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ABSTRACT

The job-shop environment has been widely studied under different approaches. Its practical 
characteristics make its research interesting. Therefore, the job-shop scheduling problem continues 
being attractive in developing new evolutionary algorithms. In this paper, the authors propose a new 
estimation of distribution algorithm coupled with a radial probability function. The aforementioned 
radial function comes from the hydrogen element. This approach is proposed in order to build a 
competitive evolutionary algorithm for the job-shop scheduling problem. The key point is to exploit 
the radial probability distribution to construct offspring and to tackle the inconvenient of the EDAs 
(i.e., lack of diversity of the solutions and poor ability of exploitation). Various instances and numerical 
experiments are presented to illustrate and to validate this novel research. The results, obtained from 
this research, permit the conclusion that using radial probability distributions is an emerging field 
to develop new and efficient EDAs.
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1. INTRoDUCTIoN

Estimation of Distribution Algorithms (EDAs) have been widely published in more than two decades. 
These algorithms have shown to be efficient to solve optimization problems. In addition, these 
algorithms have been used to tackle combinatorial problems. It can be considered that there are two 
classifications for the EDAs, i.e., pure EDAs and hybrid EDAs.

Pure EDAs base their performance on a probability model to find new solutions from previous 
solutions meanwhile hybrid EDAs base their performance on an interaction between a probability 
model and some another technique or method to generate offspring or to improve the performance 
of the algorithm. As hybrid EDAs is considered the Peña et al´s (2004) research for solving synthetic 
optimizations problems. The Zhang et al´s (2006) algorithm for the quadratic assignment problem. 
The Liu et al´s (2011) study for the permutation flow-shop scheduling problem. The Wang´s (2012) 
method for the flexible job-shop scheduling problem. The Fang et al´s (2015) algorithm for the 
stochastic resource-constrained project-scheduling problem, and the Wang et al´s (2016) research for 
the distributed permutation ñowshop scheduling problems under machine breakdown. The articles 
mentioned above are current and representative of this group of hybrid EDAs.



International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

2

Both pure EDAs and hybrid EDAs have been widely used to solve combinatorial problems. The 
development of EDAs does not finish in this point. Recently, new EDAs have been published. These 
EDAs have a new characteristic. These utilize permutation of elements-based representation as a 
solution to solve combinatorial optimization problems. That is, these algorithms propose specific 
probability models to integrate solutions as permutation-based representation. This category is named 
distance-based ranking models. The proposed EDA by Ceberio et al (2014) for flow-shop scheduling 
problem, the Pérez-Rodríguez et al´s (2017) study for the school bus routing problem with bus stop 
selection, the Pérez-Rodríguez & Hernández-Aguirre´s (2018) algorithm for the flexible job-shop 
scheduling problem with process plan flexibility, and the Pérez-Rodríguez & Hernández-Aguirre´s 
(2019) technique for the vehicle routing problem with time windows, are currently published papers 
belonging to this category.

From the previous classification, it can be seen that recent authors have combined new and 
recognized methodologies to solve optimization problems such as the job-shop scheduling problem. 
Recently, other studies make comparisons between other algorithms, such as the genetic algorithm, 
the particle swarm optimization algorithm, multi-objective algorithms, and others. Currently, 
other researchers show the effectiveness and efficiency of the proposed methods as a part of their 
manuscripts. The published methods try to get new solutions to some benchmark problems. The cited 
methods carried out experiments on actual examples, i.e., actual data of real environments. Some 
examples of such methodologies are detailed below

Ning et al (2017) combines a permutation flow-shop scheduling problem and a non-permutation 
flow-shop scheduling problem with minimal and maximal time lag considerations. Sáenz-Alanís et al 
(2016) address a job-shop scheduling in the beer production context, where sequence-dependent setup 
times are related to the cleaning operations. Deep & Singh (2015) study cellular manufacture systems 
where machines are grouped in machine cells able to process multiple operations at the same time.

Phanden & Jain (2015) offer a simulation-based genetic algorithm approach to solve flexible 
job-shop scheduling problems with process plan flexibility. The authors assess the effect of flexible 
process plan of a part-type in a production order environment. The objective is to find the minimum 
makespan as a performance measure.

Li & Gao (2016) propose an effective hybrid algorithm that hybridizes the genetic algorithm 
and tabu search, for the flexible job-shop scheduling problems with the objective of minimizing the 
makespan.

