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ABSTRACT

In this study, the authors consider a switching strategy that yields a stable desirable dynamic behaviour 
when it is applied alternatively between two undesirable dynamical systems. Over the last few years, 
dynamical systems employed “chaos1 + chaos2 = order” and “order1 + order2 = chaos” (vice-versa) 
to control and anti control of chaotic situations respectively. To find parameter values for these kinds 
of alternating situations, comparison is being made between bifurcation diagrams of a map and 
its alternate version, which, on their own, means independent of one another, yield chaotic orbits. 
However, the parameter values yield a stable periodic orbit, when alternating strategy is employed 
upon them. It is interesting to note that we look for stabilization of chaotic trajectories in nonlinear 
dynamics, with the assumption that such chaotic behaviour is not desirable for a particular situation. 
The method described in this paper is based on the Parrondo’s paradox, where two losing games can 
be alternated, yielding a winning game, in a superior orbit.
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1. INTRODUCTION

Optimization problems deal with the situations in which it is mandatory to search for the most 
appropriate solution among all the available solutions of a particular problem in a reasonable amount 
of time. These large scale optimization problems often suffer from the problems of multi-modality, 
non-continuous, dimensionality, non-convex and so-on. So, to tackle these real world complicated 
problems, efficient optimization algorithms are urgently required. Therefore, various evolutionary 
techniques have been developed and applied in recent years which include Genetic Algorithms (GAs), 
Particle Swarm Optimization algorithm (PSO), Differential Evolution algorithm (DE), Ant Colony 
Optimization (ACO), Artificial Bee Colony Strategy (ABC), and BBO (Simon, 2008).

From the last decade or so, the recent advances in theories and applications of nonlinear dynamics 
especially chaotic maps have drawn much attention in many fields of optimization in replacing 
certain algorithm dependent parameters (Jalili, Hosseinzadeh & Kaveh, 2014; Li-Jiang & Tian-Lun, 
2002; Talatahari, Azar, Sheikholeslami & Gandomi, 2012). Chaotic maps have shown increase in 
population diversity and high level of mixing capability. Therefore, replacing a fixed parameter with 
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the chaotic map may provide solutions with higher mobility and greater diversity. Many chaotic maps 
have been used by these meta-heuristic algorithms to improve upon the results of these algorithms 
through proper balance between exploration and exploitation activities (Li-Jiang & Tian-Lun, 2002; 
Talatahari, Azar, Sheikholeslami & Gandomi, 2012; Yang, Li & Cheng, 2007).

Mingjun & Huanwen (2004) presented a novel algorithm by replacing the Gaussian distribution 
of simulated annealing with chaotic initialization and chaotic sequences. The proposed algorithm 
has been validated on typical complex function optimization problems. Alatas, Akin & Ozer, 
(2009) have presented twelve chaos-embedded PSO methods with the use of eight chaotic maps 
and analysed them on the benchmark functions. The simulation results demonstrated the robustness 
of the proposed methods with increased solution quality, i.e., in some cases they improved the 
global searching capability by escaping the local solutions. Alatas (2010a) presented two new ABC 
algorithms in combination with seven chaotic maps for parameter adaptation for improved convergence 
characteristics and to prevent the ABC from plunging into local solutions.

Alatas (2010b) presented seven new harmony search algorithms which employ chaotic maps for 
better convergence characteristics. In this research work, chaotic number generators are employed 
whenever there is a need for it by the classical harmony search algorithm. It has been demonstrated 
that results obtained from these coupling of various areas, like those of harmony search and complex 
dynamics, can significantly improve the quality of results in some optimization problems. Gharooni-
fard et al. (2010) introduced a novel chaos based genetic based algorithm. The proposed approach, 
when applied to both balanced and unbalanced workflow structures, have validated its usage. Basically, 
the proposed approach scatters the solutions among the whole search space by employing the positive 
characteristics of the chaotic variables which together with avoiding premature convergence of the 
solutions also generates superior results within a shorter time.

Talatahari et al. (2012) proposed improved imperialist competitive algorithm using chaotic maps. 
Particularly, the random coefficient vector has been replaced by different chaotic systems and the 
random parameter in the orthogonal vector. Logistic and Sinusoidal maps performed better than the 
other chaotic maps used in this study. Gandomi et al. (2013) presented an upgraded variant of firefly 
algorithm by embedding 12 chaotic maps to tune the attractiveness and absorption coefficients. The 
proposed algorithm applied on the global optimization problems clearly demonstrated that some 
chaotic maps have phenomenally outperformed the results of the original firefly algorithm. Arul 
et al. (2013) proposed to solve the economic load dispatch problem with the application of chaotic 
firefly algorithm. In this paper, chaotic tent map was used to enhance two key parameters of firefly 
algorithm, i.e., randomization and attractiveness. The proposed algorithm demonstrated good 
convergence attributes on all considered economic load dispatch test cases in comparison to all the 
other soft computing techniques employed in the paper.

Fister et al. (2014) presented a randomized firefly algorithm in collaboration with different 
probability distributions and chaotic maps. The experimental results showed improved performance 
of the randomized firefly algorithm when used with probability distributions (e.g., uniform, Gaussian 
and l`evy flights) and chaotic maps (logistic and tent). Wang et al. (2014) presented a hybridized 
version of chaos theory with Krill Herd algorithm for solving optimization problems. Different chaotic 
maps were utilized to regulate the key parameter of Krill Herd algorithm. The experimental results 
on different chaotic Krill Herd variants established the superior performance of the singer map in 
forming the best chaotic Krill Herd. Taking clue from success of these metaheuristic algorithms, 
another popular algorithm in the series of nature inspired algorithms, BBO was introduced.

BBO was an evolutionary optimization algorithm which was given by American scientist, 
Dan Simon in 2008 (Simon, 2008). He invented a new population-based search technique which 
was inspired from the theory of island biogeography known as Biogeography-Based Optimization 
algorithm. The main characteristics of BBO algorithm are migration, speciation and extinction 
of species in a given geographical location. It is comparable to other evolutionary algorithms in 
solving complex optimization problems and afterwards, a lot of improvements have been given in 
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the literature especially when chaos was incorporated in it (Lesmoir-Gordon & Rood, 2014; Saremi 
& Mirjalili, 2013).

So, chaotic migration and chaotic mutation operators are used to increase the population diversity 
to avoid entrapment of the candidate solutions in local optima (Liu et al., 2005). Saremi and Mirjalili 
(2013) used three chaotic maps with four benchmark functions to improve the weaknesses of the 
BBO algorithm. The integration of chaotic maps with the BBO algorithm is another method in 
improving the results of the BBO algorithm. Sine map have successfully improved the results out of 
all the other chaotic maps. Afterwards, they used ten chaotic maps with ten test functions in further 
expansion of their work (Saremi, Mirjalili & Lewis, 2014). They used this technique of integration 
in five different ways. Selection, migration and mutation operators are defined with chaotic maps 
at first, then combination of selection and migration and at the end they employed combination of 
selection migration and mutation strategies. Zhu, Luo and Zhu (2014) proposed improved genetic 
algorithm with four local search operators which are inspired from Dijkstra’s algorithm and carried out 
when the topology changes to generate local shortest path trees which in turn are used to promote the 
performance of the individual in the population for dynamic shortest path problems. The experimental 
results obtained when applied on CEC 2014 test suite adapt rapidly to new environments and produce 
high quality solutions after environmental adjustments. Later on, Guo-ping et al. (2016) used chaotic 
maps with BBO algorithm in finding parameters of discrete chaotic systems with minimal time 
series data and control chaos using constant feedback method. Giri et al. (2017) used chaotic maps in 
improving local and global parameters and have shown increased convergence over the non-chaotic 
approach.

Jalili et al. (2014) used chaotic migration and chaotic mutation operators to solve the problem of 
truss structures with natural frequency constraints which are nonlinear dynamical optimization problem 
with several local optima. Later, Heidari, Mirvahabi & Homayouni (2015) used this technique in 
predicting earthquake-originated slope displacements (EIDS). They used chaotic BBO in combination 
with SVR (Support Vector Regression) to investigate the best possible values of SVR parameters. 
Wang et al. (2016) used this combination of chaos with BBO in centroid based clustering methods. 
They used three types of simulation data in proving the superiority of their approach. Wang and Song 
(2017) used chaotic mapping strategy in combination with BBO optimal migration model which is 
close to the natural law in achieving overall increased convergence velocity and higher optimization 
precision accuracy. To know more about the BBO algorithm, its modifications and its combination 
with other meta-heuristic algorithms, one may go for a comprehensive survey from the last ten years 
prepared by Ma et al. (2017). Some of the other researchers who have contributed to the chaos based 
metaheuristic algorithms have been given in Table 1.

