. Table 
3). These models can detect the process start and end points. They also ignore unsignificant arcs. 
These arcs show different users processes to accomplish their information-seeking process. This 
inductive algorithm gives a very clear representation of the process that is followed by citizens using 
e-administration services.

The genetic miner algorithm discovers two models, with high level of generalization. The public 
process model, in Figure 9, covers more logs than the voluntary process model. On the other hand, the 
fitness for public logs reaches 0.99, while it is equal to 0.62 for the voluntary category. Consequently, 
the model discovered from the public logs are underfitting (precision=0.18) and equal to 0.80 (for 
the voluntary logs). Therefore, the genetic model has a high level of precision and generalization. 
The inconvenient of these models is the complex representation. They do not allow determining the 
most important links between different activities. Thus, different user’s processes, to achieve their 
objectives, cannot be determined. The resulted model is unreadable.

The LBR models are similar to the inductive models, in terms of the absence of frequency and 
different choices made by users. Also, these models are similar to the flower form i.e. all activities 
are accessible from other states. Moreover, it does not represent initial marking. For both categories, 
the LBR algorithm produces models with high generalization and fitness rates (both cases equal to 
0.7). Therefore, the LBR model (Cf. Figure 10) provides an interesting generalization. The different 
activities are well represented and links between them are very detailed.

The obtained models with the SBR algorithm are discovered based on the Multiset abstraction 
option and the choice of partial traces. The two discovered Petri nets have initial marking. The SBR 

Figure 11. Fuzzy Miner algorithm applied on the voluntary and the public categories (Source: Authors’ work)

Table 4. Measures for the fuzzy miner algorithm

Node details Conformance

Public 1.00 0.80

Voluntary 1.00 0.84

(Source: Authors’ work)
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algorithm also produces two models with a high level of generalization. In addition, replaying logs on 
the obtained models produces sound results for both public and voluntary events (Fitness=0.9). The 
SBR models allow visualizing, very precisely, all different users’ choices, in order to navigate from one 
activity to another. However, the SBR models are failed to represent the suitable generalization metric.

The Fuzzy algorithm is applied on the public and voluntary event logs categories, using the Fuzzy 
Miner package. The Table 4 shows that the visible nodes, found in the two graphs, are important 
and significant. Moreover, replaying logs on obtained models gives sound results (conformance 
0.8). Therefore, these models represent a clear and interesting generalization (Cf. Figure 11). The 
frequency of users’ choices is well presented and provides useful overview of the studied processes.

To conclude, the suitable process discovery algorithm to represent self-defined BPs is the 
Inductive Miner. Also, the Fuzzy Miner algorithm gives sound results. For more simplification, the 
generic model (public and voluntary categories) is converted to the Business Process Model Notation 
(BPMN) form. Thus, the process illustrates 8 activities. The user has two possible ways to consult 
the e-administration services: via scroll mode (search for information) or via the resource access 
mode (search for resource). In addition, the user can be connected using the trust profile (officially 
generated for each citizen). According to the trust profile (citizen ID and objective), the citizen can 
directly contact municipalities, prefectures, or ministries. Then, the citizen can apply for administrative 
certifications. If the request requires the contact of other resources, citizen must go back to the trust 
profile activity (the citizen’s profile against the requested document: owner, participant, intermediate, 
etc.), to get a final decision. Next, the citizen can download the paper for a limited period. Last, the 
citizen can log out.

In this abstracted representation, four XOR gateways are observed, while the deep abstraction 
level generates more process variants (Cf. Figure 9). This puts forward the difficulty of managing 
self-defined BP variability.

Managing Variability Application
After defining the generic self-defined BP, it is important to meet the challenge of the BP variability. 
So in this sub-section, an application of the proposed approach to manage self-defined BP variability 
(part c of Figure 2) is presented.

