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ABSTRACT

The Casse-tête board puzzle consists of an n×n grid covered with n2 tokens. n2 tokens are deleted 
from the grid so that each row and column of the grid contains an even number of remaining tokens. 
The size of the search space is exponential. This study used a genetic algorithm (GA) to design and 
implement solutions for the board puzzle. The chromosome representation is a matrix of binary 
permutations. Variants for two crossover operators and two mutation operators were presented. The 
study experimented with and compared four possible operator combinations. Additionally, it compared 
GA and simulated annealing (SA)-based solutions, finding a 100% success rate (SR) for both. However, 
the GA-based model was more effective in solving larger instances of the puzzle than the SA-based 
model. The GA-based model was found to be considerably more efficient than the SA-based model 
when measured by the number of fitness function evaluations (FEs). The Wilcoxon signed-rank test 
confirms a significant difference among FEs in the two models (p=0.038).
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INTRodUCTIoN

Puzzles are among the most popular ways in which to measure computers’ abilities to tackle problems 
that require intelligence. They have well-defined rules and a performance that can be objectively 
quantified via numeric scores or win-lose outcomes.

The present research is aimed at solving the Casse-tête problem (Talbi, 2009), which is a one-
player board puzzle that consists of a two-dimensional grid with a size of covered with n n n2 ×  
tokens (see Figure 1a). The idea of this puzzle is to delete m  tokens from the grid, with the number 
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of remaining tokens being even in each row and column of the grid (see Figure 1b). The configuration 
in Figure 1(c) is considered an incorrect solution because there is an odd number of tokens in each 
of row 2, row 3, column 2, and column 4. The search space size of this problem is given by:
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which is exponential in size. As far as the authors’ are concerned, this problem has not been approached 
in the previous literature.

A genetic algorithm (GA) (Holland, 1992) is a search and optimization metaheuristic inspired 
by the Darwinian principle of evolution through genetic selection and variation. A GA uses a decidedly 
abstract version of development operations to include solutions for a given problem (McCall, 2005). 
GAs have shown good performance in various NP-hard problems (Katoch et al., 2020), including 
puzzles that are similar in nature to Casse-tête, such as the n -queens and n -puzzle. 

This study involved designing a GA to solve the Casse-tête problem. Despite the abundance of 
available crossover and mutation operators, no operators were found that were suitable for this problem. 
Thus, the work involved proposing two new crossover methods to fit the problem: binary partially 
mapped crossover (BPMX) and binary modified order crossover (BMOC). Moreover, two mutation 
methods (binary swap [BSwap] and binary inversion [BInversion]) were used to commensurate 
with the chromosome representation. The fitness evaluation acted as a cost function, penalizing the 
individual with each row/column with an odd number of tokens. Additionally, the study involved 
evaluating the proposed model against a simulated annealing (SA)-based solution to the problem.

Figure 1. (a) Grid with n = 4  covered by 16 tokens (b) Example of the correct solution of the problem (c) Example of an incorrect 
solution of the problem, where n=4 and m=6

Figure 2. Example of matrix encoding for the board configuration in Figure 1(b)
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This article is organized as follows. First, it introduces the background of the problem. Second, 
a review of similar board puzzles, such as the n -queens problem and the n -puzzle problem, is 
presented. Third, the methodology for solving the Casse-tête problem is defined based on the 
requirements and algorithm design. Fourth, the dataset and experimental methodology are explained. 
Fifth, the experimental results are reported and discussed before conclusions are drawn.

BACKGRoUNd

Puzzles and board games have dominated artificial intelligence research since its inception in the 
1950s (Yannakakis & Togelius, 2018). An associated domain has emerged that comprises conferences, 
such as the IEEE Conference on Computational Intelligence and Games (CoG), as well as journals, 
such as the IEEE Transactions on Games (ToG). Puzzles are used as tools for teaching in artificial 
intelligence courses (Sturm, 2009; Uke & Thool, 2011). It is essential to see a diversity of games 
(beyond chess, Mastermind, or the n -queens) played using artificial intelligence tools. The puzzle 
is described in The Moscow Puzzles (Kordemsky, 1972), a translation of Kordemsky’s iconic 1954 
book, Matematicheskaya Smekalka (Mathematical Quick-Wits). The puzzle, which was originally 
called Keep it Evan, was restricted to 16 objects arranged in four rows (each with four objects). After 
six objects are removed, the remaining number of objects in each row and column is even. 

