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ABSTRACT

Currently, considerable research has been done in vehicle type classification, especially due to the 
success of deep learning in many image classification problems. In this research, a system incorporating 
hybrid features is proposed to improve the performance of vehicle type classification. The feature 
vectors are extracted from the pre-processed images using Gabor features, a histogram of oriented 
gradients, and a local optimal-oriented pattern. The hybrid set of features contains complementary 
information that could help discriminate between the classes better; further, an ant colony optimizer 
is utilized to reduce the dimension of the extracted feature vectors. Finally, a deep neural network is 
used to classify the types of vehicles in the images. The proposed approach was tested on the MIO 
vision traffic camera dataset and another more challenging real-world dataset consisting of videos of 
multiple lanes of a toll plaza. The proposed model showed an improvement in accuracy ranging from 
0.28% to 8.68% in the MIO TCD dataset when compared to well-known neural network architectures.

Keywords
Ant Colony Optimizer, Camera Response Model, Deep Neural Network, Gaussian Mixture Model, Image 
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INTRODUCTION

In recent decades, vehicle classification has played a vital role in intelligent transportation systems, 
because the usage of vehicles has become increasingly universal in human life due to the rapid 
development of society. For vehicle detection and classification, existing methodologies utilize 
various types of information such as radar signal and acoustic signature (Zhou & Cheung, 2016). 
The performance of these methodologies is vulnerable to several environmental variations such 
as weather, illumination noise and so on (Jiang et al., 2017). With the proliferation of cameras, an 
abundance of video data related to vehicles, such as traffic on highways, road intersections, toll booths, 
etc. has become available for analysis, insights and even real-time actions. For example, in traffic 
measurement and management, vehicle detection and classification delivers important information 
and also assists in road planning and maintenance by understanding the distribution of dissimilar 
vehicle classes (Javadi et al., 2018; Wang et al., 2017). Also, vehicle detection and classification have 
become a research area in video-based intelligent transportation systems (Mithun et al., 2012). For 
example, counting the vehicles in busy intersections helps in reducing the level of traffic congestion. 
Due to all the above-mentioned reasons, there has been a significant amount of research undertaken, 
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which addresses the challenging task of vehicle classification with the help of image/video data 
related to vehicles.

The research work on vehicles has received significant interest among researchers includes the 
applications such as fine-grained vehicle classification, vehicle detection, vehicle identification, vehicle 
classification and so on (Ke & Zhang, 2020; Rachmadi et al., 2018) from image/video data. The fine-
grained vehicle detection and classification becomes a challenging problem (Yang & Lei, 2014; Li 
et al., 2019) due to the low interclass and high intra-class variance of images. Many classifiers have 
been used for vehicle classification such as AdaBoost algorithm (Chen et al., 2018; Wen et al., 2014), 
dynamic Bayesian network (Kafai & Bhanu, 2011), support vector machine (Sentas et al., 2018), 
artificial neural fuzzy inference system (Murugan & Vijaykumar, 2018), invariant Charlier moments 
(Aqel et al., 2017), etc. The vehicles have unique visual and structural characteristics compared to 
other objects, and also have small inter-class distances and larger intraclass variation. These factors 
make the detection and classification of vehicles difficult (Yu et al., 2017; Biglari et al., 2017). In 
recent decades, Deep Neural Networks (DNNs) have been used extensively in image classification 
problems. The DNN classifier is the best choice for vehicle type classification when the additional 
prior information about the images is unavailable. Although DNNs have the advantage that the images 
can directly be fed as inputs, i.e. DNNs can play the role of feature extractor and classifier combined, 
this requires a large amount of training data and involves significant training time and computational 
resources. The requirement of training data size is reduced using strategies like transfer learning, 
where the deep neural network-based solutions still involve significant computation. While it is hard 
to come up with a single compact set of powerful descriptive features for complex image classification 
tasks that global-level descriptive features such as Histogram of Oriented Gradients (HOG) and Gabor 
filters have been used successfully in object detection tasks. By using these aforementioned feature 
descriptors instead of the raw images, the amount of training data can be reduced and the performance 
vehicle image classification can also be improved.

