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ABSTRACT

Cloud computing has become the most attractive platform, which provides anything as a service 
(XaaS). Many applications may be developed and run on the cloud without worrying about platforms. 
It is a big challenge to allocate optimal resources to these applications and satisfy user quality of 
service requirements. In this paper, a deadline constrained time-cost effective salp swarm algorithm 
(DTC-SSA) is proposed to achieve optimized resource allocation. DTC-SSA assigns the user’s task 
to an appropriate virtual machine (Vm) and achieves a trade-off between cost and makespan while 
satisfying the deadline constraints. Rigorous examination of the algorithm is conducted on the various 
scale and cloud resources. The proposed algorithm is compared with particle swarm optimization 
(PSO), grey wolf optimizer(GWO), bat algorithm (BAT), and genetic algorithm (GA). Simulation 
results prove that it outperforms others by minimizing makespan, execution cost, response time, and 
improving resource utilization throughput.
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1. INTRODUCTION

Cloud computing is becoming an emerging era that provides significant computational assets via 
network using the pay-as-you-go model during the last decade. It has reshaped all computing models, 
such as grid computing, parallel computing, and distributed computing, by providing many services 
through the internet(Panda et al.,2017). Cloud computing has unique features such as on-demand any 
time self-service, rapid elasticity, and resource pooling pooling (Mell et al, 2011), which draws many 
people and businesses to hire cloud offerings to run their applications without knowing much about 
the underlying infrastructure. They can also build their computing platforms on virtual machines 
provided by the cloud.

In Cloud computing, infrastructure as a Service (IaaS) plays as the foundation block for Software 
as Service(SaaS) and Platform as Service(PaaS)(Bhardwaj et al.,2010). Amazon EC2, Digital Ocean, 
Microsoft Azure is the major IaaS providers. These service providers have different categories of the 
virtual machine, characterized based on configuration, price model, and QoS, from which clients 
can select as per their requirements. On the other hand, IaaS provider’s context, a clients’ request for 
service is periodic, and it is impossible to predict the type and no of VMs’ instance. Therefore, it is 
challenging for a service provider to satisfy clients’ requests with its resources while maintaining 
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promised QoS. A simple solution of this problem is that the service provider must buy resources in 
advance, but it is not cost-efficient (Brietland et al.,2011). Another way is Cloud Federation (Toosi 
et al.,2011), in which the service provider can borrow resources from another service provider. In 
cloud computing, task Scheduling is a crucial activity responsible for the task and suitable resource 
(Mao et al.,2015). It needs to find optimized results (Ullman.,1975).

Figure 1 represents the cloud computing model for task scheduling. There are five critical elements 
in this model (Kumar et al.,2019).

1) 	 Task request handler (TRH) - After submitting the user’s task request, TRH handles these requests 
and decides whether to accept or reject them. It forward selected requests to the controller node.

2) 	 Controller node(resource manager)- Resource manager(RM) handles all incoming and outgoing 
tasks from other units like TRH, scheduler, and resource monitoring unit as shown in figure 
1.RM acts like resource broker. It sends all jobs to the task queue for further processing.

3) 	 Mapped matrices- Tasks are analyzed based on priority, deadline, required CPU power and 
memory, and the number of resources needed. Then they are submitted to mapped matrices 
(MM), and so based on this information; MM can find suitable resources and satisfy the user’s 
QoS constraints.

4) 	 Scheduler- Task scheduler maps tasks with the best resource among a pool of available resources 
and optimizes QoS parameters using a scheduling algorithm. In this paper, Salp Swarm Algorithm 
(SSA) is used for scheduling.

5) 	 Resource monitoring Unit (RMU): RMU monitors all information related to virtual machines 
(VMs). After a time interval, it monitors the status of VMs, whether they are over-utilized or 
under-utilized, and transfers tasks from over-utilized VM to under-utilized VM.