A number of different chaotic maps have been used in the BBO algorithm in the previous 
researches (Saremi & Mirjalili, 2013; Saremi, Mirjalili & Lewis, 2014). In this paper, we propose to 
use the chaotic sequence that is generated by alternating two ordered logistic maps together in the 
superior orbit and then evaluate their performance to ascertain how they behave in increased solution 
space. The paper has been structured as follows. Section 2 explains the motivation and thought 
behind this paper. Section 3 discusses the preliminaries of the BBO algorithm, Parrondo’s paradox 
and its applications in superior orbit. Section 4 describes about the proposed approach of combining 
alternating strategy in superior orbit with chaotic BBO and also the theoretical time complexity of 
the proposed approaches. Section 5 gives the simulation experiments and results analysis followed 
by concluding remarks which are discussed in Section 6.

2. MOTIVATION

The quality of random sequences generated remarkably affects the global optimal solutions of 
metaheuristic algorithms. Previous studies have shown that these random sequences with an advanced 
amount and uniform structure are vital to achieving the globally optimal results with enhanced 
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Table 1. A brief summary of chaos based metaheuristic techniques

Name Method/Algorithm Chaotic maps and Benchmarks/
Datasets Used

Parameters 
Validated

Applications

Yakubu, & Aboiyar 
(2018)

New confusion-diffusion 
cryptosystem which makes use 
of chaos rich Schimizu-Morioku 
system to shuffle the image

Shimizu-Morioka system and a standard 
test digital colour image of size 
256x256, stored with TIF file format 
(Lena_colour.tif)

Histogram uniformity 
analysis, the correlation 
coefficient analysis, 
and the number of pixel 
changing intensity

Image segmentation 
problems

Linglong, Yehui, & 
Changkai (2018)

Conventional fuzzy clustering 
algorithms with global search 
capability of the PSO swarm 
algorithm along with chaotic 
sequences

Logistic map and three test images in tiff 
format are used for image segmentation

Time consumption and 
classification accuracy

Image classification 
problems

Wang et al. (2018) Chaotic starling PSO which 
is inspired from the collective 
responses of the starling birds

Logistic map and benchmark functions 
are Sphere, Griewank, Rastrigin, and 
Rosenbrock and datasets are Data_3_2, 
Data_5_2, Data_10_2, Data_4_2, Iris, 
Wine, Glass, and CMC.

Robustness and 
effectiveness

Optimization 
problems

Bejinariu et al. (2019) PSO, multi swarm optimization 
(MSO), cuckoo search algorithm 
(CSA) and black hole algorithm 
(BHA) are combined with nine 
chaotic maps

Chebyshev, Circle, Gauss, Iterative, 
Piecewise, Sine, Singer, Sinusoidal and 
Tent maps and Medical dataset

Precision of clusters Clustering problems

Gálvez, Cuevas, Becerra 
& Avalos (2019)

Cluster chaotic optimization ICMIC map and 30 benchmark functions 
and 4 engineering design optimization 
problems

Robustness and 
accuracy

Optimization 
problems

Lu et al. (2019) Dynamic swarm firefly 
algorithm in combination with 
chaos theory and max-min 
distance algorithm

Tent map and Iris, Wine, Seed, Glass, 
Hayes-Roth, and New-Thyroid.

Fast convergence, 
accuracy of clustering 
results and avoidance 
of local solutions

Optimization 
problems

Arslan & Toz (2019) Whale optimization algorithm 
along with chaotic maps using an 
adaptive normalization method 
and fuzzy c-means clustering 
algorithm

Chebyshev, Circle, Gauss, Iterative, 
Logistic, Piecewise, Sine, Singer, 
Sinusoidal, and Tent maps and 13 
benchmark functions and Iris, Balance 
Scale, User Modeling, Breast Cancer, 
Seeds, and Fertility dataset

Clustering performance Optimization 
problems

Bouyer & Farajzadeh 
(2015)

A hybrid of k-harmonic means 
clustering algorithm and a 
modified version of PSO 
algorithm along with Cuckoo 
Search Levy Flight algorithm

ArtSet1, ArtSet2, Iris, Wine, Wisconsin 
breast cancer, Ripley’s glass, CMC, 
Thyroid gland, Vowel, Ecoli

Convergence rate, 
efficiency and local 
optima entrapment

Clustering 
optimization problems

Dhanusha, & Kumar 
(2021)

Unsupervised nature inspired 
crow search learning model

Logistic map and “CASAS” and “OASIS” 
datasets

Efficiency of the 
proposed algorithm 
in handling the noisy 
data and indeterminacy 
behaviour of the dataset

Alzheimer disease 
detection

Zhu, Liu, & Wang 
(2020)

Chaotic crow search algorithm 
and improved fuzzy c-means 
clustering algorithm

Chebyshev map and Synthetic and non-
destructing images

Cluster density and 
noise reduction

Image segmentation

Kaur, Pal & Singh 
(2020)

Flower pollination algorithm 
with chaos

Logistic map, Sine map, Dyadic map, 
Chebyshev map, and Circle map and 
Iris, Wine, Breast_Cancer, Glass, 
Balance, Dermatolgy, Haberman, 
Ecoli, Heart, Tae, Spambase, ILPD, 
Leaf, Libras, Qualitative_Bankruptcy, 
Synthetic are the datasets employed.

Execution time, 
stability and 
convergence speed

Optimization 
clustering problems

Singh (2020) Harris hawk optimization 
algorithm in relation with chaotic 
sequences

Logistic map and Shape datasets are 
Aggregation, Compound Path based, 
Spiral, Flame, Jain, R15, D31 and UCI 
datasets are Glass, Iris, Wine, Yeast

Accuracy of cluster 
indices

Clustering 
applications
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accuracy. From a few years, it has been seen that the use of chaotic sequences instead of random 
numbers have been quite instrumental in substantially increasing the performance of the various 
metaheuristic algorithms. This suggests that the use of chaos in metaheuristic algorithms is an area 
of great interest among many researchers from disciplines of varying fields (Pecora & Carroll, 1990; 
dos Santos Coelho & Mariani, 2008; Strogatz, 2018; Jin, Lin & Zhang, 2021).

In the context of ecological modelling, from the last decade or so, the idea of switching strategies 
has been reconsidered in the form of Parrondo’s paradox, where two losing games when combined 
together in a deterministic or random order give a winning game (Danca, Fečkan & Romera, 2014). 
Logistic map, over the years have served as a medium for development and understanding of nonlinear 
dynamics. Therefore, the idea of using alternate discrete dynamics on logistic map may yield favourable 
situations. One of the situations may be when two ordered logistic maps are alternated together, it 
may result in chaotic behaviour which is an ideal condition for achieving higher rates of optimization 
values in optimization problems, i. e., “order1 + order2 = chaos”. For more details, one may refer to 
(Danca, Fečkan & Romera, 2014; Danca & Tang, 2016; Levinsohn, Mendoza & Peacock-López, 2012; 
Maier & Peacock-López, 2010; Peacock-López, 2011). Later on, Rani and Yadav (Rani & Yadav, 
2016; Yadav & Rani, 2015) extended this idea in studying logistic map and its variants in superior 
orbit and given examples of “chaos1 + chaos2 = order” and “order1 + order2 = chaos” (vice-versa).

3. PRELIMINARIES

3.1. Biogeography Based Optimization
The term BBO suggests that it has its roots in the biogeography discipline which concerns with the 
relationships between different species (habitants) living in ecologically distributed habitats in a 
given ecosystem. The evolvement of the species happens in terms of immigration, emigration and 
mutation activities. The drifting of the species to neighbouring habitats takes place through various 
means like air, water, and many other different pathways (Wallace, 2005).

Additionally, in relation to movement of species between different habitats, each habitat is having 
its own set of survival indicators, which is called as Habitat Suitability Index (HSI). In fact, BBO 
being an optimization algorithm in which a habitat is taken as a possible candidate solution. The 
variables that characterize habitats are called Suitability Index Variables (SIVs). The fitness value 
of each habitat is calculated using HSI (MacArthur & Wilson, 2016).