Xu et al. (2017) establish a mathematical model for job-shop scheduling problems, and an 
improved bat algorithm is proposed to solve the mathematical model mentioned. The objective is to 
seek an appropriate schedule that costs minimum time to complete all operations.

Pérez-Rodríguez & Hernández-Aguirre (2018) propose a Pareto approach based on the 
hybridization of an estimation of distribution algorithm and the Mallows distribution in order to 
build better sequences for flexible job-shop scheduling problems with process plan flexibility and 
to solve conflicting objectives.

The development of new probability models continues being attractive for practitioners and 
researchers. The proposal of identifying new probability models, to be more efficient than the 
performance of the EDAs, is the aim and scope for any research in this field. Therefore, as contribution 
of this research, the development of a new probability model is presented. The proposed EDA generates 
new solutions based on a radial probability model. It means that an atomic orbital generation function 
is used to produce offspring. In quantum chemistry it is established that a function, of this type, makes 
it possible to describe the behavior of an electron in a space occupied by an atom to which the electron 
belongs. However, due to the random behavior of the electron, it is more useful to describe its behavior 
in terms of the probability to find the electron in a specific volume of the space occupied by the atom 
to which the electron belongs. In the current atom model, the electron is described in terms of a wave 
function È . The wave function is a math function that it describes the behavior of the electron in a 
specific space. This space is called atomic orbital. The function È2  is proportional to the probability 
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density of the electron in a specific point of the atomic space. If the values of È2  around of the core 
are considered, then it can define a contour surface (see Figure 1). This contour surface contains the 
volume where there exists a probability to find the electron. It permits to visualize the atomic orbital. 
In this research, the wave function of the hydrogen H� �  is used. This function is elected because it 
is exactly defined in math terms. In this sense, there exist four orbitals for the hydrogen. Then, four 
equations describe the radial probability function. The contribution of this research is to use such 
radial probability functions as probability model for the EDA scheme, and from these functions to 
generate offspring to solve the job-shop scheduling problem (JSSP). The performance of the proposed 
EDA, called REDA (Radial Estimation of Distribution Algorithm), is compared with those recent 
algorithms that efficiently solve the JSSP. Although diverse methods and strategies have been used 
to solve the JSSP, this paper contributes to the state of the art through utilization of the radial probability 
functions of the hydrogen, for the JSSP, as a probability model to enhance the performance of the 
EDA.

The results, obtained from this research, permit to conclude that using radial probability 
distributions is an emerging field to develop new and efficient EDAs.

2. PRoBLEM STATEMENT

Pinedo (2008) details the job-shop scheduling problem. The main constraints are detailed below

- For each job, the corresponding operations have to be processed in the given order, that is, the 
starting time for an operation must not be earlier than the point at which the preceding operation 
in the sequence of operations of the respective job is completed

- Each operation has to be assigned to exactly one machine
- Preemption is not allowed, i.e., each operation must be completed without interruption once it starts
- The operations assigned for each machine have to be subsequently established, that is, an operation 

is only allowed to be assigned to the sequence of a machine if the preceding position on the 
sequence is already established

- If the operations i  and j  are assigned to the same machine k  for consecutive positions p −1  
and p , then the starting time of operation j  must not be earlier than the completion time of 
operation i  in order to prevent overlapping

An example is provided with four machines and three jobs. The data are given in Table 1.
Figure 2 depicts a schedule as a solution by Gantt chart.
Based on the schedule, depicted in Fig. 2, the makespan is 33. The goal is to find the best schedule 

in order to obtain the minimum makespan.

3. REDA FoR THE JSSP

3.1. Solution Representation
A solution for the JSSP should be an operation scheduling decision, and machine assignment. Thus, 
a solution can be expressed by the processing sequence of operations on the machines, and the 
assignment of operations on machines. In this paper, two vectors, i.e., an operation sequence vector, 
and machine assignment vector, represents a solution. For the operation sequence vector, the number 
of elements equals the total number of operations, where each element contains a continuous value. 
The aforementioned continuous value, indicates the distance, in picometers, between the electron and 
the core. In Figure 3, the representation of an operation sequence vector is illustrated.
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The representation, elected in this research, is suitable to integrate the radial probability 
distribution as a probability model. Anyway, the operation sequence vectors must be decoded to 
represent valid schedules. The decoding process is detailed as follows:

A fixed integer number is assigned for each operation. Each fixed integer number is associated 
with a job. A sort on the continuous values of each operation sequence vector is done. Assigning 
each continuous value to the corresponding fixed integer number that belongs to each operation and 
setting each fixed integer number to a job to finish. Table 2 details the previous operation sequence 
vector, depicted in Figure 3, and its decoding.