In 2009, Talbi (2009) proposed the use of GAs to solve this problem in its original form, without 
describing the methodology required. This stimulated the current work. However, the definition of 
the problem is generalized in this work so that the grid is of a variable size, n , and a variable number 
of objects, m , is removed. 

The problem was studied to obtain a deeper understanding of its properties and constraints. A 
brute-force algorithm was implemented to solve the Casse-tête problem for various small instance 
sizes. This helped with identifying the properties of the boards that had no solutions. A formal 
definition of the Casse-tête problem CT m

n ( )  of size n  with parameter m N∈  is presented in 
Constraints (1) through (5) as follows. Constraint 1 describes that matrix M  of size n n× . M

rc
 is 

a binary variable denoting the cell value of the rth  row and cth  column of M c n r n, , , , , ,∈ …{ } ∈ …{ }1 1 . 
M
rc

 equals 1 if a token exists in row r  column c , and 0 otherwise. The total number of tokens in 
the board is n m2 −  in Constraint 2. Constraints 3 and 4 indicate that the number of tokens must be 
even in every column and row, respectively. Constraint 5 indicates that if n  is even, then m  must 
be, too, and vice versa:
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This problem has a feasible solution if and only if n m mod2 2 0−( ) =� �  and n m2 ≥ . Otherwise, 
the problem is infeasible. Furthermore, the solution is never unique because the problem is highly 
symmetric. Swapping rows or columns or rotating the board does not invalidate a feasible solution.

In this research study, CT m
n ( )  is approached as a decision problem. Given a grid with size 

n n×  covered with n m2 −  tokens, is the number of tokens in each row and column of the grid 
even? It is evident that the validity of an instance of CT m

n ( )  can be evaluated in polynomial time. 
Checking whether the number of tokens is even in each of n  rows and n  columns of size n  can be 
done in a quantity of time that is quadratic in n.

The CT m
n ( )  is expressed as a conjunctive normal form (CNF) satisfiability problem (SAT), 

which has been proven to be NP-complete (Cook, 1971). The later problem is to determine if a 
satisfying truth assignment exists for a Boolean formula in CNF. Let Even ⋅( )  be true if its argument 
(either a row or a column of size n) contains an even number of tokens, and false otherwise. The 
CT m

n ( )  problem is about determining whether the conjunction in (6) is satisfiable:

Even row Even row Even row Even col Even col
n1 2 1 2( )∧ ( )∧ ∧ ( )∧ ( )∧ ( )∧� �∧∧ ( )Even col

n
 (6)

Without the loss of generality, for a row of size to contain an even number of tokens, note that 
the number of tokens must be either 0, 2, …, or, k where k is the largest even integer not exceeding 
n. The same argument holds for the columns. Let R

r i,
 denote that row r contains i tokens, and let 

C
c i,

 denote that column c contains i tokens. Each conjunct Even row
r( )  can be expressed as the 

clause of ( )
, , ,
R R R
r r rk0 2
∨ ∨ ∨� . Similarly, each conjunct Even col

c( )  can be expressed as the 
clause of ( )

, , ,
C C C
c c c k0 2
∨ ∨ ∨� . The CT m

n ( )  problem is then about determining whether the 
CNF in (7) is satisfiable. As an example, for a problem of size n = 4 , our problem is about determining 
whether the CNF in (8) is satisfiable:
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LITERATURE REVIEw

Yannakakis and Togelius (Yannakakis & Togelius, 2018) described a number of game characteristics 
from the artificial intelligence perspective. These include the number of players, stochasticity, 
observability, branching factor, and time granularity. The Casse-tête puzzle was not attempted in the 
literature; therefore, this study reviews metaheuristic-based solutions to board games that are similar to 
the Casse-tête puzzle in this section, specifically the n -queens, Mastermind, and n -puzzle. Like the 
Casse-tête, the n -queens and n -puzzle are single player games. In addition, they are completely 
deterministic. Mastermind is a two-player deterministic game. Considering observability, perfect 
information exists in the Casse-tête, n -queens, and n -puzzle. In Mastermind, the information is 
partially hidden. The branching factor is in the order of n2  in Casse-tête and n -queens. In Mastermind, 
the branching factor is also quadratic in the number of poles (Ville, 2013). The n -puzzle has a much 
smaller branching factor, between two (corner tiles) and four (center tiles). The amount of real time that 
passes is not of high importance in these games. However, time limits are enforced in some variants. 