During the allocation of appropriate resources to tasks, mainly four QoS requirements need to be 
satisfied, i.e., minimum execution time (makespan), minimum execution cost, minimum consumption 
of energy, and increasing the service provider’s profit. Task scheduling belongs to NP-complete, and 
heuristic algorithms cannot provide global optimum effectively for this. Many works are proposed 
(Sakellariouet al., 2004,Parsa et al.,2009, Kwok et al.,1996, Maheswaran et al.,1999) based on 
heuristic approaches. Heuristic algorithms are problem dependent, take “reasonable” computational 
time and look for “‘good enough’” solutions. In contrast, meta-heuristics are higher-level problem-
independent frameworks (Yang et al.,2009, Bianchi et al.,2009) that provide solutions for a wide range 
of problems and provide strategies to develop a lower-level heuristic algorithm. Many researchers are 
already addressed and proved that metaheuristic algorithms perform better (Laarhoven et al.,1992, 
Hilliard et al. 1988, Colorni et.al.,1994, Zhang et al.,2005). Day by day, they are getting popular due 
to their simplicity, accuracy, flexibility, and gradient-free nature. Some nature-inspired metaheuristic 
techniques are widely explored, e.g., Particle Swarm Optimization (PSO) (Eberhart et al.,1995) 
shows the social and natural behavior of swarm. The ant colony optimization (ACO)))(Colorni et 
al.,1991) simulates the ant’s behavior for searching the shortest path for food. Others in the literature 
are Cuckoo Search (CS) algorithm (Yang et al.,2009), Harmony Search(Geem et al.,2001), Artificial 
Bee Colony (ABC) algorithm (Karaboga et al. 2007), Bat Algorithm (BA)(Yang et al. 2010), Grey 
Wolf Optimizer (GWO) (Mirjalili et al.,2014).

Despite the excellence of these algorithms, No Free Lunch (NFL)(NFLWolpert et al.,1997)has 
proved that none of these algorithms can figure out all optimization problems. So there is always a 
scope for improvement in scheduling. It is the motivation of this proposed work.

Deadline Constrained Time-Cost effective Salp Swarm Algorithm for Task Scheduling in Cloud 
Computing (DTC-SSA). This algorithm is based on the natural behavior of salp while searching 
and navigating for food in the sea. It is a swarm-inspired collective algorithm that belongs to a 
stochastic class. The stochastic algorithm always finds distinct solutions for a problem. Because of 
this randomized behavior, stochastic algorithms can avoid local optima but are less reliable. Increasing 
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the total iterations can achieve reliability. (Mirjalili et al.,2017) proposed and proved the effectiveness 
of SSA on small, medium, and large-scale optimization problems.

In summary, the main contribution of the proposed work is discussed as follows:

•	 An efficient DTC-SSA is proposed to find an efficient trade-off between makespan and execution 
cost.

•	 The proposed algorithm effectively handle deadline of user request.
•	 DTC-SSA decreases the deadline violation rate.
•	 DTC-SSA is compared with GWO and PSO in terms of makespan, total cost, and average 

resource utilization.

The rest of this paper is organized as follows: Section 2 represents the related work, section 3 
represents the brief review of SSA, and section 4 discussed the design of the proposed algorithm. 
Section 5 shows the simulation setup and results of DTC-SSA and compares the existing algorithm 
in this section. Section 6 represents the conclusions of the paper.

Figure 1. Processing model of cloud computing for task scheduling (Kumar et al.,2019)
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2. MOTIVATION

In the commercial world, execution time and cost are two important factors that cannot be ignored, 
but they conflict with each other (Arabnejad et al.,2014). If someone wants to reduce the time, then 
more resources is needed, it attracts an extra cost, and if someone focuses on cost, it will improve 
execution time. Therefore, in the heterogeneous environment, the task must be scheduled so that the 
user’s defined deadline is satisfied with the minimization of the overall cost of the task, or execution 
time is minimized within the user’s defined budget. This paper focuses on finding a trade-off between 
makespan and cost while satisfying the user’s deadline constraint. It also optimizes the other QoS 
constraint like resource utilization.

3. RELATED WORK

In cloud environment, task scheduling is a tedious issue. This problem is NP-complete and because 
of this, deterministic algorithms cannot provide global optimum solution effectively for large-scale 
problems (R.Jain et al.,2017). Here in task scheduling, many metrics are present such as execution 
time, resource utilization, makespan, deadline, and cost. (Iranmanesh et al.,2020) presented an 
improved genetic algorithm with new genetic operators to optimize cost& makespan. Scheduling 
results of the HEFT heuristic are taken as the initial population for DCHG-TS(deadline-constrained 
and cost-effective hybrid genetic algorithm). Resource utilization is improved by using a load balancing 
routine. (Velliangiri et al.2021) combined genetic algorithm with Electro Search and presented a 
Hybrid electro search with genetic algorithm (HESGA) to optimize QoS parameters like makespan 
and cost of the multi-cloud. Simulation results show that HESGA outperforms others.