Although there has been a lot of research on vehicle classification and commercial solutions exist, 
many of these are developed for western scenarios. The Indian scenario presents its specific challenges, 
including different vehicle types, uncertain lane demarcations, and so on. Due to the presence of 
highly varied scenarios, there is a high probability that methods that perform well on publicly available 
datasets, may not perform that efficiently on the dataset obtained from the Indian scenario. Initial 
experiments were conducted on the data collected from the publicly available MIOvision Traffic 
Camera Dataset (MIO TCD) and a real-time toll plaza dataset. The proposed approach yielded better 
performance on the MIO TCD and toll plaza dataset as compared to results obtained from existing 
methods. In this experiment, a Camera Response Model (CRM) is used to enhance the visual quality 
of the images. Additionally, Gaussian Mixture Model (GMM) is used to detect the vehicles from the 
enhanced images. Then, Histogram of Oriented Gradients (HOG), Gabor feature, and Local Optimal 
Oriented Pattern (LOOP) are applied to extract the feature vectors from the pre-processed images. 
After extracting the features, an Ant Colony Optimization (ACO) based method is applied to reduce 
the dimension of the feature set, this in turn yields a hybrid set of features and helps to attain better 
classification performance. Finally, Deep Neural Network (DNN) classifier is applied to classify 
the types of vehicles from the images. The performance of the proposed approach was compared 
with six different Deep Neural Network models, namely, AlexNet, Inception V3, ResNet 50, VGG 
19, Xception and DenseNet. Standard measures such as sensitivity, specificity, accuracy, error rate, 
False Omission Rate (FOR) and False Discovery Rate (FDR) were used for evaluation. This paper is 
organized as follows: A few recent research papers related to vehicle type classification are surveyed 
in section 2. The details of the proposed multi-objective ACO with the DNN approach are given in 
section 3. Section 4 discusses the experimental analysis of the proposed approach. The conclusion 
of this research work is presented in Section 5.
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Literature Survey
This section provides an overview of relevant literature where the computer vision-based system 
for vehicle classification involves many components such as preprocessing, feature extraction and 
classification. Traditionally, many approaches involve pre-processing such as background subtraction 
and possibly transformations of the image intensities, and subsequently feature extraction followed 
by classification. More recently, a significant amount of literature relates to the use of Deep Neural 
Networks for object detection and image classification tasks.

A variety of features have been proposed in the literature for object detection include the Haar-
like features used in an AdaBoost framework proposed by Viola and Jones (2001) for face detection, 
Histogram of Oriented Gradients (HoG) proposed by Dalal and Triggs for pedestrian detection (2005), 
Local Binary Pattern (LBP) (Ojala et al., 1996), Gabor filters (Gabor, 1946) and Local optimal-
oriented pattern (LOOP) (Chakraborti et al., 2018). Typically, many of these feature descriptors are 
low-level informative features that capture few texture information. These features individually are 
not discriminative enough but several such features generated from various regions of the image 
can be combined in a suitable classification framework to provide good discrimination between the 
object classes. Many of these feature descriptors have also been used for vehicle classification. For 
instance, Yan et al. (2016) used the Histogram of Oriented Gradients (HoG), along with an AdaBoost 
classifier framework for vehicle classification. Wang et al. (2019) implemented a new Spatio Temporal 
Sample Consistency (STSC) algorithm for enhancing the efficiency of background subtraction in 
complex scenes. The developed algorithm includes two main steps (i) vehicles were identified from 
the interference of illumination variation and then the shadow of vehicles was recognized after 
vehicle identification, (ii) feature level fusion method was utilized for classifying vehicle types and 
pedestrian utilizing vehicle symmetry, area, face feature, and plate number. The developed algorithm 
performance was validated on three datasets; MIO TCD, Beijing Institute of Technology (BIT) 
vehicle, and CDnet 2014. The vehicle type classification and motion vehicle detection were helpful 
in numerous applications such as post-event forensics, anomaly recognition, activity recognition, car 
counting, and vehicle tracking. However, the developed STSC algorithm attained lower accuracy in 
multi-class classification.

Zhuo et al. (2017) utilized Convolutional Neural Network (CNN) for vehicle classification which 
consists of two phases such as fine-tuning and pre-training. In the pre-training phase, GoogLeNet 
was utilized to obtain the initial model with connection weights. In the fine-tuning phase, the initial 
model was fine-tuned on ImageNet Large Scale Visual Recognition Challenge 2012 (ILSVRC-2012) 
dataset for obtaining the final classification model. The ILSVRC-2012 database includes six vehicle 
categories namely, van, bus, motorcycle, car, truck and minibus. The experimental validation 
shows that the developed model significantly improves the feature extraction and classification 
performance. In contrast, CNN models need a huge amount of data for better classification and are 
also computationally expensive. Liu et al. (2017) presented DNN with a balanced sampling model to 
classify the imbalanced data or different vehicle categories bus, truck, car, etc. which were collected 
from the visual traffic surveillance sensors. The developed model includes two phases, (i) data 
augmentation with balanced sampling was utilized for alleviating the unbalanced dataset concern, 
and (ii) an ensemble of CNN models with dissimilar architecture was constructed for training and 
testing the database. The balanced sampling data augmentation method was used to decrease the 
classification bias. In this paper, the performance of the CNN model was analyzed on the MIO TCD 
dataset. In a few instances, the CNN model failed to attain better classification performance, due to 
missing object details and blurred images.