Crawford (1992) represented a GA-based solution to the n -queens problem. The steps of this 
solution are as follows. First, a representation is formed where each chromosome is represented as a 
one-dimension array. The size of the array is n . Each cell represents a column and contains the 
location of the queen (row number). Second, two parents are randomly selected from the solution 
pool (possible solution). Third, a specialized crossover is performed; the parents are then used for 
the k -point crossover with duplicate numbers. A partially mapped crossover fixes this duplicate. 

Metaheuristics were compared for solving the n -queens problem (Masehian et al., 2013). These 
included two single solution-based metaheuristics, tuned simulated annealing (Kirkpatrick et al., 
1983) and local search (Korst & Aarts, 1989), and two population-based metaheuristics (two versions 
of scatter search, Glover, 1977). The effective swap, which is a new variant of the neighborhood 
generation method, was also proposed. The result is that local search outperforms the other algorithms. 
Simulated annealing proved to be slow and ineffective by comparison. A biogeography-based 
optimization (BBO) algorithm was used for the n -queens problem (Habiboghli & Jalali, 2017). BBO 
demonstrated better efficiency than that of particle swarm optimization–based algorithms but less 
efficiency than that of a GA-based algorithm for instances of sizes up to 100 queens. The GA was 
hybridized with a bat algorithm and showed superior performance in comparison with a pure GA 
and bat algorithms (Al-Gburi et al., 2018). Several other metaheuristics were investigated for the 
n -queens problem including the intelligent water drops algorithm (Shah-Hosseini, 2008), the modified 
GA (Heris & Oskoei, 2014), and the cuckoo search algorithm (Sharma & Keswani, 2013).

Berghman et. al. (2009) and Maestro-Montojo et. al. (2013) compared evolutionary algorithms 
for the Mastermind puzzle, and Bhasin and Singla (2012) solved the n -puzzle problem using a GA. 
The number of possible initial configurations is N +( )1 ! . Half of these configurations are solvable, 
whereas the other half are not solvable. Moreover, the researchers checked whether the configuration 
was solvable before beginning the search. In fact, they proposed a hybrid GA–iterative deepening 
algorithm. The Manhattan distance was used to calculate the fitness evaluation and the roulette wheel 
selection method to select parents. An algorithm called DSolving was proposed for the n -puzzle 
and showed good performance for instances of up to size 20 (Wan & Li, 2017). Browne and Maire 
(2010) used evolutionary search to synthesize and evaluate the quality of new combinatorial games, 
and Brown and Valtchanov (2017) used genetic programming (Koza, 1992) to randomly generate 
environments and opponents in the Diablo game. 

dESCRIPTIoN oF THE PRoPoSEd GA

This section explains the algorithm design, including the fitness function, chromosome 
representation, population initialization, parent selection, crossover, mutation, survivor selection, 
and the termination condition.
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A GA is a type of metaheuristic aimed at finding the optimal solution to a search problem on the 
basis of a theory of natural selection and evolutionary biology (Sivanandam & Deepa, 2007). Initially, 
Holland (1992) described his early research as a means of studying adaptive behavior. However, GAs 
have been considered to be optimization methods (Eiben & Smith, 2003).

Traditionally, GAs have had a structure as shown in Algorithm 1. numG  is the generation number 
given a population of µ  individuals that is initialized with random candidate solutions in numG -th generation 
G
numG  

. Then, fitness is calculated for individuals in G
numG

. Next, the algorithm goes into an iterative cycle, 
which begins with the selection of parents making up the intermediary population of G

numG
 individuals. The 

crossover between individuals and the mutation are performed. The fitness of new offspring is then computed 
and the next generation is formed accordingly. These steps are iteratively repeated until the termination 
condition has been achieved. This occurs when the maximum number of iterations is reached or when the 
results converge (Dorronsoro et al., 2014). A GA is defined using experiment components: chromosome 
representation, population initialization, fitness function computation, the parent-selection method, crossover 
and mutation operators, the survivor-selection method, and the termination condition.

Algorithm 1: Simple pseudocode for a GA

1: numG �← 0
2: G initialPopulation

numG
← ( )

3: Compute fitness G
numG

� ( )
4: repeat
5:    ′ ←G Selection G

numG numG
( )

6:    ′′ ′← ( )G Crossover G
numG numG

7:    Mutation G
numG
′′( )

8:    ′′ ′′← ( )+G Computefitness G
numG numG1

9: until population has converged or the maximum number of 
   generations is achieved

Fitness Function
The study was aimed at minimizing the number of rows and columns with odd numbers of tiles as 
given in (9):

Minimize 

� (( )� � ) (( ) )
r

n

c

n

rc
c

n

r

n

rc
M mod M mod

= = = =
∑ ∑ ∑ ∑+

1 1 1 1

2 2  (9)

where:

• n  is the dimension of matrix M .
• M  is a matrix of size n n× .
• M

rc
 is the cell value of the rth  row and cth  column.