Author (Xavier et al, 2018) proposed a chaotic social spider algorithm stimulated through the 
foraging nature of social spider to minimize makespan with balancing the load. They compared CSSA 
with other meta-heuristic, e.g., GA, ACO, PSO, ABC, and proved that CSSA is more efficient than 
others. Jain (Jain p. et al.,2017) presented a survey of various load balancing aware meta-heuristic 
algorithms. In literature (Jain R et al.) presented a systematic review of some QoS-aware nature-inspired 
algorithms. (Alresheedi et al.,2019) proposed a multiobjective approach that is the hybridization of 
salp swarm and sine-cosine algorithms (MOSSASCA) to make the most of meantime before a host 
shutdown (MTBHS), to decrease power utilization. It also minimizes service level agreement violations 
(SLAV). The performance of MOSSASCA is measure with existing multiobjective meta-heuristics, and 
results showed that it outperforms others.(Jain et al.,2020) proposed QoS aware task SSA to minimize 
makespan and improve resource utilization. Simulation result proves that it outperforms others. (ZHOU 
et al.,2019) proposed an empirical forecast host detection algorithm (EFA) and a weighted priority 
VM selection algorithm (WPA) is grounded on historical data to reduce SLA violation and energy 
consumption. Traces of PlanetLab as a benchmark are used as a dataset. (Awad et al.,2015) presented 
an enhanced PSO algorithm to achieve load balancing, reliability with minimization of makespan. 
Proposed algorithm identifies the failure task and schedules them on lightly loaded virtual machine.
(Gill et al.,2016) proposed a PSO-based resource scheduling algorithm to scheduled heterogeneous 
workload. They optimized reliability, Resource utilization, and latency. (Jing et al.,2021) proposed 
a fault-tolerant scheduling algorithm while satisfying users’ requirements for service quality. A 
QoS-aware discrete particle swarm optimization (QoS-DPSO) is proposed to optimize reliability 
under budget and time constraints.(Liu et al.,2019) presented a hardware and software collaborative 
optimization strategy that minimizes energy cost under deadline constraints. In this paper, an algorithm 
is proposed to reduce energy costs for a heterogeneous computing system. They proposed a QRLC 
algorithm, which combines Q learning mechanisms with RLCO (Rapid local convolution optimization) 
algorithm.. They also conducted real-world experiments and proved that QRLC performs better than 
traditional GA. (Natesan et al.,2020) presented a Performance-Cost Grey Wolf Optimization (PCGWO) 
algorithm to optimize resource utilization. Author scheduled tasks under deadline constraints. (Bacanin 
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et al.,2019) proposed GWO based scheduling algorithm. They compared proposed work with ACO, 
min-min, and FCFS and proved that GWO performs better than others. (Brintha et al.,2020) proposed 
a bat-inspired algorithm to improve resource scheduling. It minimizes execution time and improves 
load balancing. (Sharma et al.,2019) enhanced the ACO(EACO) algorithm by arranging incoming 
tasks into ascending order of length and then scheduled them into bunches. Simulation results show 
that EACO minimizes the makespan.

4. SALP SWARM ALGORITHM

(Mirjalili et al.,2017) proposed a swarm-inspired, Salp Swarm Algorithm (SSA). The swarming 
manner of salp influences SSA. Salps move in a salp chain to get effective locomotion by applying 
synchronized changes and foraging (Andersonet al.,1980). This salp chain is categorized into two 
types: Leader and Followers, where a leader is a leading salp, and followers are the remaining salps, 
as shown in figure 2. Leader updates its position towards the food source where a food source is 
continuously updated by best-obtained solution. Hence, the chain is automatically moving towards 
the global optimum solution, which is the objective of SSA.

Position of leader salp regarding the food source is updated as follows:

x
FS r u l r l r

FS r u l r l r
j j j j j

j j j j

1

1 2 3

1 2 3

0 5

0 5
=

+ −( ) +( ) ≥
− −( ) +( ) <




.

.