Wang et al. (2019) developed a new vehicle type classification model based on deep learning; 
faster Region CNN (R-CNN). In this work, the convolutional layer was sharpened using a region 
proposal network that significantly diminishes the computational time. This literature study report 
accuracy of 90.65 and 90.51% to cars and trucks respectively. The developed method not only time-
saving but also has more robustness and higher accuracy based on experimental results. Derrouz et 
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al. (2019) implemented a 2-layer vehicle type classification system based on 3D parameters and local 
features of the vehicle. The disparity map developed from stereo images was utilized to extract the 
3D feature vectors of the vehicles in the first layer. The extracted 3D feature vectors were utilized to 
calculate the length, width, and height of the vehicles. Then, a gradient-based methodology was used 
to extract the 2D features and a dimensional reduction algorithm was used for decreasing the extracted 
feature vectors size in the second layer. Both the 2D and 3D feature vectors were fused to construct 
the final feature vector, which was given as the input to the classifiers to classify the vehicle types. 
In this work, Moroccan and BIT databases were used to validate the performance of the developed 
model. The 2D feature extraction was accomplished using gradient-based features, which were not 
enough to classify the dissimilar type of vehicles. Also, Luo et al. (2018) focused on motor vehicle 
localization and classification by introducing a new MIO TCD database. The MIO TCD database 
is a large database that includes 11 traffic object classes like background, car, work van, pedestrian, 
bus, pickup truck, single-unit truck, bicycle, non-motorized vehicle, articulated truck and motorcycle.

Dong et al. (2015) implemented a semi-supervised CNN model for vehicle type classification. 
In this work, a sparse Laplacian filtering technique was used to capture the discriminative and rich 
information of the vehicles from a large amount of unlabeled data. Additionally, a softmax classifier 
was trained by multi-task learning with a limited amount of labeled data. Unlike existing models, the 
developed model automatically learns better features for the classification task, where the learned 
features were discriminative enough to attain better performance in complex scenes. They used the 
BIT vehicle database to validate the performance developed model. The experimental outcome 
shows that the developed model attained significant performance in vehicle type classification in 
light of accuracy. Due to the factors like illumination conditions, the CNN model does not encode 
the orientation and position of the vehicles, which was a major concern in vehicle type classification. 
Liu et al. (2018) presented a semi-supervised pipeline model for vehicle type classification, which 
was the combination of DNN and data augmentation based on Generative Adversarial Nets (GANs). 
The developed model includes three phases, at first GANs were employed to generate the adversarial 
samples. In the second phase, the CNN model was used for training the original imbalanced dataset 
and then sample selection was carried out for filtering the lower quality adversarial samples. Finally, 
an ensemble model was used for vehicle type classification. In the experimental phase, the MIO TCD 
dataset was used to demonstrate the efficiency of the developed model. This proposed model was 
compared with two networks namely ResNet and Inception.

Akilan, et al. (2017) has analysed the effect of combining high level features with multi deep 
ConvNets for scene or object classification. In this literature, three pre trained ConvNets were exploited 
as the feature extractors, and an individual hidden layer was adopted for transforming the higher level 
feature space into lower dimension feature space, and finally the feature vectors were combined for 
harnessing the rich cues of the individual features. In addition, Akilan, et al. (2018) extract CNN 
features from three pre-trained models such as Inception-V3, VGG-16, and AlexNet. The feature 
vectors from the single CNN model were mapped into a common sub-space, and then embedded 
by utilizing arithmetic rules for constructing fused feature vectors. Experimental analysis showed 
that the multimodal CNN feature fusion technique was well suited for image classification tasks. 
However, the pre-trained model selects fixed data sometimes that may leads to poor classification 
performance. In order to address the above stated concerns, a new model is proposed in this paper 
for vehicle type classification.

Proposed Approach
The implementations of the deep neural networks is demonstrated in various image classification 
tasks, but the limitation of the requirement of a significantly large amount of training data is still not 
addressed. While data augmentation techniques could be used to generate more data from unlabeled 
images, this will still not completely overcome the limitation with respect to providing a sufficient 
number of training images for a deep neural network. A methodology is proposed in this research to 
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address the aforementioned concerns in vehicle type classification from images. The workflow of 
the proposed model is given in Figure 1.

Datasets Description
In this research work, the MIO TCD classification database and a toll booth dataset are used for 
experimental investigation and the detailed explanation of the datasets is given as follows:

MIO-TCD Dataset
The MIO-TCD classification dataset comprises 648,959 lower resolution images, which includes 11 
categories like background, car, work van, pedestrian, bus, pickup truck, single-unit truck, bicycle, non-
motorized vehicle, articulated truck, and motorcycle, where the statistics of MIO-TCD classification 
dataset is given in Table 1. In MIO TCD dataset, objects are pictured in different sizes and recorded 

Figure 1. Workflow of the proposed model
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in different view angles and time periods (Luo et al., 2018). The sample images of MIO-TCD dataset 
is shown in Figure 2.