Table 1. Continued

Name Method/Algorithm Chaotic maps and Benchmarks/
Datasets Used

Parameters 
Validated

Applications

Jin, Lin & Zhang (2021) Traditional k-means clustering 
algorithm with chaos based 
artificial bee colony approach

as chaotic map and benchmark functions 
are Alpine, Schwefel 2.22, Schwefel 
2.21, QuarticWN, Quartic, Sum 
Power, Shifted Sphere, Step, Zakharov, 
SumQuares, SumDifference, Schwefel 
2.26, Shifted Rosenbrock, Schwefel 1.2, 
Ackley, Griewank, Rastrigin, Schaffer, 
Rosenbrock, Sphere and datasets are 
Iris, Balance Scale, Glass, Wine, Ecoli, 
Abalone, Musk, Pendigits, SkinSeg., 
CMC, Cancer

Improved accuracy 
of solutions and 
processing efficiency

Clustering 
optimization problems

Fang et al. (2021) Chaotic cross iterative kernel 
k-means enhanced with image 
classification and similarity 
measurements

Cross iterative kernel and PVAG, PVPS, 
and CDD datasets are used

Cluster classification Plant disease image 
identification

Han et al. (2021) Control and anti-control of 
chaos based on largest Lyapunov 
exponent which is moving with 
the method of reinforcement 
learning

Lorènz map and Hènon map and datasets 
are obtained from these two maps for 
control and anti-control of chaos

Lyapunov exponent Identification of 
chaotic dynamical 
systems
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High HSI habitats tend to have higher number of species, while lower HSI habitats attract smaller 
number of species. The HSI of poor habitats can be improved with new features derived from more 
attractive habitats in the evolution process (Simon, 2011). In this approach, the information between 
poor and good habitats is shared through the migration operator. This migration operator is responsible 
for emigration and immigration. This adaptive information sharing between habitats happens due to 
immigration rate λ and emigration rate μ of each habitat which in turn are functions of the number of 
species present in the habitat. These can be calculated according to the following equations as (Du, 
Simon & Ergezer, 2009; Giri et al., 2017):

λ
k

max

I
K

S
= −










1 	 (1)

 µ
k

max

E
K

S
=










	 (2)

where I . is representing the maximum possible immigration rate; E  is showing the maximum 
possible emigration rate; the number of species in the kth habitat is represented by K  and the maximum 
number of species supported by the habitat is represented by S

max
 (Guo-ping et al., 2016; Heidari, 

Mirvahabi & Homayouni, 2015). The pseudo code of the BBO algorithm is following.
Algorithm 1. Pseudo code of BBO algorithm (Saremi, Mirjalili & 
Lewis, 2014) 
Step 1. Initialize the parameters of BBO algorithm.
Step 2. While the termination condition is not satisfied.
Step 3. Initialize the Fitness Function for the Habitats.
Step 4. Calculate the Habitat Fitness Index (HSI) and sort them.
Step 5. Update the S, λ and µ  of each habitat. 
Step 6. For i=1 to maximum number of habitants do
If rand <  λ

i
 then

For j=1 to maximum number of habitants do 
If rand <  µ

j

Select a random habitant in x
i
 and replace it with x

j

End if 
End for 
End if 
End for 
If rand < mutation probability 
Mutate a random number of habitats 
End if 
Elitism 
End while

Fig. 1 illustrates the linear migration model of the BBO algorithm. As it is clear from the figure 
that the emigration rate is zero when there are no species present in the habitat. The emigration rate 
attains the maximum value E  when the species reach to its maximum capacity  S

max
. In the similar 

manner, the immigration rate achieves the maximum possible value I  when the number of species 
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is zero. Also, when the number of species becomes  S
max

, then the immigration rate declines and 
becomes zero. S0 is the equilibrium point, which is achieved when the emigration rate μ becomes 
equal to immigration rate λ (Simon, 2008; Simon, 2011). 

For each individual habitat Hk, the associated probabilistic rate which determines whether to 
immigrate or not is λ

k
. Based on the emigration rate  µ

j
, the emigrating solution Hj is selected 

probabilistically when immigration is selected. During replacement of a copy of SIV σ  from individual 
habitat Hj to Hk, it is said that σ  has immigrated to Hk and emigrated from Hj; that is H H

k j
σ σ( ) ← ( ) . 

Thus migration operator is able to efficiently enhance the global convergence of the algorithm by 
sharing information among individual habitats (Wallace, 2005).

After migration activity, mutation operator is used to further increase the diversity of the available 
population. It is a probabilistic operator which is used to modify the SIV of a randomly selected habitat 
which is habitat’s priori probability of existence and is computed as follows (Heidari, Mirvahabi & 
Homayouni, 2015; Jalili, Hosseinzadeh & Kaveh, 2014).

Figure 1. Immigration (λ) and Emigration curves (μ)
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m m
P

Pk max
k

max

= −










1 	 (3)

where m
max

 represents a user-defined parameter and P P k N
max k
= { } = …max , , , , .,1 2 3  and 

P
k

 shows the probability that the habitat has exactly k  number of species.
Another feature of BBO is that the habitats having higher HSI are kept as elites and moved from 

the previous generation to the next generation. It is meant therefore that the new habitats of current 
iteration are combined with some elites of the prior generation. After combination, the higher HSI 
are selected for creation of newer generation of population. In this study, the probability of mutation 
rate is set to 0.005 (MacArthur & Wilson, 2016; Simon, 2008; Simon, 2011).

3.2. Parrondo’s Paradox
It is a paradox in game theory given by famous physicist Juan Parrondo in the year 1996. As per this 
paradox, when two simple games with negative gains are played together alternatively may produce 
a game with positive gains in a different deterministic or random manner (Danca, Fečkan & Romera, 
2014). In 2001, it was introduced to the combination of two unstable systems A1 and A2 to study 
the dramatic change in the properties of the systems when they are combined. Initially, the authors 
considered the traditional idea of Parrondo’s paradox of “losing1 + losing2 = winning” and applied 
it on different kinds of linear systems to show the “instability1 + instability2 = stability” (Danca & 
Tang, 2016; Mendoza et al., 2018).

Two different discrete dynamics A1 and A2 are considered and the alternation of combination of 
the dynamical systems A1 and A2 is discussed as follows:

x0 AH0x1 AH1x2 AH2x3 ...,	

where H is describing a deterministic or random law which allocates a value of 1 or 2 to every 
member of the sequence {0, 1, 2……}, and {x0, x1, x2...} are values given to a variable x which is 
representing the physical system. The two individual dynamics A1 and A2 may be chaotic but when 
combined periodically in an alternated way � ..AAAAAA AA

1 2 1 2 1 2 1 2
…… = ( ) , may produce an ordered 

sequence and vice versa. The phenomenon thus created can be stated in terms of “chaos1 + chaos2 
= order” and “order1 + order2 = chaos” (vice-versa) (Levinsohn, Mendoza & Peacock-López, 2012).

Definition: Alternated System: Let us consider two different dynamics A1 and A2, where A1:
�x x c
n n+ = +
1

2
1
, A2: �x x c

n n+ = +
1

2
2

, and the alternation of combination of two dynamics A1 and A2 
is defined as:

x
x c whennisodd

n
n

+ =
+

1

2
1
, ,

.
,

x c whenniseven
n
2

2
+ ����������������








	 (4)

where x c c c, , ,
1 2

 represent the real numbers. As it is a well-known fact that x x c
n n+ = +
1

2  is 
topologically conjugate to the logistic map x rx x x

n n n n+ = −( ) ∈ 

1

1 0 1, , ,  it is derived that there 
may be a situation that shows “chaos1 + chaos2 = order” and also “order1 + order2 = chaos” which 
may arise in the logistic map. For more details on the literature on Parrondo’s paradox, one may refer 
to (Danca, Fečkan & Romera, 2014; Danca & Tang, 2016; Levinsohn, Mendoza & Peacock-López, 
2012).
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3.3. Superior Orbit (SO)
Feedback processes discovered by Isaac Newton and Gottfried W. Leibniz have found tremendous 
applications in nonlinear systems in the form of dynamical laws (Ashish, 2014). The feedback process 
is the process in which the output of the first iteration is given to the second iteration and the process 
is repeated until some given number of iterations. It is simple in principle as the same process is 
repeated again and again. Mostly, two types of feedback machines are used.

3.3.1. One-step Feedback Machine (Picard Orbit)
Definition: (Picard Orbit): Let A be a non-empty set of numbers and f A A: → . For a point, x0 in
 A , the Picard orbit (generally called orbit of f ) is the set of all iterates of the point x0, that is,

O f x x x f x n
n n n

, : , , , . .
0 1

1 2( ) = = ( ) = …{ }− 	 (5)

The orbit O f x,
0( )( )  of f  at the initial point x

0
 is the sequence f x

0( ){ }�(Ashish, 2014; Goel, 
2011; Negi & Rani, 2008a and 2008b).