Chromosome Representation
The representation is a binary matrix of size n n× , where a value of 0 represents a deleted tile and 
1 represents a present tile. For example, Figure 2 depicts the encoding of the board in Figure 1(b).
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Population Initialization and Fitness Function
The initial population was randomly generated in the study. Specifically, the study started by creating 
an n n×  grid covered with n2  tokens. It involved randomly selecting and deleting m tokens, where 
m n�≤ 2 . In addition, (9) was used to evaluate the candidate solution. Thus, a solution to the puzzle 
has a fitness value equal to zero.

Parent and Survivor Selection
Tournament selection was applied for parent selection in the study. GENITOR was used as the survivor 
selection method (Eiben & Smith, 2003).

Crossover
Various crossover operators are designed for chromosomes that encode permutation, such as modified 
order crossover (MOC) and partially mapped crossover (PMX, Davis, 1985; Goldberg & Lingle Jr., 
1985). However, none of these operators fits the particularities of the Casse-tête problem because 
the problem deals with a matrix of binary permutations. Thus, the study involved devising binary 
modified order crossover (BMOC) and binary partially mapped crossover (BPMX), which have been 
adapted to this representation.

BMOC (see Figure 3) makes one random vertical split in each parent, copying k  zeros from the 
left segment of the first parent (where k  is the number of zeros in the left segment of the first parent). 
Then, it copies the remaining m k−  zeros from the right segment of the second parent (where m  
is the total number of deleted tokens). If the number of zeros in the offspring is less than  m , the 
missed zeros are randomly added to the offspring. The same procedure is applied, with parent numbers 
being switched, to produce the second offspring. Pseudocode is shown in Algorithm 2. P

1
 and P

2
 

Figure 3. BMOC
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refer to parent 1 and parent 2, respectively. Similarly, O
1

 and O
2
 refer to offspring 1 and offspring 

2, respectively.

Algorithm 2: BMOC algorithm

1:  Input: n n×  matrices P
1
 and P

2

2:  Output: n n×  matrices O
1
 and O

2

3:  Initialize all cells of O
1
 and O

2
 with 1.

4:  Choose one random crossover point a  in P
1
 and P

2
, where 2 ≤ ≤a n .

5:  Copy zeros from left segment of P
1
 to O

2
 using the same order 

    in P
1
 and similarly from P

2
 to O

1
.

6:  Calculate number of zeros nZero in O
2
 and similarly in O

1

7:  Copy remaining m -nZero from right segment of P
2
 to O

2
 using 

    the same order of P
2
 and similarly from P

1
 to O

1

8:  Calculate number of zeros nZero in O
2
 and similarly in O

1

9:  if nZero m<
10: Add m nZero−  randomly to O

2
 and similarly to O

1
.

11: endif

BPMX (see Algorithm 3 and Figure 4) should have two crossover points at each parent to maintain 
the in-between segment. It copies in-between crossover points to the offspring, compares the number 
of zeros of offspring 1 and offspring 2 if they are not equal, and adds a missed zero to the one that 
has the least number of zeros in a particular position.

Figure 4. BPMX
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Algorithm 3: BPMX algorithm

1:  Input: n n×  matrices P
1
 and P

2

2:  Output: n n×  matrices O
1
 and O

2

3:  Initialize all cells of O
1
 and O

2
 with 1.

4:  Choose two random crossover points and in and, 
    where 2 ≤ a < b ≤ n - 1
5:  Copy values inside of portion (between a  and b ) from P

1
 to O

1
 

    and from P
2
 to O

2

6:  Calculate number of zeros nZero1 and nZero2  in O
1
 and O

2

7:  Copy values outside of portion (between a  and b ) from P
1
 to 

    O
2
 and from P

2
 to O

1

8:  if nZero nZero1 2�! =
9:     Replace extra zeros in P

1
 with ones in O

1
, where the 

       positions of replaced ones in O
1
 are the positions of zeros 

       in P
2
 and similarly in O

2
 

10: endif

Mutation
Mutation alternatives for permutation representation, such as swap and inversion (Eiben & Smith, 2003), are 
all designed for linear structures. Thus, they cannot be applied directly. In this research study, a modification 
of the mutation operators for linear permutation representation is needed; it enables the mutation of individuals 
represented as matrices. In the BInversion method, a subset is chosen at random and then reversed in the 
chromosome. This method is illustrated in Figure 5, when n = 4  and m = 8 . In the BSwap method, two 
positions are randomly selected and swapped. Figure 6 shows an example of a BSwap.