Toll Plaza Dataset
The Toll plaza dataset includes multiple video sequences of different lanes of a toll plaza on a highway. 
The total length of each video sequence is around two minutes and the frame rate is 25 frames per 
second. This dataset includes five categories which are tagged as bike, car, bus, pickup truck and 
lorry. Sample images of different vehicles are shown in Figure 3. In this dataset, 80% training (12000 
images) was used for training and 20% (3000 images) for testing.

Table 1. Size of each category in the MIO TCD database

Category Training Testing

Background 160,000 40,000

Car 260,518 65,131

Work van 9,679 2,422

Pedestrian 6,262 1,565

Bus 10,316 2,579

Pickup truck 50,906 12,727

Single unit truck 5,120 1,280

Bicycle 2,284 571

Non-motorized vehicle 1,751 438

Articulated truck 10,346 2,587

Motorcycle 1,982 495

Total 519, 164 129,795

Figure 2. MIO TCD database, a) articulated truck, b) work van, c) pickup truck, d) single-unit truck, e) car, f) bicycle, g) motorcycle, 
h) pedestrian, i) bus, j) non-motorized vehicle, k) background
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Data Pre-processing and Object Detection
After data collection, image pre-processing is accomplished using the Camera Response Model 
(CRM) proposed in (Ying et al., 2017) to enhance the visual quality of the images. The CRM is 
applied to help in extracting the relevant information from the images for discriminating between the 
classes. The CRM includes two components; brightness transformation and camera response function. 
Initially, the two frames p0 and p1 are selected from the video sequences to calculate the brightness 
transformation function. Further, gamma value is utilized to represent the linear amplification of the 
image pixel values, which are closely related to real exposed image pixels that are mathematically 
stated in equation (1).

i g i k i
1 0 0
= ( ) =, β γ 	 (1)

where, γ  andβ  are denoted as the brightness transformation parameters, which are closely 
related to the exposure ratio k . Then, the camera response function f E( )  is employed to identify 
the relation between γ  andβ  values, which is mathematically indicated in equation (2).

f kE f E( ) = ( )β
γ

	 (2)

If γ ≠ ( )1, f E  becomes a two-parameter, non-linear function. If γ ≠ ( )1, f E  becomes a power 
function, which perfectly fits the camera. After pre-processing the images, a Gaussian Mixture Model 
(GMM) based approach is used to detect the vehicles from the images. The GMM is a parametric 
probability density function, which represents a weighted sum of Gaussian component density (Zhang 
et al., 2016). Usually, GMM models continuous features in image classification systems. A pre-
processed and vehicle-detected images are graphically stated in Figures 4 & 5.

Figure 3. Tollbooth dataset, a) bus, b) pickup truck c) car d) lorry, e) bike

Figure 4. a) Input image, b) pre-processed image and c) vehicle detected image
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Feature Extraction
After detecting the vehicles, the region corresponding to the detected vehicle is cropped and resized 
to 64 x 64. The feature extraction is carried out on the resized 64x64 images by utilizing Gabor 
features (Khan et al., 2016), HOG (Liu et al., 2018) and LOOP (Dong et al., 2015). The Gabor 
features are useful for analyzing the texture patterns of the images. Also due to a more general set 
of parameters (i.e. more degrees of freedom), the Gabor features could provide higher flexibility 
in extracting the shape of the vehicles. Additional features were to capture low-level information 
relevant to classification. The Histogram of Oriented Gradients (HoG) feature descriptor operates on 
localized cells and upholds the geometric and photometric transformations within a local region, this 
could help in extracting the structural and visual properties of the objects of interest (vehicles in our 
case). The LOOP is a binary descriptor that is derived from Local Binary Pattern, where it encodes 
the rotation invariance of the objects. Gabor features were run at multiple scales and orientations 
that yielded 10240 features, along with the supplementation of 1764 HoG features and 256 LOOP 
features, which yields a total of 12260 features for each candidate image. After extracting the feature 
vectors from the pre-processed images, feature selection is carried out using a multi objective Ant 
Colony Optimization (ACO) approach.

Feature Selection
Ant Colony Optimization (Parsons, 2005) is a metaheuristic optimization algorithm which originally 
inspired by the behavior of ants seeking a path between their colony and a source of food. ACO is 
originally proposed in the early 1990s, and since then has been used for many discrete optimization 
problems. ACO-based heuristics are quite popular for the Travelling Salesman Problem and similar 
problems such as the shortest route problem (e.g. (Sun et al., 2010)). Most implementations utilize 
a distributed positive feed-back parallel computing process, due to the ease of combining with other 
algorithms.