3.3.2. Two-step Feedback Machine (Superior Orbit)
Two-step feedback machine was introduced by Rani in fractal and chaotic models until recently (Negi 
& Rani, 2008). It became the reason for generation of superior fractals. In this approach, a new number 
is generated after the insertion of two numbers, and the formula for computing the new number is
� ,

�
x g x x
n n n+ −= ( )1 1

.
Definition: (Superior Iterates): Let A be a subset of real numbers and � :f A A→ . For �x A

0
∈ , 

construct a sequence x
n{ }  in the following manner:

x f x x
1 1 0 1 0

1= ( )+ −( )β β ,	

x f x x
2 2 1 2 1

1= ( )+ −( )β β 	

x f x x
n n n n n
= ( )+ −( )− −β β

1 1
1 	 (6) 

where 0 1< ≤�β
n

 and β
n{ }  is convergent away from 0 (c. f. Negi & Rani, 2008a).

The subset A  may also be taken as a subset of complex numbers without loss of generality as 
depicted in the above definition. The sequence constructed above x

n{ }  is a superior sequence of 
iterates or superior orbit, denoted as SO f x

n
, ,
0
β( ) . . Superior orbit at β = 1  reduces to O f x,

0( )  
(see above definition of Picard orbit). The definition is originally given by W. R. Mann (1953). M. 
A. Krasnosel’skii (1955) gave superior iterates for β

n
= 0 5. . Because of the superset of solutions 

that are generated as compared to Picard iterates by Mann iterations, Rani and Kumar renamed them 
as superior iterates (Ashish, 2014; Goel, 2011; Singh, Mishra & Sinkala, 2012).

A number of superior fractal structures have been developed by Rani along with other researchers 
for β β

n
n= = ……, , ,1 2  for various values of β  (Negi & Rani, 2008a; Negi & Rani, 2008b; Negi, 

Rani & Mahanti, 2008).
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4. ALTERNATED SUPERIOR CHAOTIC BBO (ASCBBO) 
AND SUPERIOR CHAOTIC BBO (SCBBO)

The alternate superior chaotic mapping strategy is employed to realize the mutation operator in BBO 
algorithm and we call the proposed algorithm as alternated superior chaotic BBO, abbreviated as 
ASCBBO algorithm. The integration of alternated chaotic BBO in superior orbit with mutation can 
help in improving the detection capability (exploitation) by the increased solution set with these kinds 
of combinations. The ASCBBO is used with different standard test functions which are Sphere, 
Schwefel, Rosenbrock, Quartic, Penalty #1, Penalty #2, Griewank, Fletcher, Ackley and Rastrigin 
(Saremi, Mirjalili & Lewis, 2014). A habitat for migration is selected on probability which is defined 
by selection operator (λ) and after the selection of a habitat; emigration is performed with emigration 
probability (μ) as can be seen from Fig. 1. The chaotic sequence C(x) is generated when we iterate 
the logistic map f x r x x( ) = −( )* * 1  in an iterative manner by taking the values of r as 4.76 and 
4.8034 in a superior orbit with β = 0 7.  in odd and even iterations respectively. These values have 
been obtained from the work of Yadav (Yadav & Rani, 2015). The logistic map shows ordered (non-
chaotic) behaviour when these values are iterated individually. However, when these values of ‘r’ are 
iterated alternatively, then the map produces chaotic oscillations, i.e., order1 + order2 = chaos. In 
case of superior chaotic BBO (SCBBO), the value of r is taken as 4.1 and β = 0 9.  in a superior orbit 
as given by Rani and Agarwal (2009). The mapping of chaotic sequences to mutation operators is 
described further as follows.

4.1. Chaotic Mapping of Mutation Operator
When the selection and emigration of the habitat is done, then the next task is to mutate the inhabitants 
so that the stagnation of the species is removed by altering certain parameters of the species to further 
diversify the population in order to get more areas of favourable solution space for enhancement of 
the required procedure. The chaotic values are used to describe this mutation probability as described 
below.

for i = 1 to number of habitants at k-th habitat
if C(x) < Mutation_rate (k) then
Mutate i-th habitant
end if
end for
Here, C(x) is representing the chaotic values of the map at tth iteration and Mutation_rate (k) 

is illustrating the mutation probability of kth habitat. The chaotic mapping gives the values for the 
emigration operators which are in the range [-1, 1] and then are normalised in the range of [0, 1] 
(Saremi, Mirjalili & Lewis, 2014). The investigation of BBO and ASCBBO under the influence of 
chaotic maps is explained in the following section. The initial value of ASCBBO is kept at 0.7 as in 
case of CBBO (Saremi, Mirjalili & Lewis, 2014) as it holds great significance in case of nonlinear 
chaotic situations.

The comparative study of all the graphs given in Fig. 2 clearly indicates that in case of superior 
logistic map, the chaotic data points are densely populated and more uniformly distributed which 
may help in finding more global optimal values as the solution space is increased for the candidate 
particles. In case of alternated superior chaotic logistic map, two chaotic maps are used in an alternate 
manner in the increased solution domain of finding a possible global optimal point which further 
increases the possibility of avoidance of the candidate solutions in local optimal points as the increased 
complexity in the alternated chaotic maps further reduces the biasness in input data.

4.2. Theoretical Time Complexity of BBO, CBBO, ASCBBO, and SCBBO
As compared with other metaheuristic algorithms, BBO works by sharing information among candidate 
solutions which makes it suitable for similar kind of solving problems that the other algorithms are 
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used for, such as when applied on high dimensional data. Hence, the computational cost of BBO 
and other similar algorithms will be the same as they heavily rely on the evaluation of the objective 
function. BBO uses tournament selection for the selection operator which usually demands O(N) 
time complexity, where N is the number of the habitats. For migration operation, a habitat having 
D number of SIVs demands O(ND + O (f)) time complexity where O(f) is the time complexity for 
computing the fitness function f. Therefore, each generation needs O(N (ND + O (f))) time for its 
computation. Constant time is required when the neighbourhood HSI is selected. Hence, when M 
number of iterations are used in an experiment, then the required time becomes O(NM (ND + O (f))). 
Following observations are made for the general time complexity of BBO algorithm.

1. O(f) is considered much less as compared to N2, then the overall time complexity of the BBO 
algorithm becomes O(M N2D).

2. When D is insignificant compared to N, then the complexity of BBO takes the form as O(M N2).

In essence, whenever a habitant in a habitat immigrates, then the emigration vector is computed 
which depends upon the local best (local population) and global best (whole population), based on 
the rate of migration (Giri et al., 2017). Also in case of CBBO, SCBBO and ASCBBO, different 
chaotic sources are used for the selection, migration and mutation of the habitants which also require 
constant time as the case with the random. Hence, the time complexity of CBBO, SCBBO, and 

Figure 2. Chaotic data plots of different chaotic maps
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ASCBBO is equivalent to BBO. Thus, for small number of SIVs, the overall time complexity of all 
the versions of BBO is O(M N2).

5. SIMULATION EXPERIMENTS AND RESULTS ANALYSIS

Ten standard benchmark functions and CEC 2014 test suite (in 50 dimensional space) have been 
used to test the performance of the ASCBBO and SCBBO algorithms. These test functions have been 
categorized into two groups namely unimodal and multimodal test functions. As the name specifies, 
unimodal functions have single optima in them which makes them best suited for the exploitation 
related activities. On the other side, multimodal functions have multiple optimal points which create 
challenges in finding the most appropriate optima in these kinds of test functions. Because one of 
them is a global optima and rest all are the local ones. The avoidance of local optimal points is the 
characteristic property of any metaheuristic algorithm in finding global values. Hence, the multimodal 
functions are given the task of exploring more region(s) in order to find the global optimal points. Thus, 
this piece of research work is applicable to both single objective and multi-objective test problems. 
It is to be noted that all the test functions used in this study have the minimal value 0 except for 
Schwefel function which is having a minimal value as -12569.5. Table 2 shown below is describing 
the various properties of the different unimodal and multimodal functions. The dimension of these 
functions is shown as Dim which gives the count of various parameters used in the function. Range 
is depicting the boundary of the search space of the test function (Saremi, Mirjalili & Lewis, 2014). 
Various initial parameters used for the BBO, CBBO, SCBBO, ASCBBO, Grey Wolf Optimizer (GWO), 
Sine Cosine Algorithm (SCA), Ant Lion Optimizer (ALO), Genetic Algorithm (GA), Differential 
Evolution (DE), Ant Colony Optimization (ACO), Gravitational Search Algorithm (GSA) approaches 
are listed in Table 3.

5.1. Performance Analysis of ASCBBO and SCBBO
All the simulation experiments have been done in Matlab R2016a. The proposed algorithms are run 
ten times and the average is computed. Each time 500 iterations are being performed for the mutation 
operator on simple BBO and ASCBBO. In case of CEC 2014 benchmark functions, 1000 iterations 
have been carried out on each and every algorithm. The best values for average (mean) and standard 
deviation obtained in the last iteration for both the operators are observed and depicted in Tables 4 
and 5. Notice that the ASCBBO shows much improvement in mean optimal values in both the cases 
as listed in Tables 4 and 5 when compared to CBBO (Saremi, Mirjalili & Lewis, 2014). Also the 
standard deviation values are showing the same trend.