	 (1)

Where p j1  is the leader’s position, FSj is the food source, and lj and uj are the lower bound and upper 
bound, respectively in jth dimension. r2 and r3 are random numbers generated from the interval [0,1], 
and r1 is the main controlling parameter in SSA, which balances exploration and exploitation, can be 
calculated as follows:
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Where m denotes current iteration, and maxiter is the sum of all iterations.
Position of follower salp is reorganized as follows:
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Where x
i
j  is the follower’s position in jth dimension for i >1

It can be observed from the above equations that c1 is the only controlling parameter in SSA. 
Similar to other swarm-inspired algorithms.

Few working criteria of SSA are as below:-

1) 	 The algorithm stores and assigns the best result received till now to the food source, so in this 
manner, it preserved the best-obtained result.

2) 	 Leader salp modifies its location with respect to the food source only, so the leader salp constantly 
searches the space close to it.
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3) 	 Follower salps modify their location with respect to another one. In this manner, followers relocate 
gradually towards the leader, leading SSA from stagnating in local optima.

4) 	 SSA has only one control parameter named C1, so it is easy and straightforward to implement.

5. PROPOSED ALGORITHM

The mapping of cloud requests with appropriate resources is called optimized resource scheduling. 
These resources are provided to request based on QoS requirements mentioned by the user. It is 
obtained in the proposed Cost aware deadline constraint Salp Swarm Algorithm (CD-SSA).

5.1 Resource Model
This work is limited to a single data center of cloud service provider, Amazon EC2. It is assumed 
that the datacenter having t types of heterogeneous VM instances denoted by VMT={VMT1, 
VMT2,………,VMTt}. Table 1 shows the types as well as network bandwidth, RAM, CPU Cores and 
prices. It is assumed a global storage system with sufficient storage capacity. Processing capacity in 
Million Instruction Per Second(MIPS) of each VM instance is assigned as MIPS value of equivalent 
processor as in (Maria & Buiyya,2017). Here, we adopt VM types belong to the General Purpose 
instance group in US East region, which are static priced On-Demand VM provisioning model. It is 
also considered that at any moment there are m number of VM (VM= {Vm1, Vm2, . . . .. . ., Vmm}), 
each of them can belong to any instance type listed in VMT and they are charged as pay per use model.

5.2 User Task
Workload traces from a real system should be used to conduct experiments to make a simulation-based 
evaluation applicable. So, in experiments, PlanetLab data are used provided as a part of the CoMon 
project. In this work, CPU utilization data is obtained from more than a thousand VMs of servers 
at five-minute intervals, and these servers are located in more than 500 locations in the world. The 
data split into ten categories by the mean value of CPU utilization. Each one has single-day workload 
data for 500 randomly chosen servers, and each traced file have 288 readings. Here two random days 
are from workload traces. In the random workload, each VM runs an application with the variable 
workload, which is modeled to generate the utilization of CPU accordingly a uniformly distributed 
random variable. After generating a random function, a set of workloads automatically generate as 
a cloudlet called a random workload.

Figure 2. The salp chain (Faris et al.,2020)
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5.3 Problem Definition
Total Execution cost and makespan are two important QoS parameters required by cloud users. 
Nevertheless, both conflicts with each other, so it is a tedious task to minimize both. This work 
presents an efficient trade-off between total execution cost and makespan under deadline constraint.

5.3.1 Deadline Constraint
Each task ti is associated with a firm deadline dli, requiring the task must be completed before the 
deadline.

In this work, it is assumed that all deadlines are hard deadlines and calculated by using equation 
3 as follows:

dli = β * (minTi +maxTi)/2 , β>=1, i ∈ n	 (4)

Where MinTi and MaxTi represent the minimum and maximum execution time for a given task ti. 
Different value of deadline constraint is set by adjusting β (β = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) in the 
experiments.

5.3.2 Makespan
It is assumed that each user’s application includes a number of independent tasks having a firm 
deadline i.e. each task must be completed by deadline. One task requires to be accomplished in one 
VM instance type.

T is the set of independent tasks in the user job. Basically, they are cloud applications.

T= {t1, t2, t3… tn} where n is total count of tasks.	