In this research work, a multi-objective version of ant colony optimization (ACO) is used for 
feature selection. At every cycle, each ant constructs a solution and then pheromone trails are updated 
in multi objective ACO by using negative ratio association and ratio cut (objective functions). Here, 
every extracted feature vector is associated with an amount of heuristic information based on the 
dependency degree. Practically, the heuristic information values are equal to zero or smaller than the 
largest one. On the basis of transient probabilityP t

r s
k
, ( ) , the features are selected probabilistically 

from the extracted feature vectors. The algorithm stops the iteration, when the termination condition 
is met. Generally, the termination condition is a maximum number of cycles or a given time limit. 
As mentioned earlier, the multi objective ACO algorithm select the relevant features from the extracted 

Figure 5. a) Image with multiple vehicles in a frame and b) Multiple vehicles detected image
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feature vectors that helps in improving the classification performance. The fitness function of multi 

objective ACO algorithm is fit
D
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The steps involved in the multi objective ACO algorithm are given below,
Initialize the population of ant colony on each edge τ

i
C0( ) = , where all the solutions are generated 

with random probability, as shown in equation (3).

C Randomly placed i l
l i
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where, τ
i
 is indicated as pheromone value, which is updated based on negative ratio association 

and ratio cut.
In the solution construction phases , thek
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ant at time t  is positioned r  using equation (4).
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Step 3: 	 Terminate if termination criteria is reached, or else go to the next step.
Update the pheromone intensity by a mutate operator as indicated in the equations (6) and (7); 
τ τt t( ) → +( )1 .

τ τ τ τ τt randomly placed
l i( ) = ( ) =
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where, r  is represented as random number, which has the range of 0 1.

  and then go to step 2. 

The number of features computed for each frame is 12260. Using the multi-objective, the number of 
these features is reduced to 3678. The parameter setting of multi objective ACO algorithm is indicated 
as follows; number of ants is 100, maximum uncovered cases is 10, evaporation rate is 0.15, number 
of rules converged is 10, α=1, and β=1.

Classification
The topmost ranked 3678 features (30% of total) selected by multiobjective ACO are fed as inputs 
to a classifier. These derived features reduce the risk of overfitting and speeding up training (and 
testing). In this experiment, a deep neural network of dimensions 3678 - 500 - 250 - 6 was used 
for classification, the output layer was a softmax layer with 6 nodes corresponding to 6 classes (5 
vehicle classes + background). Multiple autoencoders were trained and used to initialize the layers 
of the deep neural network. In the Matlab toolbox, these multiple autoencoders were called stacked 
autoencoders. However, a ‘stacked autoencoder neural network’ has different meanings with respect 
to different contexts, therefore in this research paper, the term Deep Neural Network (DNN) itself 
will be used for further discussion.

The deep neural network; stacked autoencoder consistently performed better than all other 
classifiers. In another set of experiments, different optimizers were used for feature selection and 
then fed as inputs to the stacked autoencoder deep neural network. All the above experiments are 
described in detail in section 4. Here, a brief general description of neural networks and autoencoders 
is given below. A neural network typically comprises an input and output layer along with multiple 
hidden layers and can be described mathematically by the equations (8) and (9).

Z y W b
l l l l( ) −( ) ( ) ( )= +1 	 (8)

y g Z
l l( ) ( )= ( ) 	 (9)

where, l L∈ 

1,...  is the l th layer, y l−( )1  is represented as input to layer l and output of the previous 

layer l −1 , g .( )  is a nonlinear activation function, y 0( ) is denoted as input to a neural network model, 

y
L( ) is the final layer output, W R

l n n( ) ×∈ 1 2  is a matrix of learnable weights and biases and y R
l n( ) ∈ 0  

is denoted as the output layer. In this experiment, ReLU is used as an activation function for hidden 
layer nodes and softmax is used as activation for the output layer to provide a probability interpretation 

of the classifier output. If = z z zK
l L L
1 2( ) ( ) ( )





, ,...  is the output vector of layer L (the output layer), the 

softmax transformed outputs are mathematically in equation (10).

soft Z
Z

Z

L k

kk

K
max

exp

exp

( )

=

( ) =
∑ 1

	 (10)

whereK  is indicates as number of output classes. Cross entropy loss is used in this DNN 
classification model. Mathematically, the cross-entropy loss is written as in (11).
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C y k y
k