In case of plain BBO operator as shown in Table 4, Penalty #2 test function gave the best values 
as compared to other benchmark functions. The other test functions Penalty #1, Fletcher, Rosenbrock, 
Schwefel, Sphere, Rastrigin, Griewank, Ackley and Quartic follow the descending sequence in terms 
of mean values. Same trend is also repeated by standard deviation values except for Griewank and 
Penalty #2 test functions. The decreasing order of standard deviation values is Penalty #1, Fletcher, 
Rosenbrock, Schwefel, Rastrigin, Sphere, Quartic, and finally Ackley test function.

The mutation operator shown in Table 5 follows the descending sequence of mean values as 
Penalty #1, Penalty #2, Fletcher, Rosenbrock, Schwefel, Griewank, Sphere, Quartic and Ackley test 
functions except in case of Rastrigin. In the same manner, Penalty #2 predicted the best standard 
deviation value in case of mutation probability followed by Penalty #1, Fletcher, Schwefel, Rosenbrock, 
Griewank, Sphere, Quartic and in the end Ackley test function except Rastrigin test function.

In case of CEC 2014 test functions also, when comparison has been made with state of the art 
algorithms like Grey Wolf Optimizer (GWO), Sine Cosine Algorithm (SCA), Ant Lion Optimizer 
(ALO), Genetic Algorithm (GA), Differential Evolution (DE), Ant Colony Optimization (ACO), 
Gravitational Search Algorithm (GSA), our methods (ASCBBO and SCBBO) have performed 
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phenomenally well and outperformed all the compared algorithms with much less mean and standard 
deviation values as given in Tables 6 and 7.

Thus from above discussion, it is quite clear that ASCBBO and SCBBO have given much improved 
results as compared to CBBO (Saremi, Mirjalili & Lewis, 2014). These methods can also be employed 
on parameter optimization for the prediction of a number of practical problems like software testing, 
software fault prediction, Glaucoma, Covid-19, glucose, mammography, cardiac problems, and plant 
leaf disease etc. (Khanna, Chauhan & Sharma, 2019; Khanna et al., 2019; Singh, Khanna & Garg, 
2020; Thawkar, Singh & Khanna, 2021; Singh, Garg & Khanna, 2021)

5.2. Qualitative Analysis
Line graphs have also been plotted in the two cases of BBO and its mutation probability for computing 
the qualitative analysis of ASCBBO algorithm as given in Figs. 3 and 4. In each of the graphs shown 
in both the figures, the mean values are plotted against the number of iterations with respect to the 
particular benchmark function. All the graphs show higher rates of convergence in both the cases as 
compared to CBBO with respect to given test functions once again proving the superior performance 
of ASCBBO algorithm. Also, the convergence plots and box plots (Anova test) given in Figs. 5 and 6 
clearly indicate the superior performance of our techniques on CEC 2014 test functions as they have 
been able to avoid local optimal solutions with high speed and accuracy of solutions.

5.3. Statistical Testing
Statistical tests should be conducted on the meta-heuristic algorithms to test their performance as 
proposed by Derrac et al. (2011). Mere computing the mean and standard deviation values are not 
enough in terms of overall inductiveness of the validity of the performance of these algorithms. 
Therefore, a nonparametric statistical test, which is Wilcoxon’s rank sum test, (Wilcoxon, 1992) 
should be carried out to test the validity of the metaheuristic algorithms separately. The significance 
level of the test is kept at 5%. It is a general practice that the p values less than 0.05 are considered 
to be sufficient enough against the theory of null hypothesis. Also, the p values depicted in Tables 3 
and 4 in both the cases have proved the validity of the ASCBBO and SCBBO algorithms.

6. CONCLUDING REMARKS

In this paper, the use of chaotic sequence in an alternated manner in superior orbit is used as a source of 
population initialization. These have been used in selection, emigration, mutation and their combination 
stages. Chaotic maps in superior orbit produce more uniformly distributed chaotic sequences than used 
in chaotic BBO. Use of two chaotic attractors alternatively increase the complexity in chaotic sequences. 
Both the ways reduce biasness in the input chaotic data which helps the candidate solutions to arrive at 
global optimal points without being fallen in local optima and stuck there with much improved speed 
and precision of resultant solutions.

In all the cases, ASCBBO and SCBBO have been able to achieve much higher levels of optimization 
in comparison to CBBO. All the state of the art algorithms used in case of CEC 2014 test functions namely 
GWO, SCA, ALO, GA, DE, ACO and GSA are compared on the parameters: mean, standard deviation 
and p value test. In some cases, the dip in values of optimal points in case of ASCBBO and SCBBO 
approaches are multi time than the compared algorithms. Thus, both theoretically and statistically, we 
have proved categorically that the methods suggested in this paper have been able to avoid premature 
convergence and achieved higher solution accuracy along with enhanced performance against some of 
the well-known metaheuristic algorithms which are trending recently (GWO, SCA, ALO, GSA) and 
also the most popular previous algorithms (GA, DE, ACO).

Future Work: In future, it is going to be an interesting phenomenon to deploy this technique on 
real world engineering optimization problems and other combinatorial optimization problems which are 
inherently complex in nature. Also, this technique could be applied on other metaheuristic algorithms 
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like Cuckoo Search, Grasshopper Optimization Algorithm, Whale optimization Algorithm, Salp Swarm 
Optimization Algorithm, Elephant Herding Optimization Algorithm and the like ones.

Table 2. Various benchmark functions used in the study

Sr. No. Benchmark 
Functions

Function Formula Dim Range Optimal 
Value 
(fmin)
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Table 3. Initialization of parameter values for BBO, CBBO, SCBBO, ASCBBO, GWO, SCA, GSA, ACO, GA, DE and ALO

Parameter initializations for BBO, CBBO, SCBBO and ASCBBO Value

Size of population 30 (50 in CEC 2014 test 
problems)

Habitat modification probability 1

Immigration probability bounds per gene(inhabitant) [0, 1]

Step size for numerical integration of probabilities 1

Maximum immigration (I) and Maximum Emigration (E) 1

Probability of Mutated inhabitants 0.005

Parameter initializations for GWO Value

a (Area Vector) 2

r1, r2 (Random Vectors) [0,1]

Size of population 50

Parameter initializations for SCA Value

Size of population 50

a (Constant) 2

Parameter initializations for GSA Value

Elitist Check (No. of fittest agents after stopping criterion) 1

Rpower (Exponent of distance between agents) 1

Min_flag (1: minimum ; 0: maximum) 1

Size of population 50

Parameter initializations for ACO Value

Pheromone update constant 1

Initial pheromone 10

Pheromone sensitivity 0.3

Visibility sensitivity 0.1

Size of population 50

Parameter initializations for GA Value

Size of population 50

Pc (Crossover probability) 0.95

Pm(Mutation probability) 0.001

Er (Elitism) 0.2

Parameter initializations for DE Value

Size of population 50

Lower bound of scaling factor 0.2

Upper bound of scaling factor 0.8

PCR (Crossover probability) 0.8

Parameter initializations for ALO Value

Size of population 50
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Table 4. Performance comparison of ASCBBO on simple BBO operator

Name of the Function Criteria CBBO 
(Saremi, Mirjalili & 
Lewis, 2014)

ASCBBO

Sphere Mean 
Standard Deviation (SD) 
P-Value

50.19608 
17.88657 
0.427355

37.17486136 
10.25978 
0

Ackley Mean 
Standard Deviation (SD) 
P-Value

16.93064 
1.259177 
0.212294

15.75670808 
0.844094 
0

Griewank Mean 
Standard Deviation (SD) 
P-Value

142.9973 
28.83283 
0.57075

140.2411749 
29.65174 
0.208754

Fletcher Mean 
Standard Deviation (SD) 
P-Value

828,365.4 
189,001 
0.001315

603882.8685 
145286.3 
3.2819E-205

Schwefel Mean 
Standard Deviation (SD) 
P-Value

5614.696 
583.4996 
0.241322

5468.771204 
446.447 
0

Penalty #1 Mean 
Standard Deviation (SD) 
P-Value

18,595,594 
13,784,289 
0.73373

11,690,879.79 
8870459 
3.81152E-73

Penalty #2 Mean 
Standard Deviation (SD) 
P-Value

63,937,965 
24,464,971 
0.307489

55,712,723.73 
25,818,606 
1.02433E-91

Rosenbrock Mean 
Standard Deviation (SD) 
P-Value

1,331.466 
691.616 
0.307489

1062.02699 
508.3196 
1.1419E-203

Quartic Mean 
Standard Deviation (SD) 
P-Value

9.618467 
6.949806 
0.57075

8.716411017 
5.086379 
9.6298E-180

Rastrigin Mean 
Standard Deviation (SD) 
P-Value

135.3346 
29.70814 
0.000246

131.0232107 
17.31392 
0
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Table 5. Performance comparison of ASCBBO on mutation operator