For the machine assignment vector, each element represents the corresponding selected machine 
for each operation. An example is provided below

3.2. Fitness
The makespan is computed for each member of the population. Using each decoded operations 
sequence vector, and each machine assignment vector, a makespan is obtained. The makespan is the 
length of time that elapses from the start of job to the end (that is, when all the jobs have finished 
processing). An illustration can be seen in Fig. 2. The makespan, for the Fig. 2., is 33 unit time.

3.3. Probability Model
The wave functions for the hydrogen atom are given a special name, atomic orbitals, because they 
play such an important role in the electronic structure of atoms. In general the word orbital is the 

Figure 1. Contour surface of an atom where an electron can be
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name given to a wave function which determines the motion of a single electron. If the one-electron 
wave function is for an atomic system, it is called an atomic orbital. For the hydrogen atom, there are 
four different atomic orbitals and four different electron density distributions. The math expressions 
of the radial distribution function P r( ) , for the hydrogen, in each atomic orbital are detailed as 
follows

1st atomic orbital

Table 1. Data example for the JSSP

Operations 
Jobs, precedence

Processing times 
Machines

M1 M2 M3 M4

O11 10 - - -

O12 - 8 - -

O13 - - 4 -

O21 - 8 - -

O22 3 - - -

O23 - - - 5

O24 - - 6 -

O31 4 - - -

O32 - 7 - -

O33 - - - 3

Figure 2. A schedule solution for the JSSP example

Table 2. Representation of an operation sequence vector

Operation sequence vector

4827.1 1869.6 41.563 4833.9 288.919 2995.36 4966.2 292.378 3902 4639.9
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Figure 4 shows the radial distribution probability, for the 1st atomic orbital, using the Eq. (1). As 

we can see, the function rapidly decays with respect to its distance to the core.
The next functions correspond to the 2nd, 3rd, and 4th atomic orbitals for the hydrogen
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Table 3. Representation of an operation sequence vector to a valid schedule.

Operation O11 O12 O13 O21 O22 O23 O24 O31 O32 O33

A fixed 
number 1 2 3 4 5 6 7 8 9 10

Corresponding 
job 1 1 1 2 2 2 2 3 3 3

Operation sequence vector

4827.1 1869.6 41.563 4833.9 288.919 2995.36 4966.2 292.378 3902 4639.9

Sorting 8 4 1 9 2 5 10 3 6 7

| | | | | | | | | |

Setting the job 3 2 1 3 1 2 3 1 2 2

| | | | | | | | | |

Setting 
operations O31 O21 O11 O32 O12 O22 O33 O13 O23 O24

Table 4.  

Operation O11 O12 O13 O21 O22 O23 O24 O31 O32 O33

Machine 
assignment 1 2 3 2 1 4 3 1 2 4
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With these radial distribution functions, a cumulative distribution should be built for each atomic 
orbital. The offspring can be generated using any cumulative radial distribution.

3.4. Sampling
The process to obtain an offspring is computed operation per operation. Firstly, a random value should 
be generated for each operation. Then, each random value, is interpolated in a cumulative probability 
distribution, previously selected, to identify which distance, between the electron and the core, should 
be established. Figure 5 shows an example of this process.

3.5. Replacement
The offspring should be evaluated to obtain their fitness. Finally, the replacement process used in 
this study is by binary tournament between the parents and the offspring.

Figure 3. Radial distribution probability, for the 1st atomic orbital
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All the stages of the proposed algorithm have been defined. All of this, within a number of the 
generations. In this research, 100 generations and 1000 solutions per generation, were used. These 
are fixed parameters.

The REDA framework is provided below
The main differences between the REDA and the rest of EDAs is highlighted below

4. RESULTS AND CoMPARISoN

4.1. Comparison Between Atomic orbitals
The standard benchmarking datasets, for the JSSP, are used as input data for the mentioned comparison. 
The aforementioned datasets used in this research are the Adams, Balas & Zawack (1988) instances; 
the Fisher & Thompson (1963) instances; the Lawrence (1984) instances; the Applegate & Cook 
(1991) instances; the Storer, Wu & Vaccari (1992) instances; finally, the Yamada & Nakano (1992) 
instances. All the details about the instances are depicted below

The experiments are executed in a Lanix Titan HX 4200 computer, Intel CoreTM i7 processor, 
3.4 GHz, 8 GB of RAM, Windows 10 for 64 bits to run every instance. C++ language is used for 
the implementation for all the comparisons. To account for the stochastic nature of the REDA, we 
run 30 trials for each instance.