In this context, process variant configurations through ontologies have been proposed by some 
authors, such as Huang et al. (2013). However, the approach proposed, in this research, enables to 
identify process variants, its characteristics and ontologies from event logs. In this way, the process 
model can be correctly individualized by meeting the requirements of the context application. 
Moreover, event logs reflect what is happening during the citizen and e-administration interaction 
and enable the process variants improvement.

To this end, figure 13 illustrates how the management approach could treat this variability. 
Indeed, a focus is given on the fragment of three XOR gateways, as decisions points’ example of the 
generic process model (Cf. Figure 12).

Figure 12. The generic process model with BPMN representation (Source: Authors’ work)
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First, the decision miner algorithm is applied on the generic model to obtain the decision tree 
of these gateways and to define user’s objectives and requirements ontologies. Based on these two 
elements, process variants are obtained. For instance, a citizen request could be a demand for simple 
or complex documents. The simple request is immediately accepted, while the complex one requires 
the trust profile status verification (owner, intermediate or participant).

According to this status, e-administration services (ministries, prefectures, or municipalities) could 
respond. Side by side, objectives and requirements ontologies examples are defined. The objective 
ontology contains trust profile class (citizen ID), status (owner or participant or intermediate) and 
information as sub-classes (personal information). The requirements ontology encompasses Requests, 
Resources as classes and documents as sub-class.

Source: Authors’ work

Figure 13. selection of the appropriate process variant according to the user’s objective, the user’s requirements, and the engine 
level of knowledge
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In this order, the CPM is obtained. This will add three additional activities: Activity of comparing 
the citizen-ID (verify if citizen origins; rural or urban area in order to contact the suitable area to its 
situation) Activity of collecting status (take into consideration the status verification) and the activity 
of verifying the document type (classify the request).

Next, the CPM is combined with the existing ontologies. This allows the emergence of an advanced 
ontology entitled: level of engine knowledge. Therefore, the correspondence between decisions points 
and different classes and sub-classes of ontologies is observed. In this order, the request class calls 
the document sub-class. This later has two choices called the trust profile sub-class or the resource 
sub-class, etc.

Last, the semantic reasoning based on the CPM and the advanced ontology is applied. This 
operation takes into consideration the inputs information (request of citizen), to recommend unique 
process. For instance, the citizen consults the website via the ResourceAccess option. He is connecting 
via trust profile with a rural ID. The citizen requests a simple document. The citizen can download 
the requested document.

Therefore, the recommended path is: ResourceAccessè Trust Profileè Municipalitiesè Requestè 
Download.

DISCUSSION

In this section, the authors discuss the results of the mining self-defined BP approach application, 
its related works, and its practice implication in two examples.

Results Analysis
In this work, the approach for mining self-defined BPs hands over three main results. These results 
provide a decision-making support for the user and enable to individualize a process model that 
respects the user’s requirements and the internal or external regulations.

The first result represents the suitable process discovery algorithm to generate self-defined 
BP. This phase is similar to the studies of Mans et al. (2008), Augusto et al. (2018) and Jouck et al. 
(2018); the authors applied several process discovery algorithms in order to decide between their 
effectiveness and their limits. In this approach, the authors looked at self-defined processes in the 
context of electronic services, to be more specific, in e-administration. Based on the comparative 
study, the inductive miner achieves the best performance in terms of fitness and precision, while other 
algorithms cannot guarantee soundness. In case of complex events, it is necessary to use a filtering 
method prior to applying existing automated process discovery algorithms.

The second result is about detailing the variation points of the generic process model. In the 
literature, the application of decision miner algorithm is used with variable (Radgui et al., 2013), 
flexible (Dustdar & Hoffmann, 2005) and dynamic (Vasilecas et al., 2016) BPs as the Ad-hoc BPs 
example (Duma & Aringhieri, 2018). The novelty, here, is to introduce decision miner with self-
defined BP.