K

k

L= − ∧ ( )=

( )∑ log

1
	 (11)

where, y L( )  is indicated as model output, and y k
k

∧ ∈ { }0 1,  is stated as the encoded label. An 
autoencoder (Hinton & Salakhutdinov, 2006) is a neural network, which is designed to learn a low 
dimensional encoding of the input. An autoencoder usually employs a bottleneck architecture and 
can be considered to have two phases, namely encoder and decoder. A standard autoencoder with a 
single hidden layer can be specified by the equations (12)

h a W x and x a W h
e e d e
= ( ) = ( )1 2

� 	 (12)

wherex  is stated as the input feature vector and x� is the reconstructed output, W
e
 and W

d
 are 

the matrices representing the linear combination of inputs for the encoding and decoding sections 
respectively. The h

e
is the output of the bottleneck layer and this can be considered as the low 

dimensional representation of the input feature vector.
The autoencoders are typically used in an unsupervised setting for dimensionality reduction and 

also used for the purposes such as pre-training layers of a neural network. A Stacked autoencoder 
refers to an architecture where multiple autoencoders are trained and the feature vectors thus obtained 
are used as inputs to the next layer of the neural network. For instance, the first autoencoder is trained 
by input data and the learned feature vector obtained is used as the input for the first hidden layer, 
and so on. After all the hidden layers are trained this way, the backpropagation algorithm is used to 
minimize the cost function and update the weights with labeled training set to achieve fine-tuning. The 
parameter setting of DNN is given as follows; a number of classes are 11 and 6 for the two datasets, 
sparsity regularization is four, sparsity proportion is 0.15, L2 weight regularization is 0.004, number 
of input and output layers is one each and number of iterations is 500.

Experimental Results

In this research, MIO-TCD and toll booth datasets are used in the experiments. The performance 
evaluation is done using an 80/20 train/test split. The MIO-TCD dataset consists of 648,959 lower 
resolution images in that 519,164 images (80% of data) are utilized for training, and 129,795 images 
(20% of data) are used for testing. In toll booth dataset, the total number of images are 15000 in that 
12000 images are used for training and 3000 images are used for testing.

On MIO-TCD database, without feature selection, the hybrid feature extraction achieved 96.26% 
of accuracy, whereas the individual features, namely HOG, Gabor and LOOP achieved accuracies of 
91%, 87.89% and 90.44%, respectively. On toll booth dataset, the hybrid feature extraction without 
feature selection achieved 84.48% of accuracy, where the individual features; HOG, Gabor and LOOP 
attained 81.4%, 76.96% and 82% of classification accuracy. These results suggested that the HoG and 
LOOP features improves classification accuracy, but the combined set of features is better than any 
individual features. For all remaining experiments, the Gabor, HoG and LOOP features are combined 
and then feature selection is carried out by multi-objective Ant Colony Optimization (ACO) approach. 
The top 30% of features are selected based on ranking provided by the optimizer instead of the full 
set of combined features. Additionally, the performance of DNN is compared with the performance 
of other classifiers using the same set of hybrid features and these results are discussed in section 4.1. 
The DNN classifier is used with different optimizers for feature selection (same set of initial hybrid 
features) and these results are described in section 4.2. Further, the results of the proposed model 
on MIO-TCD dataset is compared with the existing methods like ensemble deep learning approach 
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(Liu et al., 2017), AlexNet (Luo et al., 2018), Inception V3 (Luo et al., 2018), ResNet 50 (Luo et al., 
2018), VGG 19 (Luo et al., 2018), Xception (Luo et al., 2018), DenseNet (Luo et al., 2018) and GAN 
based deep ensemble model (Liu et al., 2018), which is described in section 4.3.

In this research work, MATLAB 2019a environment is used for all experiments, which are run 
on a machine with 128 GB RAM, 3 TB hard disk, Windows 10-64 bit operating system and Intel i9 
processor. The MIO TCD classification and toll booth datasets are used for validating the proposed 
model performance in terms of sensitivity, specificity, accuracy, error rate, FDR and FOR. The 
mathematical expressions for sensitivity, specificity, accuracy, error rate, FDR and FOR are denoted 
in the equations (13) - (18).

Sensitivity
TP

FN TP
=

+
×100 	 (13)

Specificity
TN

FP TN
=

+
×100 	 (14)

Accuracy
TN TP

TN TP FN FP
=

+
+ + +

×100 	 (15)

Errorrate accuracy= −100 	 (16)

FDR
FP

FP TP
=

+
×100 	 (17)

FOR
FN

TN FN
=

+
×100 	 (18)

Here, true negative is indicated as TN , false negative is represented asFN , true positive is 
stated as TP  and false-positive is indicated as FP .