Name of the Function Criteria CBBO 
(Saremi, Mirjalili & 
Lewis, 2014)

ASCBBO

Sphere Mean 
Standard Deviation (SD) 
P-Value

57.38914 
18.31544 
0.088973

50.1449926 
17.44709 
2.7128E-119

Ackley Mean 
Standard Deviation (SD) 
P-Value

16.71692 
0.909707 
0.520523

16.4889305 
0.444036 
0

Griewank Mean 
Standard Deviation (SD) 
P-Value

177.019 
48.90111 
0.037635

160.480161 
41.94935 
3.6301E-228

Fletcher Mean 
Standard Deviation (SD) 
P-Value

802,456 
263,524.6 
0.021134

684040.4607 
143144 
2.083E-118

Schwefel Mean 
Standard Deviation (SD) 
P-Value

5,792.544 
677.7967 
0.140465

5686.935398 
400.0152 
3.8178E-291

Penalty #1 Mean 
Standard Deviation (SD) 
P-Value

22,986,907 
10,639,030 
0.121225

13,494,022.35 
6080759 
3.09833E-61

Penalty #2 Mean 
Standard Deviation (SD) 
P-Value

64,692,549 
30,294,479 
0.57075

59643824.68 
21092195 
4.50373E-98

Rosenbrock Mean 
Standard Deviation (SD) 
P-Value

1,378.675 
655.9377 
0.161972

1021.611419 
403.1622 
9.083E-137

Quartic Mean 
Standard Deviation (SD) 
P-Value

11.30964 
4.400924 
0.241322

10.26638274 
3.569843 
6.6395E-267

Rastrigin Mean 
Standard Deviation (SD) 
P-Value

77.96833 
12.21388 
0.57075

149.3794566 
21.35098 
0
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Table 6. Performance comparison of GWO, SCA, ALO, GA and DE algorithms on CEC 2014 test suite

Criteria Fn’s GWO SCA ALO GA DE
Mean 
SD 
P-Value 
Best Value

F1 19182560.98 
1634289.478 
3.66049E-58 
18026943.81

344799637.4 
344799637.4 
2.097E-305 
308735840

36745224.63 
6728505.317 
2.27658E-58 
31987452.89

325060465.3 
150130056.4 
1.15518E-06 
218902484.4

413415603.7 
101727229.1 
3.77609E-88 
341483590.1

Mean 
SD 
P-Value 
Best Value

F2 106497255.4 
0 
1.08637E-49 
106497255.4

258967730 
0 
0.5 
258967730

37690508.33 
0 
7.93186E-59 
37690508.33

265040650.9 
0 
1.11826E-15 
265040650.9

395816684.8 
0 
7.0177E-124 
395816684.8

Mean 
SD 
P-Value 
Best Value

F3 78602686.25 
31730057.75 
1.44955E-79 
43725267.89

311450961.4 
65311605.67 
0 
250994542.5

21456174.11 
8954463.125 
1.52242E-84 
11144127.91

277242810.6 
123952216.2 
1.50701E-13 
184793125.2

398201442.7 
19673665.33 
1.153E-182 
385962417.2

Mean 
SD 
P-Value 
Best Value

F4 23155981.89 
0 
7.46102E-36 
23155981.89

398227090.1 
0 
4.01337E-80 
398227090.1

24728929.87 
0 
2.3917E-48 
24728929.87

109886137.7 
120430478.3 
4.94624E-30 
24728929.87

486477111.8 
0 
3.6446E-138 
486477111.8

Mean 
SD 
P-Value 
Best Value

F5 30236109.49 
26829055 
0.63689855 
7517930

272283861.6 
86184274.7 
0 
156021286

29867995.33 
4224313.46 
0 
24382449.9

299915987.4 
88761120.9 
0.29335765 
217403686.2

421926579.8 
44526977.5 
0.00036235 
362787480

Mean 
SD 
P-Value 
Best Value

F6 65558965.12 
26275801.93 
0.016526431 
31448013.78

372280262.9 
33920574.26 
0 
351312632.7

36193407.86 
7075680.726 
0 
28175185.48

347946851.4 
58123140.63 
0.255260992 
297678679.9

454450366.1 
121434239.3 
0.000996497 
277683935.9

Mean 
SD 
P-Value 
Best Value

F7 38798267.35 
36446207.59 
0.01549549 
16773128.53

362375662.3 
82496909.34 
0 
267871472.7

31020496.82 
10440812.45 
1.36651E-84 
24421416.16

412494075.5 
122748651.3 
1.45104E-18 
272983669.5

508989497.7 
36702429.81 
3.4007E-130 
468229555.3

Mean 
SD 
P-Value 
Best Value

F8 92064101.26 
27585129.3 
1.7121E-119 
64626242.67

301361308.7 
80726961.74 
0 
194131013.6

27806185.87 
7936210.397 
1.7219E-100 
20215308.44

251692757.7 
76949536.28 
2.5349E-18 
201219765.1

426073341.2 
49593096.07 
3.7994E-225 
372667030.6

Mean 
SD 
P-Value 
Best Value

F9 33759495.51 
21840960.33 
9.7753E-195 
10090118.93

287682281.9 
106119692.9 
0 
156021285.6

32407103.99 
7937057.089 
1.6131E-166 
24382449.95

340944716.4 
86848646.6 
5.31973E-18 
218005377.8

404164883.2 
100695458 
0 
277683935.9

Mean 
SD 
P-Value 
Best Value

F10 50658045.2 
38054802.87 
1.3186E-117 
16773128.53

359609904.9 
67585188.39 
0 
267871472.7

32162399.94 
8825501.719 
1.8871E-112 
24421416.16

383790226.6 
115500929.4 
1.45025E-21 
272983669.5

504904159.7 
31061318.65 
3.5832E-166 
468229555.3

Mean 
SD 
P-Value 
Best Value

F11 85957097.24 
36836888.01 
3.1885E-128 
40198226.59

288312248.1 
77790816.23 
0 
194131013.6

24820586.68 
6789542.008 
4.8847E-106 
20215308.44

304244587.6 
110285090.7 
7.92746E-18 
201219765.1

431683252.1 
58978580.02 
6.4205E-231 
372667030.6

Mean 
SD 
P-Value 
Best Value

F12 38386823.52 
18440532.33 
1.05715E-58 
23601062.25

341143347 
103261364.3 
0 
231220358.3

26178497.54 
10573734.22 
7.9729E-144 
16191941.26

172302412 
93183422.59 
2.76862E-28 
7105940.56

349352644.9 
95270338.77 
9.8433E-253 
258258757.2

Mean 
SD 
P-Value 
Best Value

F13 85533779.63 
65486951.33 
5.3242E-104 
25454062.19

299214208.9 
77806468.38 
0 
212170539.7

22165048.21 
9312152.925 
2.7212E-100 
10146554.65

279205562.1 
66847690.19 
1.0131E-14 
244959239.3

358770541.6 
49522989.25 
2.9977E-227 
301109701.5

Mean 
SD 
P-Value 
Best Value

F14 42106126.06 
34778442.87 
6.278E-134 
18065763.12

412616910 
104124729.6 
0 
264136501.4

28240536.44 
6921833.111 
9.1913E-100 
24558814.18

184242003.7 
136842993.8 
1.50263E-44 
12001742.12

373820106.1 
36441624.75 
2.6136E-280 
347979254.3

Mean 
SD 
P-Value 
Best Value

F15 52311091.57 
21589759.35 
2.87306E-97 
28290051.43

373394793.1 
99777594.86 
0 
288350619.3

33514420.4 
9500126.97 
1.466E-119 
21470634.55

326770077.5 
138325062.2 
1.12175E-16 
182766458.3

411001868.4 
40867633.63 
2.9247E-177 
357361676.4

continued on next page
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Table 6. Continued
Criteria Fn’s GWO SCA ALO GA DE
Mean 
SD 
P-Value 
Best Value