Termination Condition
The termination condition is satisfied when a workable solution that maintains that the number of tiles 
is even in each row and column on the board is found or when the execution reaches the maximum 
number of generations.

EXPERIMENTAL METHodoLoGy

For the purpose of achieving the research goal, a GA-based solution in which the dataset is 
artificially generated was proposed in this study. The solution consisted of µ  individuals, with 

Figure 5. Example of BInversion mutation



International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

10

each being generated randomly. The values of n  are in (10, 20, 50, 100) based on Crawford 
(1992). For each value of n , a set of three values of m  representing a small, medium, and large 
number of tiles is randomly removed. Based on an ad hoc design, 25% of n  is considered to be 
a small value of m , 50% of n  is medium, and 75% of n  is large. In addition, the study involved 
testing the models using only the values of n  and m  that generated a workable board. Stochastic 
algorithms were used; therefore, each run was repeated 10 times for each pair n m,( ) , and the 
average of these runs was reported. Table 1 shows the parameter values, namely the population 
size µ( ) , maximum number of generations numG( ),  tournament size q( ) , crossover probability 
p
c( ) , and mutation probability p

m( ) .
For the purpose of identifying the best combination of crossover-mutation operators, experiments 

were performed with four possible combinations separately:

Study 1: Uses BPMX crossover with BSwap mutation.
Study 2: Uses BPMX crossover with BInversion mutation.
Study 3: Uses BMOC crossover with BSwap mutation.
Study 4: Uses BMOC crossover with BInversion mutation.

In the study, the best-performing model among the four studies of GA-based solutions was 
identified and compared with the SA-based solution to the CT m

n ( )  problem (Study 5). Note that 
using SA to solve the Casse-tête problem had never before been conducted. This study also involved 
designing and implementing the SA-based solution to the CT m

n ( )  problem as follows. The same 
representation defined for GA was used for the state. The initial state was generated randomly. The 
study followed random swap as a move operator as well as the geometric cooling function, with α  
equaling 0.95 and n  being the initial temperature (Masehian et al., 2013). For determining the 
equilibrium state, the static strategy was followed (Talbi, 2009), with y  equaling 0.25 and the final 
temperature equaling 0.001. The termination condition was the same as that used for the GA model.

Next, for the purpose of measuring performance, the success rate (SR) (the percentage of 
successful runs over all runs) and the number of fitness function evaluations (FEs), which indicates 

Table 1. Values of parameters for GA experiments

Parameters μ numG q pc pm

Value 1,000 (for =10, 20, 50) 
10,000 (for =100) 10,000 10 0.8 0.01

Figure 6. Example of BSwap mutation
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the required amount of computing, were used in the study (Ville, 2013). In addition, the average 
elapsed time Time( )  was computed over all runs (tic toc MATLAB functions). Furthermore, a 
MacBook Pro 2.9 GHz processor and an 8-GB RAM MacOS 10.12 Sierra were used. Matlab R2016b 
update 4 was additionally used for programming, and IBM SPSS Statistics Base Package was for 
statistical analysis.

RESULTS

The study involved implementing four GA models that were obtained from the four crossover and 
mutation combinations defined in the experimental design section. A comparison of mutation 
operators is presented in combination with the BPMX crossover operator. Next, a comparison of 
mutation operators is presented in combination with the BMOC crossover. The comparison of 
crossover operators is then shown in combination with the BSwap mutation operator. The best 
GA model is evaluated against the SA model. Finally, a discussion of the results is presented. The 
results of the four GA studies are tabulated in Appendix A. Meanwhile, Appendix B tabulates 
the results for Study 5.