The relative percentage increase RPI� �  is computed in order to compare the performance of 
each atomic orbital. The RPI  is detailed as follows

RPI c
c c

ci
i( ) = −

*

*

 (5)

where ci  is the best result, i.e., the minimum makespan found in each run by the REDA, and 
c*  is the best result found and reported in the literature. The four atomic orbital functions, of the 
hydrogen, are compared in order to identify which atomic orbital is better to solve the JSSP.

Figure 4. Sampling example
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Figure 6 includes four box plots: the 1st atomic orbital, the 2nd atomic orbital, and so on, after 
running all the instances, and all the trials. As we can see, there is no practically difference between 
the orbitals, i.e., any orbital is suitable for solving the JSSP instances used in the comparison.

4.2. Comparison Between Recent Algorithms
In order to validate the scientific relevance of this paper, recent algorithms are proposed as a benchmark 
for comparison with the REDA scheme. The aforementioned recent algorithms are as follows

- The simulation-based genetic algorithm presented by Phanden & Jain (2015),
- The improved bat algorithm proposed by Xu et al. (2017),
- The hybrid algorithm that hybridizes the genetic algorithm and tabu search detailed by Li & Gao 

(2016),
- The genetic algorithm designed by Li et al. (2017),

Table 5.  

Pseudocode REDA framework

D
0
� �Generate�M�individuals←

Decoding individuals from D
0

FitD Evaluate individuals fitness from decoded
0 0
← ( ) �D

Best Store the best individual←  from D
0

R Cumulative radial distribution is computing from any
t− ←1 		Eqs 	. 1 4−( )

t := 1

Do

    Ds Sampling from cumulative
t t
← −R 1

    Decoding individuals from Ds
t

    FitDs Evaluate individuals fitness from decoded Ds
t t
← ( )

    Best if apply update the best individual from FitDs
t

← ,

    D Replacement by binary tournament D Ds
t t t
← ( )−1 &

     t t:= +1

Until stopping criterion is met( )

Output: Best
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Table 6.  

Features REDA Rest of the EDAs

solution 
representation

continuous values representing the distance, between 
the electron and the core

discrete values representing the 
sequence of operations

probability model radial probability model built by hydrogen atom 
properties

probability models built by statistical 
processes

sampling from the cumulative function of the hydrogen atom from the cumulative function of 
classical models

Table 7. 

Basics of the input data

Headings present general information such as 
The name of the instance 

       The size of the problem 
       The number of jobs 
The number of machines 

Body of the instance includes 
For each job 

The suitable machine per each operation 
The processing time per each operation

Figure 5. Performance of the REDA in each radial distribution



International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

11

- The hybrid estimation of distribution algorithm proposed by Pérez-Rodríguez & Hernández-Aguirre 
(2018), called MEDA, and

- The hybrid approach that hybridizes an estimation of distribution algorithm and the moth-flame 
algorithm designed by Pérez-Rodríguez (2020), called HEDAMMF.

The experiments are executed in the same computer and language specification. As in the previous 
comparison, the relative percentage increase RPI� �  detailed in Eq. (5) is computed.

The distribution of the experimental results, in each interval, for the Adams, Balas & Zawack 
(1988) instances, is presented in Table 3. It is clear from the table that the results of the REDA 
algorithm are comparatively concentrated, which is mainly in the range of [0.04, 0.08], whereas the 
main results of the other algorithms are concentrated in the range of [0.08, or more].

Figure 6 depicts seven boxplots, one per each algorithm. As we can see, the REDA outperforms 
all the algorithms used in the comparison, for the Adams, Balas & Zawack (1988) instances, after 
running all the trials.

The distribution of the experimental results, in each interval, for the Fisher & Thompson (1963) 
instances, is presented in Table 4. From the table, it is possible to identify that the overall performance 
of the REDA algorithm is competitive. Based on the results, the REDA algorithm can find efficiently 
the closest solutions to the optimal, 60 times in the range of [0, 0.04], whereas the main results of 
the other algorithms are far from this amount.