Quantitative analysis with multiple classifiers
The performance of the proposed model is analyzed on both MIO TCD classification database and 
toll plaza dataset. The proposed model performance is compared to multiple classification techniques; 
random forest, Multi Support Vector Machine (MSVM), K-nearest neighbor (KNN) and DNN. 
The performance metrics; sensitivity, specificity, accuracy, FDR, and FOR of the proposed model 
on both MIO-TCD and toll booth datasets are reported in Table 2. The performance of multiple 
classifiers concerning sensitivity, specificity, accuracy, FDR, and FOR are graphically represented 
in the Figures 6 and 7.
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Table 2 shows that the DNN classifier attained 97.88% of classification accuracy on MIO TCD 
dataset which is higher compared to other classification techniques. Correspondingly, DNN classifier 
obtained better performance in vehicle type classification in terms of sensitivity and specificity related 
to other classification techniques. On toll booth dataset, DNN classifier achieved accuracy of 85.45%, 
sensitivity of 91.42% and specificity of 82.56% on toll booth dataset, which are higher compared to 
other classification techniques like random forest, MSVM, and KNN. Table 2 shows that the DNN 
classifier achieved 1.12% of FDR and 0.52% of FOR on MIO TCD database, which is significantly 
lower compared to other classification techniques such as random forest, MSVM, and KNN. In toll 
booth dataset, DNN classifier attained 12.65% FDR, and 0.87% FOR. The performance of the DNN; 
stacked autoencoder neural network classifier is better than that of other classification techniques. The 
proposed model consumed 0.88 seconds to detect vehicles from each frame on MIO TCD dataset. 
In addition, the proposed model consumed 0.94 seconds to detect vehicles from each frame on toll 
booth dataset, and the memory footprint of dissimilar classifiers is denoted in figure 8. The confusion 
matrix of MIO-TCD and toll booth datasets are graphically represented in the figures 11 and 12.

Quantitative Analysis of the Proposed Model with Multiple Optimizers
In this section, the performance of the proposed hybrid features + multi-objective ACO is compared 
to the multiple existing optimization techniques such as firefly optimizer (Chou & Ngo, 2017), 
Particle Swarm Optimizer (PSO), and Grey Wolf Optimizer (GWO). In Table 3, the proposed model 
performance is analyzed using sensitivity, specificity, and accuracy on both MIO-TCD and toll booth 
datasets. As shown in Table 3, the multi-objective ACO algorithm with DNN classifier attained a 
classification accuracy of 97.88%; 98.2% sensitivity and 97.9% specificity, which are higher compared 
to other optimization algorithms on MIO-TCD database. On toll booth dataset, the multi-objective 
ACO algorithm with the DNN classification technique achieved classification accuracy of 85.45%, 
91.42% sensitivity, and 82.56% specificity. The performance of multiple optimizers in terms of 
sensitivity, specificity, and accuracy is graphically represented in Figure 9. In the confusion matrix 
shown in Figure 12, the percentage of misclassification of buses as cars is more compared to the other 

Figure 6. Comparison of multiple classifiers
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misclassifications, and one such image is shown in Figure 13. The proposed model showed 2%-25% 
improvement in vehicle type classification compared to other optimizers. The parameter settings of 
firefly optimizer, PSO, and GWO algorithms are represented as follows. The population size and 
the number of iteration fixed in GWO and firefly optimization algorithm are 30, and 100 along with 
α=0, β=1, and γ=0.2. Further, the PSO algorithm has population size of 20, number of iteration is 
100, and the initial weight size is 0.2.

In Table 4, the proposed model performance is analyzed using error rate, FDR and FOR on 
MIO TCD and toll booth dataset. On MIO TCD database, the multi-objective ACO algorithm with 
DNN classification technique attained 2.12% of error rate, 1.12% of FDR and 0.5% FOR, which has 
a lower error value compared to other optimization approaches. Meanwhile, multi-objective ACO 
with DNN classifier showed better performance on toll booth dataset by means of error rate, FDR and 

Figure 7. Graphical analysis of multiple classifiers by means of FDR and FOR

Table 2. Performance analysis of multiple classifiers in terms of sensitivity, specificity, accuracy, FDR, FOR

Database Performance 
measures

Random forest MSVM KNN DNN

 
MIO TCD classification 
dataset

Sensitivity (%) 93.50 95.20 98.09 98.21

Specificity (%) 90.00 96.36 80.02 97.92

Accuracy (%) 70.45 96.92 74.09 97.88

FDR (%) 41.94 5.23 15.79 1.12

FOR (%) 1.01 0.64 1.99 0.52

Toll booth dataset Sensitivity (%) 85.54 89.45 80.38 91.42

Specificity (%) 77.19 81.45 78.67 82.56

Accuracy (%) 73.18 84.23 79.65 85.45

FDR (%) 39.03 16.28 13.28 12.65

FOR (%) 1.19 1.26 1.22 0.87
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Figure 8. Memory footprint of dissimilar classifiers

Table 3. Performance analysis of multiple optimizers with respect to accuracy, sensitivity, specificity

Feature Optimization 
Algorithms

Datasets Performance measures (average value)

Accuracy (%) Sensitivity (%) Specificity (%)

PSO MIO TCD 
classification 
database

62.27 87.50 70.00

Firefly 73.18 94.50 85.34

GWO 85.45 96.00 90.53

ACO 92.27 97.23 95.78

Multi objective ACO 97.88 98.21 97.92

PSO Toll booth 
dataset

58.12 85.19 69.88

Firefly 72.15 91.76 84.18

GWO 83.26 93.12 89.22

ACO 90.45 96.13 95.28

Multi-objective ACO 85.45 91.42 82.56
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FOR. The performance of multiple optimizers concerning error rate, FDR, and FOR is graphically 
indicated in Figure 10.