Suppose a task ti is assigned to virtual machine Vmj, and Ɛi is the required execution time. The 
finishing time of ti can be defined as:

FT (ti) = ST (ti) + Ɛij	 (5)

Where - ST (ti) represent start time of task ti
Ɛij is the execution time of ith task on jth Vm can be calculated as follows: 
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Where TL
i
 is the length of ith task in MIPS, capacity Vm

j( )  is the total capacity of jth Vm, which 
is calculated as

PEnum * PEmips. PEnum is expressed as the total number of process elements allocated to jth 
Vm and PEmips is the amount of million instructions per second. TL

iinputfilesize
 Is the length of the input 

file of a task, and Vm
j bw_

 is the communication bandwidth of the jth Vm.
Makespan is the execution time of last task. It can be expressed as follows:

Makespan = max {FT (ti): where i =1, 2, 3, . . ., n }	 (7)
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5.3.3 Total Cost (TC)
In this paper, it is assumed that Vm instances are charged in seconds. Thus, the total execution cost of 
a task on Vm is calculated by multiplying its execution time and the charge price of the VM instance.

Total cost (TC) can be calculated as:

TC TC
j

m

j
=

=∑ 1
	 (8)

Here TC
j
 is the cost of jth Vm. It can be calculated as:

TC *P
j

i

n

ij j
=

=
∑
1

ε 	 (9)

Here P
j
 is the price of the jth Vm instance and ε

ij
 is the execution time of task i that run on jth Vm.

To find efficient trade-off between Makespan and Total execution cost, this proposed algorithm 
calculates fitness function as follows:
         Minimize   TC Makespan+( ) � (10)

              Subject to:
                         FT(i,j) <=dl

i

FT (i,j) is the finish time of ith task on jth Vm.
In this work, the following assumptions are:

1) 	 All tasks are independent.
2) 	 Execution of tasks is non-preemptive.
3) 	 All resources are non-shareable i.e., only one task can occupy one resource at a time.

5.4 Solution Initialization
This phase initializes a set of solutions. A complete solution is called a salp here. After generating 
a salp, its fitness is evaluated. For each task ti in a solution, DTC-SSA finds a random Vm. If the 
finish time of ti on Vm (FT (ti,Vm)) is less than the deadline dli of ti then Vm is selected otherwise, 
it repeats this process equal to a threshold number. This paper chooses threshold number (th) as 5. It 
decreases the chances of missing a deadline five times.

Table 1. Instance type based on Amazon EC2[37]

VM TYPE VCPU Bandwidth (Mbps) RAM(Gib) Price ($)

a1.medium 1 10000 2 0.0255

a1.large 2 10000 4 .0510

m4.large 2 450 8 .19

m4.xlarge 4 750 16 .38

t2.small 1 600 2 .032

t2.medium 2 650 4 .0644
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ALGORITHM 1: Solution initialization in DTC-SSA 
1. For each salp Sp (p = 1 to Population Size)  
2. For each t

i
 (i=1 to number of tasks)

3.       Find a Vm randomly from the range [1: m] 
          [m: Total number of Vms] 
4.           If (FT(ti,Vm)<= dlj

)
5.              Update position of t

i

6.            Else  
7.              Repeat step 3 to 7 until the threshold number. If  
                  loop count is reached the threshold number, then    
                  the task is marked as a failure task 
8.            end if 
9.         end for  
10.   end for 

5.5 Updating Positions
After each iteration, the best fitness solution is treated as leader salp, and the remaining are treated 
as follower salps. DTC-SSA considers a salp better if it has cost and number of missed deadline task 
less than other. In the Proposed algorithm, Equation 1 calculates the leader’s position like SSA. After 
calculating, it checks the deadline constraint; if it is satisfied, then this position is updated. In SSA, 
the position of a follower is calculated by using equation 3, which is the position between two given 
positions. To improve the diversity of solution, DTC-SSA applies a random probability function 
shown in equation 6. Each time a random no rn is generated from the range [0-1]. If rn is less than 
0.5, then the next position is xi

j  if it is greater than 0.5, then the next position is xi
j

−1 .Otherwise, 
the next position is calculated by using equation 3.
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ALGORITHM 2: Position updating algorithm in CD-SSA 
1.          Get salps from previous iteration 
2.          for each salp  Sp

3.              if(p==1) 
4.                 for each task t

i
 

5.                    x
i
j   is calculated  by using equation 1. 