Figure 7 depicts seven boxplots, one per each algorithm. As we can see, the REDA outperforms 
all the algorithms used in the comparison, for the Fisher & Thompson (1963) instances, after running 
all the trials.

The distribution of the experimental results, in each interval, for the Lawrence (1984) instances, 
is presented in Table 5. From the table, it is possible to identify that the overall performance of the 
REDA algorithm is again competitive. Based on the results, the REDA algorithm can efficiently find 
the closest solutions to the optimal, more times in the range of [0, 0.04], than any another algorithm 
used in the comparison.

Figure 8 depicts seven boxplots, one per each algorithm. As we can see, the REDA outperforms all 
the algorithms used in the comparison, for the Lawrence (1984) instances, after running all the trials.

The distribution of the experimental results, in each interval, for the Applegate & Cook (1991) 
instances, is presented in Table 6. It is clear, from the table, that the performance of the REDA 

Table 8. Distribution of the results for the Adams, Balas & Zawack (1988) instances

Intervals

Algorithm [0, 0.04) [0.04, 0.08) [0.08, or more)

Phanden & Jain (2015) 6 171 1323

Xu et al (2017) 3 159 1338

Li & Gao (2016) 36 429 1035

Li et al (2017) 77 450 973

MEDA 99 519 882

HEDAMMF 178 429 893

REDA for the JSSP 183 736 581
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algorithm obtains the best results. Based on the results, the rest of the other algorithms are far from 
this performance. Therefore, the performance of the REDA algorithm is competitive.

Figure 9 depicts seven boxplots, one per each algorithm. As we can see, the REDA scheme obtain 
a competitive performance, for the Applegate & Cook (1991) instances, after running all the trials.

The distribution of the experimental results, in each interval, for the Storer, Wu & Vaccari 
(1992) instances, is presented in Table 12. From the table, it is possible to identify that the overall 
performance of the REDA algorithm is again competitive. Based on the results, the REDA algorithm 
can efficiently find the closest solutions to the optimal, more times in the range of [0, 0.04], than any 
another algorithm used in the comparison.

Figure 10 depicts seven boxplots, one per each algorithm. As we can see, the REDA outperforms 
all the algorithms used in the comparison, for the Storer, Wu & Vaccari (1992) instances, after 
running all the trials.

Figure 6. Performance of the REDA, for the Adams, Balas & Zawack (1988) instances
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Table 9. Distribution of the results for the Fisher & Thompson (1963) instances

Intervals

Algorithm [0, 0.04) [0.04, 0.08) [0.08, or more)

Phanden & Jain (2015) 0 69 831

Xu et al (2017) 0 70 830

Li & Gao (2016) 14 83 803

Li et al (2017) 30 56 814

MEDA 34 70 796

HEDAMMF 30 101 769

REDA for the JSSP 60 125 715

Figure 7. Performance of the REDA, for the Fisher & Thompson (1963) instances
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The distribution of the experimental results, in each interval, for the Yamada & Nakano 
(1992) instances, is presented in Table 13. From the table, it is possible to identify that the overall 
performance of the REDA algorithm is again competitive. Based on the results, the REDA algorithm 
can efficiently find the closest solutions to the optimal, more times in the range of [0, 0.04], than any 
another algorithm used in the comparison.

Figure 11 depicts seven boxplots, one per each algorithm. As we can see, the REDA outperforms 
all the algorithms used in the comparison, for the Yamada & Nakano (1992) instances, after running 
all the trials.

Figure 12 depicts the overall performance, with seven boxplots, one per each algorithm. As 
we can see, the REDA outperforms all the algorithms used in the comparison, after running all the 
instances, and all the trials.

Finally, a statistical test is executed in order to show that the REDA scheme outperforms all the 
algorithms used in the comparison for the all trails, and all the instances. Figure 13 depicts a Dunnett 
test. There is a statistically significant difference between the algorithms by means of the Dunnett test.

Based on the results detailed above, the radial probability distributions are suitable to identify 
the best performing ones. It is due to the solution representation used in this approach, by continuous 
values, permits to explore, and adapt any combination for the operation scheduling process. Having 
a wide and diverse operation scheduling vectors, obtained from the cumulative radial probability 
distribution, it is the key point to find competitive solutions.

• The setting of the parameters

The EDA scheme considers population size, replacement (also known as generation gap), and 
selection strategy as key parameters.