The third result gives rise to the ontologies definition, to apply semantic reasoning and recommend 
suitable path to users. The authors extract knowledge from event logs to define ontologies, then 
combine them in semantic reasoning based on training samples. The added value over existing studies 
(Detro et al., 2017; De Toledo et al., 2019) is the application in self-defined BP context, respecting 
its different properties, such as: variability, unique paths, different ontologies, etc.

Related Works
In reality, there is one field of research which addresses a comparable problematic, and it is user 
activity analysis. In this field, human computer-interaction is recorded to evaluate the user with 
respect to a specific research interest. The approach is used in several areas such e-commerce and 
online social networks research to create services like recommendation systems (Plumbaum et al., 
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2009) or to analyze social behavior (Dang et al., 2016). There is no case of user activity analysis 
related to electronic administration specifications, using process mining techniques in combination 
with semantic reasoning. Available approaches are used in the academic digital environment as 
e-learning (Jadrić et al., 2020), digital libraries (Shiri, 2018) and in the healthcare domain. These 
scientific studies have been developed between 2008 and 2020.

Firstly, the work of (Diamantini et al., 2016) treats event logs in the domain of health. This paper 
introduces the Behavioral Process Mining approach, which is used to identify significant sub-processes 
from unstructured ones. This approach is based on the use of hierarchical clustering algorithms.

Second, the work in (Liu et al., 2017) uses extended methods, such as analysis sequence, to 
identify student processes in online courses. The objective of this work is to identify the most 
significant students’ behaviors, to help professors, to adapt their teaching strategies to different student 
populations. Likewise, in (Jadrić et al., 2020) demonstrates how to leverage from process mining 
techniques in obtaining smart mobility and higher education. Third, the authors (Liu et al., 2017; 
Song & Günther, 2008) present approaches based on classification techniques, in order to compare 
process discovery algorithms. Fourth, the authors, in (Pérez-Alfonso et al., 2013), demonstrate the 
ability of process mining techniques to examine challenges that none confidential data poses against 
process discovery and conformance checking techniques.

These studies focus mainly on analyzing recorded traces in the context of representing users’ 
behaviors, where the execution represents many repeated or semi-similar traces. While self-defined 
BP is a very particular category of unstructured processes, with complex and unrepeated behaviors, 
that depends on users’ requirements, types of information, handling strategies, as well as the way 
how data are indexed. This demonstrates the originality of this mining self-defined BP approach that 
tackles precise process model representation and decision variability management. Indeed, advanced 
analysis is applied, and more metrics are taken into consideration.

Implication Examples
The mining self-defined BP approach can be applied in systems that require recommendations 
with semantic reasoning. In this regard, the authors present two concrete examples (e-learning and 
crowdfunding), where the implication of practice is clearly explained.

Example 1 (E-learning)

In the context of e-learning, the challenge for users, especially for students, is to be able to easily 
discover and exploit stored digitized resources. The accessibility to these resources usually starts by 
queries and is followed by various interactions with the search engine and the documents themselves. 
The user’s interactions with digital resources presents unstructured processes where the execution 
characterized by high level of variability as unique or unsimilar behaviors. Indeed, they strongly 
depend on users’ requirements, their levels of knowledge, types of information handling strategies, 
as well as the way how data are indexed.

In addition to the basic idea of process mining in detecting, monitoring, and improving real 
processes based on the extracted knowledge from event logs, the mining self-defined BP approach 
can be applied on the problems of education. The main goals in this direction is the personalization of 
educational processes via the recommendation of the best course units or learning paths to students, by 
defining different ontologies: profiles, preferences, or target skills, on which the semantic reasoning 
can be applied. Therefore, the use of the mining self-defined BP approach can improve the quality of 
teaching (Jadrić et al., 2020), i.e., the enhancement of educational process models with performance 
indicators: execution time, bottlenecks, decision point, etc.