Comparison of Mutation operators in Combination with BPMX Crossover operator
This subsection uses Study 1 and Study 2 to compare the performance of the two proposed mutation 
operators: BSwap and BInversion. BPMX was the crossover operator in both studies. All parameters 
were identical in these studies (as defined in Table 1). Study 1 used the BSwap mutation operator, 
whereas Study 2 used the BInversion mutation operator. Both studies involved experimenting with 
board sizes n  in (10, 20, 50). For each value of n , three m  values were experimented with as 
defined earlier. Figure 7 shows the FEs obtained over all runs for each combination of n m,( ) . Figure 
8 shows the SRs for all sizes. As can be seen in Figure 8, no solution was obtained in Study 2 for the 
n m,( )  combinations of (20, 100) and (20, 200). Also, the GA in Study 2 did not generate a solution 

for any of the boards of dimension n = 50 . 

Figure 7. Number of FEs obtained in Study 1 and Study 2 over the course of all runs for each board size n  in (10, 20, 50) and in 
combination with (small, medium, large) percentage of removed tokens m
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Performance Analysis
Study 1:

 ◦ Effectiveness: The SR was 100% in every case.
 ◦ Efficiency: For FEs, when n n= =10 20, , and n = 50 , the most efficient result was that 

with the smallest value of m .
Study 2:

 ◦ Effectiveness: The SR was 100% only when n = �10 . It was 20%  at n = �20  and m = �20 . 
Otherwise, it was 0%. 

 ◦ Efficiency: For FEs, when n = 10  and n = 20 , the most efficient result was that with the 
largest value of m . When n = 50 , the values of FEs were 0  for all values of m . 

The outcomes of Studies 1 and 2 showed that the number of FEs was better in Study 2 (Figure 
7). However, Study 1 had a better SR. Study 1 was more effective than Study 2 was (Figure 8); thus, 
we concluded that BSwap mutation performs better than BInversion does in combination with the 
BPMX crossover operator.

Comparison of Mutation operators in Combination with BMoC Crossover operator
This subsection uses Study 3 and Study 4 to compare the performance of the two proposed mutation 
operators: BSwap and BInversion. However, BMOC was used as the crossover operator in both studies. 
Table 1 shows all parameters and operators used in these studies. The sizes for board n  are in (10, 20, 
50). Also, for each value n , the studies used three different values of m . Figure 9 shows the FEs obtained 
over all runs for each combination of n m,( ) . Additionally, Figure 10 shows the SRs for all sizes.

Figure 9 shows that the models in Study 4 did not generate a solution at n = 50 . As can be seen 
in Figure 10, when n = 20 , the SR decreased when m  increased in Study 4.

Performance Analysis
Study 3:

 ◦ Effectiveness: The SR was 100% in every case.
 ◦ Efficiency: Based on FEs, when n = 10 , the most efficient result was that with the smallest 

value of m , where n = 20  and n = 50  were medium values of m.

Figure 8. SRs obtained in Study 1 and Study 2 over the course of all runs for each size n  in (10, 20, 50) and in combination with 
(small, medium, large) percentage of removed tokens m
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Study 4:
 ◦ Effectiveness: The SR was 100% only when n = �10 . For n = 20 , it was 80% for the smallest 

value of m , 40% for the medium value of m , and 20% for the largest value of m.  When 
n = 50 , the SR was 0% because no solutions were found for all indicated values of m .

 ◦ Efficiency: For FEs, when n = 10 , the most efficient result was that with the smallest value 
of m . The most efficient result where n = 20  was that obtained with medium values of m.

The number of FEs was better in Study 3 (Figure 9). Additionally, Study 3 had a better SR 
(Figure 10). Study 4 was more effective than Study 3 was; thus, we conclude that BSwap mutation 
performs more powerfully than BInversion does in combination with the BMOC crossover operator.

Comparison of Crossover operators in Combination 
with BSwap Mutation operator
Based on earlier comparisons, the results of Study 1 outperformed Study 2. Similarly, the results for 
Study 3 were better than those of Study 4. In this step, we compare the best performing study from 

Figure 9. Number of FEs obtained in Study 3 and Study 4 over the course of all runs for each board size n with different 
combinations of m

Figure 10. SRs obtained in Study 1 and Study 2 over the course of all runs for each size n  in (10, 20, 50) and in combination 
with (small, medium, large) percentage of removed tokens m
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both sets: Study 1 and Study 3. Board sizes n  were in (10, 20, 50, 100). For each board size, three 
corresponding percentages m  of the number of tokens were removed. In these studies, we reported 
the elapsed time in seconds for board sizes n  in (10, 20, 50). For n � �=100 , the time was not reported. 
Figure 11 shows the FEs for n  in (10, 20, 50, 100) over all runs. 