Comparative analysis of proposed approach and 
standard neural network architectures
Table 5 indicates the comparative analysis of the proposed multi-objective ACO with the DNN 
approach and existing neural network architectures. Liu et al. (2017) developed DNN with a balanced 
sampling model to classify different vehicle categories. In this literature, the performance of the 
developed model was investigated on the MIO TCD database. The developed model attained 88.4% 
recall and 97.76% precision on average. Luo et al. (2018) focused on motor vehicle localization and 
classification by introducing a new dataset; MIO TCD. In this literature, the introduced database 
was validated on six standard systems; AlexNet, Inception V3, ResNet 50, VGG 19, Xception, and 

Table 4. Performance analysis of multiple optimizers with respect to error rate, FDR and FOR

Feature optimization 
algorithms

Datasets Performance measures (average value)

Error rate (%) FDR (%) FOR (%)

PSO MIO TCD 
classification 
database

37.73 64.10 3.31

Firefly 26.82 39.29 1.56

GWO 14.55 30.77 1.03

ACO 7.73 9.96 0.82

Multi objective ACO 2.12 1.12 0.52

PSO Toll booth dataset 41.88 60.12 3.12

Firefly 27.85 35.70 1.43

GWO 16.74 28.47 1.26

ACO 19.55 19.78 1.66

Multi objective ACO 14.55 18.65 1.07

Figure 9. Performance of multiple optimizers by means of sensitivity, specificity, and accuracy
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DenseNet in light of mean precision and accuracy. Liu et al. (2018) developed a semi-supervised 
pipeline model for motor vehicle type classification, which was the combination of DNN and data 
augmentation based on GANs. In the experimental phase, the MIO TCD database was utilized for 
validating the efficiency of the developed model in light of mean precision and mean recall, where 
the developed model achieved 93.55% of mean precision and 90.74% of mean recall. The proposed 
model achieved good performance in vehicle type classification compared to the above-stated existing 
models. The proposed model; multi-objective ACO with DNN significantly reduces the dimension 
of extracted feature vectors and helps in attaining better classification performance.

Figure 10. Graphical analysis of optimizers with respect to error rate, FDR and FOR

Figure 11. Confusion matrix of MIO TCD



International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

18

Figure 12. Confusion matrix of toll booth dataset

Figure 13. a) Input image and b) Image showing Misclassification of the bus as the car
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CONCLUSION

In this research, a multi-objective ACO with DNN approach is proposed to detect and classify vehicle 
types from images. The approach employs pre-processing using a camera reference model and Gaussian 
Mixture Model to localize the vehicle. The proposed approach utilizes a hybrid feature set consisting 
of HOG, Gabor features and LOOP features, which are extracted from the pre-processed images. 
Then, a feature selection is performed using an Ant Colony Optimization (ACO) approach and the 
selected features serve as inputs to Deep Neural Network. In the experiments, the proposed approach 
showed an improvement in classification accuracy ranging from 0.28% to 8.68% as compared to well-
known existing neural network architectures ensemble deep learning approach, AlexNet, Inception 
V3, ResNet 50, VGG 19, Xception, DenseNet, and GAN based deep ensemble model on a publicly 
available benchmark dataset. Although, deep neural networks consider the raw image data as input 
and act as feature extractors and classifiers. In this proposed method, the hybrid set of features helps 
in improving the performance of the feature extraction process and gives better performance than 
existing models using individual features. The proposed approach on the MIO TCD dataset is validated 
on toll booth dataset that contained images extracted from videos of a toll plaza located in the state 
of Karnataka, India. In future work, the feature extraction and feature selection can be analyzed by 
comparing deep learning methods to improve the challenges on a real-world dataset.
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Table 5. Comparative analysis of proposed model and results reported in the literature on the MIO TCD dataset

Methodology Mean precision (%) Mean recall (%) Accuracy (%)

Ensemble deep learning approach 
(Liu et al., 2017)

97.76 88.4 -

AlexNet (Luo et al., 2018) 89.9 82.6 89.2

Inception V3 (Luo et al., 2018) 88.9 88.8 96.2

ResNet 50 (Luo et al., 2018) 90.3 89.2 96.9

VGG 19 (Luo et al., 2018) 85.3 82.4 95.6

Xception (Luo et al., 2018) 90 90.8 97.6

DenseNet (Luo et al., 2018) 91.6 89.6 97

GAN based deep ensemble model 
(Liu et al., 2018)

93.55 90.74 -

Proposed model 98.09 98.21 97.88
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