F16 92068497.45 
64261783.93 
2.239E-108 
30226702.53

472850903.5 
120909437.6 
0 
352481422.8

30601401.58 
10304706.14 
6.7248E-124 
16302551.27

427074531.3 
109503838.9 
7.59078E-28 
314957781.2

407214885.9 
52649178.12 
0 
314777995.7

Mean 
SD 
P-Value 
Best Value

F17 90978158.14 
97170804.05 
1.4422E-99 
19445735.05

411101836 
133106990.4 
0 
282933253

38577894.23 
8756314.761 
1.22937E-89 
29995242.01

371047709.7 
131573039.5 
1.54419E-10 
236028512.2

431144746 
16207649.75 
2.1978E-191 
415277763.2

Mean 
SD 
P-Value 
Best Value

F18 53189723.43 
30839178.83 
4.32731E-80 
18026943.81

346722064.7 
35221868.93 
0 
308735840

36276080.12 
6719571.732 
1.19544E-83 
28696521.5

404730981.1 
69236836.84 
1.12861E-14 
326160759.2

348797777 
27394820.71 
1.3457E-197 
325802418.3

Mean 
SD 
P-Value 
Best Value

F19 46218374.45 
23070217.38 
3.5336E-104 
20338178.15

326676176.1 
58379900.3 
0 
264854769.6

32817860.06 
1375388.948 
5.1342E-73 
31987452.89

218103849.5 
754235.7175 
3.36826E-10 
217403686.2

444636491.6 
70883644.63 
4.859E-159 
362787479.8

Mean 
SD 
P-Value 
Best Value

F20 40268830.76 
31831306.07 
3.1582E-209 
10090118.93

304973854.5 
108487661.3 
0 
156021285.6

33112592.34 
8054466.281 
3.9519E-157 
24382449.95

356879376.8 
62568066.15 
5.04237E-19 
280204564.2

430137016.4 
104046553 
3.8428E-291 
277683935.9

Mean 
SD 
P-Value 
Best Value

F21 61553764.42 
54376477.32 
3.70721E-93 
16773128.53

320314500.1 
107766996.3 
0 
194131013.6

28319199.72 
10092657.41 
2.9063E-107 
20215308.44

400958424.2 
102845057.9 
7.01292E-20 
272983669.5

482047506.3 
61656542.07 
3.9001E-188 
401221532

Mean 
SD 
P-Value 
Best Value

F22 71336044.44 
27436897.93 
1.9706E-140 
40198226.59

319705993 
56246896.25 
0 
282114081.7

26355679.42 
7416721.822 
4.49493E-84 
21695671.29

283542293.3 
125190622.3 
4.64907E-16 
201219765.1

441837158.9 
67816652.98 
1.2288E-176 
372667030.6

Mean 
SD 
P-Value 
Best Value

F23 43449356.13 
23071031.75 
3.72553E-51 
23601062.25

346725494.8 
104386839.1 
8.1454E-300 
231220358.3

24514071.49 
11514391.47 
5.84899E-88 
16191941.26

207890117.7 
15903623.77 
8.91914E-14 
196467293.5

372127271.7 
113870824.4 
8.3882E-137 
258258757.2

Mean 
SD 
P-Value 
Best Value

F24 85533779.63 
65486951.33 
5.3242E-104 
25454062.19

299214208.9 
77806468.38 
0 
212170539.7

22165048.21 
9312152.925 
2.7212E-100 
10146554.65

279205562.1 
66847690.19 
1.0131E-14 
244959239.3

358770541.6 
49522989.25 
2.9977E-227 
301109701.5

Mean 
SD 
P-Value 
Best Value

F25 64321517.6 
40593900.26 
1.97154E-75 
35617295.44

344657162.5 
113873411 
0 
264136501.4

31802081.84 
9641992.198 
2.85034E-49 
24984163.77

289669516.2 
164110848.2 
1.14293E-08 
173625622.6

387871346.6 
56415938.02 
5.7914E-137 
347979254.3

Mean 
SD 
P-Value 
Best Value

F26 31147895.49 
19583195.34 
6.28922E-75 
18065763.12

416501311.4 
113398666 
0 
288350619.3

23609538.88 
1856239.822 
1.46712E-83 
21470634.55

280027357.9 
69979375.8 
6.59253E-14 
206099053.5

358966469.2 
2768716.562 
7.5883E-188 
357361676.4

Mean 
SD 
P-Value 
Best Value

F27 63646048.72 
23718235.77 
1.02524E-72 
46874723.37

345509298.8 
35356502.07 
3.1436E-293 
320508476.4

40568596.78 
4681796.076 
3.41306E-56 
37258067.03

417786214.2 
136566369.7 
1.77282E-09 
321219208.1

440930638.2 
17409833.75 
4.48941E-73 
428620026.6

Mean 
SD 
P-Value 
Best Value

F28 89938418.95 
65301200.03 
1.17784E-50 
28290051.43

553865227.5 
70689665.01 
4.5562E-270 
511905945

25141708.69 
7884460.024 
2.83205E-91 
16302551.27

384871344.2 
181407601.1 
3.98872E-15 
182766458.3

386657999.8 
64748523.88 
1.3707E-228 
314777995.7

Mean 
SD 
P-Value 
Best Value

F29 94571813.96 
93325878.08 
4.32536E-67 
30226702.53

434284559.3 
102058299.4 
8.3049E-228 
352481422.8

36305026.95 
5598877.866 
2.7277E-82 
29995242.01

397357466 
93440398.08 
7.79956E-13 
314957781.2

427729109.7 
17448836.27 
3.5403E-172 
415277763.2

Mean 
SD 
P-Value 
Best Value

F30 53662653.85 
30030606 
1.1722E-136 
19445735.05

338121202.4 
49423146.59 
0 
282933253

38274450.95 
9405798.902 
2.94087E-81 
28696521.5

339667669.8 
111010614.2 
2.08155E-12 
236028512.2

378464461.3 
52343573.13 
2.1724E-237 
325802418.3



International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

20

Table 7. Performance comparison of ACO, GSA, ASCBBO and SCBBO on CEC 2014 test problems