The SRs obtained in both Study 1 and Study 3 were 100%. Both studies considered FEs, which 
was better for comparison with Study 5. The two studies were similar, so a Wilcoxon signed-rank 
test was conducted to choose the best. No substantive differences in FE values were found ( p=0.95); 
therefore, the average over all instances was used to obtain the following scores: Study 1: 1,140,980 
and Study 3: 1,144,602 (Appendix A).

The elapsed time was used as an additional performance measure. Figure 12 shows the elapsed 
time for each study. In size 10, Study 1 was faster than Study 2 was in the two combinations of (10, 
26) and (10, 50). In size 20, they were similar. In size 50, Study 3 took less time than Study 1 did 
in all cases.

Figure 11. Number of FEs obtained in Study 1 and Study 3 over the course of all runs for each combination of board sizes n  
(10, 20, 50,100) in combination with (small, medium, large) percentage of removed tokens m

Figure 12. Time obtained in seconds for Study 1 and Study 3 over all runs for each combination of board sizes n  (10, 20, 50) 
with three values of m
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Based on the FE metric, it was concluded that BSwap mutation in combination with the BPMX 
crossover operator performs more efficiently than BSwap does in combination with the BMOC 
crossover operator. Moreover, the combination of BSwap mutation and the BMOC crossover operator 
takes less time compared with the combination of BSwap mutation and the BPMX crossover operator.

Evaluation of Best GA Model Compared with SA Model
Based on earlier comparisons, the results of Study 1 were better than those of Study 3. This subsection 
compares the SA-based solution to the Casse-tête problem (Study 5) with the GA model in Study 1. 
Board sizes n  were in (10, 20, 50, 100). For each board size, the study involved testing three values 
of m  (small, medium, large) and removing the number of tokens. The measure was performed 
between two models via calculating SRs and FEs. Figure 13 shows the FEs for n  in (10, 20, 50, 100) 
over all runs. 

The study used the elapsed time as an additional performance measure for board sizes n  in (10, 
20, 50). Figure 14 shows the elapsed time for each study over all runs for each combination. In all 
sizes, GA took more time than SA did.

Performance Analysis

GA-Based Model (Study 1):
 ◦ Effectiveness: The SR was 100% in every case.
 ◦ Efficiency: For FEs, when n = (10, 20, 50, 100), the most efficient result was that with 

the smallest value of m . Based on the elapsed time, when n = 10  and n = 20 , the 
smallest value of m  yielded the best result. When n = 50 , the largest value of m  yielded 
the best result.

SA-Based Model (Study 5):
 ◦ Effectiveness: The SRs were 100% for board sizes of up to 50.
 ◦ Efficiency: Based on the FEs, when n = 10� and n = 50 , the most efficient result was that 

with the largest value of m . When n = 20 , the most efficient result was that with the 
medium value of m . When n = 100 , the output was obtained only for m = 2500 . Moreover, 
based on the elapsed time, n = ( )10 20 50, ,  returned the best results in less time with the 
largest value of m .

Figure 13. Number of FEs obtained in GA (Study 1) and SA (Study 5) over all runs for each board size n  in (10, 20, 50, 100) and 
in combination with (small, medium, large) percentage of removed tokens m
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dISCUSSIoN

The most effective studies were those using BSwap as the mutation. For example, in Studies 1 and 
3, the Casse-tête problem was solved even when n  increased. The studies using BInversion failed 
to produce solutions with larger values of n . A suitable explanation is that BSwap makes small 
changes, whereas BInversion selects a whole section of the board at random and reverses the 
chromosome, which makes larger changes.

Regarding the crossover operators, both BPMX and BMOC could solve Casse-tête problem. No 
clear difference was found in terms of the FEs. Therefore, the study used a Wilcoxon signed-rank test as a 
paired difference test. The results showed minimal differences between the two operators of the crossover; 
therefore, we chose BPMX based on the average of FEs because it required less computing than BMOC 
did in most cases. Similarities between the results of the two crossover algorithms might be due to the 
crossover operator’s aim of taking information from both parents. Thus, the produced offspring were similar.