Example 2 (Crowdfunding platforms)
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Recent trends in funding takes into consideration the dominant role of crowdfunding (Brem et 
al., 2019) platforms to offer financial step-up to individual, small, or big companies. This is done by 
raising small amounts of money from a large number of people, typically via the Internet. Indeed, 
people are grouped into matrix nominated as “Crowdfunding success matrix”, where each sponsor 
collect donations to finance their project. In this context, the applicability of the mining self-defined 
BP approach can recommend to each sponsor possible future participants. It lies in the possibility of 
proposing all the people who can be invited to join the matrix. It depends on the sponsor behavior, 
which is described by its project subject, location, and date of registration in the platform. Clearly, 
process mining can generate detailed sponsor behavior and define the ontologies that can be combined 
with the reasoning engine to recommend the list of suitable participants to each sponsor behavior. 
This allows increasing the matrix construction according to the time metric, by necessity the project 
can be quickly well financed in a very generous way.

Conclusion
This paper provides an approach for treating related challenges of self-defined BPs, in terms of process 
model’s representation and variability management.

The authors study the applicability of process mining algorithms, to model the generic self-defined 
process model of user’s behaviors in interaction with the e-administration domain (services provided 
by ministers, municipalities/local communities, and prefectures/states.). In these systems, users can 
have diverse ways to perform their research according to their objectives. In this context, users apply 
self-defined processes that may vary in terms of significance, structure, and results.

Besides, the quality of process discovery algorithms evaluation (Alpha++, FM, HM, GM, IM, LBR 
and SBR) is applied with fitness, precision and generalization measures; except for the fuzzy miner 
algorithm the node details and the conformance measures are used.

At this stage, the resulted self-defined process model requires variation point elaboration, to define 
possible choices related to the execution process. To do so, the use of decision miner algorithm is 
required. This algorithm aims at detailing all sub-processes of the generic self-defined process model for 
defining self-defined BP ontologies, which are: user objective, user requirement and engine knowledge 
level. Hence, the configurable process model can be obtained.

Last, the combination between the semantic reasoning through ontologies and the CPM can be 
released, to manage self-defined BP variability. For this purpose, this work aims at selecting the suitable 
process variant according to the user’s objective, requirements, and knowledge level of the used engine 
(training data). To do so, the orchestration between back-end and front-end aspects details the steps that 
must be followed to manage self-defined BPs.

The proposed approach seems to be interested in the way that it takes advantages from the 
combination between process mining and ontologies using semantic reasoning to analyze self-defined 
BPs. This brings new knowledge to the research field in terms of producing a complete scenario of 
the orchestration of existing and new techniques through a defined approach, from the extraction of a 
process model based on event data to recommendations at a later stage. Moreover, the use of the chaotic 
activities’ filters (Tax et al., 2019) positively impacts the quality of discovered process models. Therefore, 
more precise representation is sufficiently training, as trusted data, the ontology’s definition step.

However, some limitations of this approach should be noted. First, the challenge of gathering self-
defined events at runtime must be treated. It could be difficult in the big data context (Bernardi et al., 
2018). However, from a technical standpoint, it still be possible, such is not an easy task because the 
consequences of failing to properly collect data include the inability to answer to research questions, 
inability to validate the results, distorted findings, wasted resources, misleading recommendations and 
decisions, and harm to participants. Hence, intelligent information retrieval systems must be included 
(Croft, 2019). Second, the approach uses supervised learning techniques that focus on labelled samples. 
It would be fair to say that it reflects an ambiguity in the case of no ground truth knowledge about the 
business process, especially in the definition of ontologies (which ontologies are exactly fit). Therefore, 
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an extended approach must be developed using unsupervised learning algorithms. For instance, the 
use of unsupervised clustering (De Souza & Queiroz, 2020) can be profitable in ignoring abstractly 
labeled samples.

As further work, it is important to treat the ability of process mining techniques, in modelling 
uncertain behaviors of self-defined processes, related to the information retrieval systems. This is in the 
objective of achieving the business process maturity (Milanović, 2020) and measuring how effectively 
and efficiently the self-defined BP is working.
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