- The population size; in the current experiments, the population size ranged from 500 to 1000 
solutions in increments of 500.

- The replacement; the current experiments allowed to vary the percentage of the population to be 
replaced during each generation between 50% and 100%, in increments of 50%.

- The stopping criteria; the number of generations is defined as a stopping criteria, varying from 50 
to 100 generations.

Table 10. Distribution of the results for the Lawrence (1984) instances

Intervals

Algorithm [0, 0.04) [0.04, 0.08) [0.08, or more)

Phanden & Jain (2015) 576 2263 9161

Xu et al (2017) 541 2659 8800

Li & Gao (2016) 747 3478 7775

Li et al (2017) 754 3361 7885

MEDA 922 4055 7023

HEDAMMF 1110 3755 7135

REDA for the JSSP 1429 4685 5886
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A design of experiment is built to identify the best parameter of each parameter. Then parameter 
tuning is detailed below

Figure 8. Performance of the REDA, for the Lawrence (1984) instances



International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

16

Finally, the results of the parameter tuning is shown below. There is no statistically significant 
difference of any of the three controlled parameters (number of generations, initial population size, 
and replacement). Therefore, the parameters used are the same for all the algorithms.

5. CoNCLUSIoN

This paper discusses the job-shop scheduling problem, which considers different processing sequence 
of operations, for each job, as many industrial environments. To solve this problem, the REDA scheme 
is proposed. By means of wide and diverse numerical experiments and comparisons, the REDA offers 
a competitive performance.

This research concludes that radial probability functions can be coupled with the EDA scheme 
in order to solve combinatorial optimization problems, such as JSSP.

The computational results show that the different radial probability distributions, used for the 
JSSP, with large data sets are suitable.

The results, obtained from this research, permit to conclude that using radial probability 
distributions is an emerging field to develop new and efficient EDAs.

More radial probability distributions, from others elements not only the hydrogen, for the JSSP 
and others combinatorial problems, should be considered in future research.

Dynamic job-shop issues should be included, in light of these results, for building new 
evolutionary algorithms coupled with other radial probability functions.

Since the REDA presents stability, it appears very suitable for implementation in software 
systems for practical purposes. Further research directions may deal with an extension of the REDA 
for building effective modules for specific users in the industry. Finally, the REDA could be used in 
other types of job-shop systems, such as flow-shop scheduling, flexible job-shop scheduling, open-
shop scheduling, between others.
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Table 11. Distribution of the results for the Applegate & Cook (1991) instances

Intervals

Algorithm [0, 0.04) [0.04, 0.08) [0.08, or more)

Phanden & Jain (2015) 41 333 2626

Xu et al (2017) 75 395 2530

Li & Gao (2016) 67 593 2340

Li et al (2017) 63 483 2454

MEDA 169 763 2068

HEDAMMF 130 765 2105

REDA for the JSSP 204 926 1870
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Figure 9. Performance of the REDA, for the Applegate & Cook (1991) instances
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Table 12. Distribution of the results for the Storer, Wu & Vaccari (1992) instances

Intervals

Algorithm [0, 0.04) [0.04, 0.08) [0.08, or more)

Phanden & Jain (2015) 161 2150 3689

Xu et al (2017) 286 2496 3218

Li & Gao (2016) 423 2846 2731

Li et al (2017) 789 2432 2779

MEDA 905 3531 1564

HEDAMMF 1136 3213 1651

REDA for the JSSP 1265 3808 927
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Figure 10. Performance of the REDA, for the Storer, Wu & Vaccari (1992) instances
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Table 13. Distribution of the results for the Yamada & Nakano (1992) instances

Intervals

Algorithm [0, 0.04) [0.04, 0.08) [0.08, or more)

Phanden & Jain (2015) 56 274 870

Xu et al (2017) 67 277 856

Li & Gao (2016) 132 362 706

Li et al (2017) 90 486 634

MEDA 194 462 544

HEDAMMF 189 409 602

REDA for the JSSP 267 594 339
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Figure 11. Performance of the REDA, for the Yamada & Nakano (1992) instances
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Figure 12. Performance of the REDA

Figure 13. Statistical test

Table 14. Criteria

Case Stopping criteria 
(generations)

Population size Replacement

1 100 500 50%

2 50 500 100%

3 50 1000 50%

4 100 1000 100%
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Figure 14. Parameter tuning
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