The final step involved evaluating the selected GA model against the SA model, which is critical 
because it helps with determining which is more effective and efficient based on the SRs and FEs. 
Both models could solve the problem and have 100% SRs for board sizes of up to 50. However, as 
in Figure 13, the SA model requires more computing than the GA model does to produce a workable 
solution. Furthermore, Figure 14 shows that the SA model consumes less time. However, the GA 
model is more easily scaled to larger problem sizes. In fact, for board sizes n = 100 , only the GA 
was able to find a workable configuration for all examined instances. A possible explanation is that 
the GA has more to handle than the SA does, including a whole population and crossover, as well as 
the selection of parents and survivors. More trials were conducted with the SA according to the FEs. 
Consequently, the SA allocated greater focus to generating and trying new candidate solutions (with 
lower exploration ability compared with GA). The study revealed that the difference in FEs among 
the SA and GA models was statistically significant based on the Wilcoxon signed-rank test ( p=0.038). 

CoNCLUSIoN

The Casse-tête problem is an interesting puzzle that was not attempted prior to this study. The 
study investigated which chromosome representation is suitable for the problem and found that a 

Figure 14. Time obtained in GA (Study 1) and SA (Study 5) over all runs for each combination of board sizes n  (10, 20, 50) with 
three different values of m
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combination of three representations were necessary: (1) binary, (2) permutation, and (3) matrix. 
The study proposed crossover methods to fit the problem (BPMX and BMOC) as well as mutation 
methods (BSwap and BInversion). The fitness evaluation penalized individuals with odd numbers 
of tiles in rows or columns. The dataset was artificially generated for each run. The study generated 
a new random initial population. It then focused on comparing the GA with the rival algorithm (the 
SA) by using different performance metrics and relying on solid statistical tools. The proposed model 
outperformed the simulated annealing-based model for the Casse-tête problem in terms of efficiency 
(FEs) and effectiveness (SRs).

The research provides new evidence that the Casse-tête problem can be solved in a reasonable 
amount of time using GAs for further enquiry. It also showed results for puzzle sizes of up to 100. 
As the SA showed better efficiency for smaller instances, our next step would be to implement a 
mobile application version of the puzzle for small instances using the SA. For instances larger than 
size (n = 50 ), we intend to try other parameters for the SA, such as using a different cooling schedule, 
equilibrium state condition, or initial temperature to improve the scalability of the SA model. It is 
also possible to examine this using moves other than random swap that are suitable for permutation 
problems. Future research may investigate the design using metaheuristics, such as GRASP and tabu 
search, as well.
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APPENdIX A

The detailed results for Study 1 through Study 4 are shown in Table 2, including the number of fitness 
evaluations (FEs) success rates (SRs), and computational time in seconds, averaged over all runs for 
each combination of board sizes n  (10, 20, 50) with three different values of m .

Table 2. Comparison among GA-based studies

n m
Study 1 Study 2 Study 3 Study 4

FEs SR Average 
time (s) FEs SR FEs SR Average 

time (s) FEs SR

10

26 12002 100% 11.64 12002 100% 14202 100% 16.58 12602 100%

50 13402 100% 12.34 12002 100% 20602 100% 19.84 20202 100%

76 13202 100% 13.94 10602 100% 13201.8 100% 8.95 15402 100%

20

100 155602 100% 170.76 0 0% 162002 100% 133.55 3361252 80%

200 297402 100% 337.46 0 0% 155002 100% 160.2 104002 40%

300 275602 100% 317.75 136002 20% 497402 100% 504.38 145002 20%

50

626 2989802 100% 4367.39 0 0% 3809402 100% 3827.17 0 0%

1250 3437402 100% 7298.35 0 0% 3087202 100% 3514.15 0 0%

1876 3074402 100% 4139.89 0 0% 2542402 100% 2561.71 0 0%

Average 1140979.78 1852.17 42652 1144601.9 1194.0589 609743.67

Standard 
deviation 1528037.83 2712.20 62236.83 1541655.9 1621.17 1349069.1
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APPENdIX B
The detailed results for Study 5 are shown in Table 3, including the number of fitness evaluations 
(FEs) success rates (SRs), and computational time in seconds, averaged over all runs for each 
combination of board sizes n  (10, 20, 50) with three different values of m .

Table 3. Results for the simulated annealing (SA) Study

n m Study 5

FEs SR Average time (s)

10

26 15964.2 100% 0.4

50 18413.2 100% 0.54

76 15216.4 100% 0.23

20

100 531060.8 100% 10.47

200 69469.4 100% 12.6

300 426826.58 100% 9.54

50

626 28258587.6 100% 1374.19

1250 37389266.8 100% 2175.74

1876 28164018 100% 1381.83

Average 10543202.55 551.73

Standard deviation 15770838.33 850.91