6.                     If(FT(ti, �x �
i
j) < =dlj)

7.                         Position  is updated  
8.                      Else 
9.                         Position  is rejected 
10.                      end if 
11.                   end for 
12.                else 
13.                   for each task ti  
14.                      x

i
j is calculated  by using equation 11. 
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15.                     If(FT(ti, �x �
i
j) < =dlj)

16.                         Position  is updated  
17.                      Else 
18.                         Position  is rejected 
19.                      end if 
20.                   end for 
21.                end if  
22.          Call algorithm 3. 
23.          Calculate the fitness of each salp by using equation 
10 and find the salp with minimum fitness. Replace it with the 
first salp, which is treated as a leader, and remaining are 
treated as followers. Assign best-obtained solution to food source 
F 
24.          end for

5.6 Rescheduling
After updating the position of each salp, this phase reschedules tasks that fail to schedule on any 
VM. Failure tasks are the task they missed their deadline at the time of scheduling. The objective of 
rescheduling is to increase the probability that the failure task can still be met its desired deadline 
after terminating. It minimizes the number of failure tasks with the minimum effect of makespan. For 
each failure task, this phase selects Vm having minimum completion time CT (Vmj).If the deadline 
of failure task dli is greater than Vmj then Vmj is allocated to the task.
ALGORITHM 3: Rescheduling in DTC-SSA 
1.          Input a Salp Sp  
2.          for  each task t

i
 (i=1 to number of tasks)

3.             Identify the failure task t
i

4.              Determine the Vm having minimum FT (t
i
,Vm)

5.             if (FT(t
i
,Vm) < =dl

i
)

6.                Schedule task t
i
 on Vm

7.             else 
8.                Task t

j
 is marked as failure task

9.             end if 
10.          end for

5.7 Termination
After updating the positions of leader and follower salps, the fitness value is calculated for each salp. 
In this proposed work, the fitness function is the sum of total cost and makespan. A salp with the best 
fitness is treated as a leader, and rest salps are treated as followers.

Algorithm 2 is repeated maxiter times. After termination of the process, leader salp is achieved 
as the best solution. Figure 3 illustrates the working of the proposed algorithm.
ALGORITHM 4: Proposed DTC-SSA 
1.          Initialize lower boundary lb, upper boundary ub, 
maximum number of iterations maxiter, Population size p, define 
fitness function fitness and dimension d. 
2.          Initialize Salp population S

p
(p =1to population size) by 

using algorithm 1 with consideration of ub and lb 
3.          Repeat step 4 maxiter times. 
4.          Update position of each salp based on ub and lb by 
using Algorithm 2. 
5.          Return F
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6. EXPERIMENTS AND COMPARISONS

CloudSim3.0 framework is used to examine the performance of proposed algorithm. A set of 
experiments are conducted to assess the performance of DTC-SSA. We implemented PSO,GWO,GA 
and BAT algorithms, and compared their performances on CloudSim simulator.

For fair comparison, these algorithms are executed in same simulation environment. Deadlines 
for tasks are calculated by equation 4. In this work, hard deadlines are taken so the solutions with no 
deadline violations are considered only.

6.1 Experimental Setup
This study is limited to a single data center having six Vm type instances. The pricing policy, 
bandwidth, and RAM of a Vm are based on the Amazon EC2, as shown in table 1. Table 2 represents 
the parameter’s initial values that are used in the simulation of algorithms. A total of 1052 user tasks 
are considered for this work. Population size is set as 30, and number of iterations is set as 100 for 
each algorithm. Each experiment is executed ten times independently. The mean values and standard 
deviation are obtained to evaluate the performance of algorithms. Table 3 shows the comparative results 
of the proposed algorithm, PSO, GWO, BAT, and GA in terms of the number of deadline violations. 
Experiment5.s are conducted by varying Deadline factor (β) varies from 1(tight) to 9(relaxed), 
whereas numbers of Vms are taken 70. Table 4 shows the comparative results of proposed DTC-
SSA, PSO, GWO, BAT, and GA in terms of best, mean, and standard deviation of makespan(Q1), 
the Response time(Q2), Throughput(Q3), and cost(Q4), and Resource utilization(Q5). The proposed 
work outperforms the others in most QoS Parameters.

5.2 Experiments and Result Analysis

5.2.1 Deadline Violation
When a task missed the deadline it is called deadline violation. Total number of Vm set as 70 for 
this experiment. Deadline factor (β) varies from 1(tight) to 9(relaxed). Figure 3 and table 3 show that 
DTC-SSA minimizes the deadline violation rate as compared to others.