Criteria Fn’s ACO GSA ASCBBO SCBBO
Mean 
SD 
P-Value 
Best Value

F1 1118153230 
381805571.1 
1.3219E-204 
848175921.3

11937855723 
1065982215 
0.5 
11184092470

15545748.84 
5668303.702 
6.06145E-61 
11537652.86

17331986.44 
2506811.25 
1.39528E-29 
15559403.21

Mean 
SD 
P-Value 
Best Value

F2 1187796885 
0 
7.2024E-272 
1187796885

10793061835 
0 
1 
10793061835

27167185.9 
0 
1.21664E-63 
27167185.9

10776227.62 
0 
3.54011E-22 
10776227.62

Mean 
SD 
P-Value 
Best Value

F3 1191138207 
172434492.2 
0 
1003605355

10404035657 
2771844256 
0.5 
8311562496

25867803.77 
3144848.27 
1.1415E-118 
22292698.4

12358185.35 
6102520.877 
3.31609E-45 
8056865.491

Mean 
SD 
P-Value 
Best Value

F4 1311905424 
0 
2.29594E-94 
1311905424

8746848523 
0 
0 
8746848523

12316914.27 
0 
5.03855E-61 
12316914.27

10040023.07 
0 
5.72176E-28 
10040023.07

Mean 
SD 
P-Value 
Best Value

F5 1043181055 
299660809.1 
2.85107E-22 
547780006

8373429232 
4925711646 
0.500000313 
2563595031

20331326.74 
4661827.306 
4.40135E-07 
20521171.8

13908371.54 
2635470.768 
0.00255038 
13527839.18

Mean 
SD 
P-Value 
Best Value

F6 1234734464 
160120928.8 
4.28846E-11 
1037691981

14981779398 
10743447321 
0.5 
6873457609

24009235.51 
7840972.761 
3.34467E-10 
16553179.82

21402200.97 
8176446.668 
0.026136442 
13934948.88

Mean 
SD 
P-Value 
Best Value

F7 1357587582 
93937754.32 
4.3544E-229 
1257364300

5553237878 
665585370.6 
0.5 
4802300245

28710269.04 
626335.4764 
2.83334E-93 
27991957.78

15688832.81 
7189161.509 
3.84619E-37 
8361832.406

Mean 
SD 
P-Value 
Best Value

F8 1039821214 
210993048.1 
0 
838827867.9

5459806647 
2231386040 
0.5 
2836801818

22362167.6 
3474443.513 
2.2876E-114 
17703111.18

14464416.77 
4236801.357 
3.38233E-49 
9759022.651

Mean 
SD 
P-Value 
Best Value

F9 1040125812 
327294797.8 
0 
547780006

11353659989 
11272493449 
0.5 
2563591480

1390688626 
3064964860 
2.62209E-16 
14665185.15

21499023.79 
11693373.56 
4.4594E-101 
9905264.382

Mean 
SD 
P-Value 
Best Value

F10 1327109228 
97972384.65 
8.3903E-280 
1235674165

6944785680 
2835658135 
0.5 
4802300245

27084362.19 
3291781.135 
7.7937E-129 
22206641.66

16592818.7 
6142051.022 
6.80633E-58 
8361832.406

Mean 
SD 
P-Value 
Best Value

F11 1036230777 
205831084.6 
0 
838827867.9

4840947332 
1821692469 
0.5 
2836801818

22877719.61 
2594154.483 
1.4012E-123 
19765319.23

12401375.45 
4801953.804 
4.1315E-50 
8378279.964

Mean 
SD 
P-Value 
Best Value

F12 1135053783 
191833605.5 
0 
925161638.5

4833788231 
8376207874 
0.5 
171333976.8

15470307.93 
4242995.689 
1.9514E-113 
10944360.19

9563354.437 
2351427.99 
1.61057E-75 
7105940.56

Mean 
SD 
P-Value 
Best Value

F13 1120054168 
110289283.3 
0 
1037158174

6962503268 
4942727716 
0.5 
1485128199

24546729.88 
7482026.599 
5.6399E-120 
15832809.18

2401827.94 
2401827.94 
5.03904E-69 
11276776.84

Mean 
SD 
P-Value 
Best Value

F14 1164472822 
115845116.7 
0 
1012476900

7286903474 
3263910120 
0.5 
2567200505

20408402.53 
10601253.4 
4.0729E-108 
9170735.569

15062632.29 
2155051.677 
1.82859E-67 
12001742.12

Mean 
SD 
P-Value 
Best Value

F15 1442801218 
247289417.7 
0 
1089635478

11089860883 
4746103295 
0.5 
5659847532

23700359.66 
8275476.573 
3.86746E-96 
15493787.77

15418602.59 
3174520.212 
6.64759E-59 
11578302.03

continued on next page
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Table 7. Continued

Criteria Fn’s ACO GSA ASCBBO SCBBO
Mean 
SD 
P-Value 
Best Value

F16 909911166.7 
69793333.4 
0 
823134475.2

28720156835 
10739099605 
0.5 
14914085257

20803503.83 
5238569.75 
5.8489E-117 
16781720.34

17183643.71 
3658935.783 
2.037E-78 
14453502.7

Mean 
SD 
P-Value 
Best Value

F17 228898664.1 
228898664.1 
0 
990711125.7

7572499057 
5507828061 
0.5 
4094171147

18542494.59 
6691233.931 
1.50302E-60 
11026020.9

14371660.71 
3707636.368 
2.59881E-35 
10174213.2

Mean 
SD 
P-Value 
Best Value

F18 939526692.6 
128324765.8 
0 
848175921.3

11349802839 
6570539205 
0.5 
4211930063

21369095.08 
3219300.392 
1.65496E-95 
19467352.85

15238567.08 
4812294.805 
4.78247E-29 
10273882.21

Mean 
SD 
P-Value 
Best Value

F19 1068614183 
454910874.3 
9.9066E-277 
547780006

8094412370 
2805912796 
0.5 
5704850901

14635316.4 
3082837.687 
2.43432E-75 
11537652.86

15213426.44 
4760542.115 
6.23489E-52 
9905264.382

Mean 
SD 
P-Value 
Best Value

F20 1177704644 
180057372.5 
0 
972959618.2

12436575625 
10846182772 
0.5 
2563591480

24519493.19 
6985913.2 
9.8014E-152 
16553179.82

19151820.18 
8105914.762 
5.26828E-89 
13527839.18

Mean 
SD 
P-Value 
Best Value

F21 1239247896 
248797093.3 
6.4725E-254 
884228835.4

4874128863 
1462905377 
0.5 
2836801818

27067496.26 
3325107.575 
2.688E-125 
22139177.92

14206380.27 
6576221.63 
4.08007E-45 
8361832.406

Mean 
SD 
P-Value 
Best Value

F22 1086898090 
219423319.1 
0 
838827867.9

5508995837 
1516612129 
0.5 
4376160057

23123900.17 
3119427.352 
4.67667E-91 
19765319.23

13282159.71 
5471147.501 
1.26256E-42 
8378279.964

Mean 
SD 
P-Value 
Best Value

F23 1155823850 
200088979.9 
1.6856E-182 
925161638.5

7315309905 
10786356288 
0.5 
171333976.8

15710323.17 
4293607.723 
3.48833E-70 
10944360.19

9153785.457 
2605247.438 
1.67011E-45 
7105940.56

Mean 
SD 
P-Value 
Best Value

F24 1120054168 
110289283.3 
0 
1037158174

6962503268 
4942727716 
0.5 
1485128199

24546729.88 
7482026.599 
5.6399E-120 
15832809.18

13386421.46 
2401827.94 
1.77802E-60 
11276776.84

Mean 
SD 
P-Value 
Best Value

F25 1142869513 
184403001.6 
0 
1012476900

9242949253 
1174421274 
0.5 
8412508006

21031548.88 
10500970.43 
2.60451E-48 
13606241.49

14309906.27 
3264237.048 
2.61314E-46 
12001742.12

Mean 
SD 
P-Value 
Best Value

F26 1153929247 
72765127.11 
0 
1089635478

5440520974 
2770176740 
0.5 
2567200505

21872189.81 
11213113.92 
8.25947E-85 
9170735.569

16843799.59 
1917975.821 
3.33118E-37 
15104333.06

Mean 
SD 
P-Value 
Best Value

F27 1611131561 
42278866.12 
1.2965E-141 
1581235888

14156157231 
4335144765 
0.5 
11090746971

26630796.9 
10743625.75 
3.24213E-56 
19033906.28

15597713.09 
1815430.601 
2.80727E-27 
14314009.81

Mean 
SD 
P-Value 
Best Value

F28 1088075001 
331137329.4 
0 
823134475.2

21646843273 
15745337898 
0.5 
10387281537

16552678.33 
964976.1777 
6.28332E-50 
15493787.77

13553647.74 
1712952.124 
2.58569E-45 
11578302.03

Mean 
SD 
P-Value 
Best Value

F29 1001523702 
125852410.5 
0 
881426422.7

14442504152 
10011927316 
0.5 
4700578956

20470528.53 
8288707.659 
5.90716E-75 
11026020.9

18043935.43 
2821494.468 
7.71395E-44 
15740560.38

Mean 
SD 
P-Value 
Best Value

F30 1136321458 
280570355 
1.6532E-278 
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Figure 3a. Convergence curves for simple BBO operator 
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Figure 3b. Convergence curves for simple BBO operator 

Figure 4a. Convergence curves for mutation operator on CBBO and ASCBBO 
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Figure 5a. Convergence curves for selection and migration operator combined on GWO, SCA, ALO, GA, DE, ACO, GSA, ASCBBO 
and SCBBO 

Figure 4b.
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Figure 5b. Convergence curves for selection and migration operator combined on GWO, SCA, ALO, GA, DE, ACO, GSA, ASCBBO 
and SCBBO 
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Figure 5c. Convergence curves for selection and migration operator combined on GWO, SCA, ALO, GA, DE, ACO, GSA, ASCBBO 
and SCBBO 
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Figure 5d. Convergence curves for selection and migration operator combined on GWO, SCA, ALO, GA, DE, ACO, GSA, ASCBBO 
and SCBBO
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Figure 5e. Convergence curves for selection and migration operator combined on GWO, SCA, ALO, GA, DE, ACO, GSA, ASCBBO 
and SCBBO 
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Figure 5f. Convergence curves for selection and migration operator combined on GWO, SCA, ALO, GA, DE, ACO, GSA, ASCBBO 
and SCBBO 
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Figure 5g. Convergence curves for selection and migration operator combined on GWO, SCA, ALO, GA, DE, ACO, GSA, ASCBBO 
and SCBBO 

Figure 6a. Box plot graphs for selection and migration operator combined on GWO, SCA, ALO, GA, DE, ACO, GSA, ASCBBO 
and SCBBO 



International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

31

Figure 6b. Box plot graphs for selection and migration operator combined on GWO, SCA, ALO, GA, DE, ACO, GSA, ASCBBO 
and SCBBO 
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Figure 6c. Box plot graphs for selection and migration operator combined on GWO, SCA, ALO, GA, DE, ACO, GSA, ASCBBO 
and SCBBO 
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Figure 6d. Box plot graphs for selection and migration operator combined on GWO, SCA, ALO, GA, DE, ACO, GSA, ASCBBO 
and SCBBO 



International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

34

Figure 6e. Box plot graphs for selection and migration operator combined on GWO, SCA, ALO, GA, DE, ACO, GSA, ASCBBO 
and SCBBO 
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Figure 6f. Box plot graphs for selection and migration operator combined on GWO, SCA, ALO, GA, DE, ACO, GSA, ASCBBO 
and SCBBO 
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