Makespan: It is the latest finish time of a virtual machine’s task or maximum completion time. It 
is calculated by using equation 7. To conduct these experiments, deadline factor (β) is set as 
7. Moreover, the number of Vms is varied from 100 to 500. In this, solutions with no deadline 
violations are considered only. It can be seen by figure 6 and table 4 that under the same deadline 
constraint, DTC-SSA performs better with the minimization of makespan than others.

Total Execution Cost -It is a very significant factor in task scheduling. Usually cloud user has to pay 
each time when he accesses cloud services. An efficient task scheduling minimizes the total cost. 
It is calculated by using equation 8. To conduct these experiments, the deadline factor (β) is set 
as 7. And the number of Vms are varied from 100 to 500. Solutions with no deadline violations 
are considered only. Figure 6 and 4 show that the proposed algorithm always gives minimum 
cost compared to PSO and GWO.

Resource utilization (RU): It can be calculated by using equation 12.
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Figure 3. Flow chart of proposed DTC-SSA
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RU= j

m
Time taken by jth Vm to execute all task

Makespan*m
=∑ 1 	 (12)

Where m is the total number of Vm
DTC-SSA is compared with PSO and GWO based on average Resource Utilization. Figure 7 

and Table 4 show that DTC-SSA outperforms others.

Throughput: Throughput is calculated using equation 13.

Table 2. Algorithmic parameters used in the simulation

Algorithm Parameters Value

DTC-SSA random numbers r2, r3 generated from interval [0,1]

PSO acceleration coefficients C1, C2 2

Inertia weight factor w .9

random numbers r1, r2 generated from interval [0,1]

GWO random numbers r1, r2, r3 generated from interval [0,1]

BAT loudness A0 0.5026

rate of pulse emission r0 0.4205

Minimum frequency Qmin 0

Maximum frequency Qmax 2

GA Mutation probability generated from interval [0,1]

random numbers r generated from interval [0,1]

for each algorithm, population size =30, and the maximum number of iterations = 100

Table 3. Results comparison among the algorithms in terms of number of deadline violation

Deadline 
factor 

(β)

DTC-SSA PSO GWO BAT GA

Best Mean STD Best Mean STD Best Mean STD Best Mean STD Best Mean STD

1 881 882 1.15 888 890 1.53 899 901 1.53 890 892 2.52 920 923 3

2 623 625 2.08 635 636 1 690 694 4.51 630 630 0.58 697 705 6.81

3 439 439 0.58 450 451 1.53 461 469 8.02 447 448 1.15 527 528 1.15

4 8 12 5.29 301 302 1 323 329 5.51 301 303 1.53 367 370 3.06

5 5 6 1.53 174 175 1.15 207 217 13.23 179 181 3.21 248 251 3.06

6 3 4 0.58 70 71 1.53 117 127 9.07 91 98 6.51 138 143 4.36

7 2 3 0.58 32 33 1.53 67 73 7.77 40 42 3.21 77 84 7.64

8 0 0 0 20 23 3.06 29 32 3.06 19 23 4.58 39 40 1

9 0 0 0 10 11 1.15 14 15 1.53 10 12 2.52 14 17 2.31
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Throughput= No of tasks completed successfully
Makespan

. 	 (13)

The performance of DTC-SSA is compared with other algorithms. Figure 8 and table 4 shows 
that it performs better than others.

Response Time: Average Response Time is calculated using equation 14.	
Average Response Time = 	

Figure 4. Comparison of Deadline violation for DTC-SSA, PSO and GWO

Figure 5. Comparison of Makespan for DTC-SSA, PSO, GWO, BAT and GA
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Figure 6. Comparison of Total Execution cost for DTC-SSA, PSO, GWO, BAT and GA

Figure 7. Comparison of Resource Utilization for DTC-SSA, PSO, GWO, BAT, and GA
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i

n
time at which task i get started execution arrival ti

=∑ −
1

mme of task i

n
	 (14)

DTC-SSA is analyzed and compared with other existing algorithm for QoS parameter Response 
Time. It can be observed by figure 9 and table 3 that DTC-SSA outperforms others.

Figure 8. Comparison of Throughput for DTC-SSA, PSO, GWO, BAT and GA

Figure 9. Comparison of Throughput for DTC-SSA, PSO, GWO, BAT and GA
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6 CONCLUSION AND FUTURE WORK

This paper proposed a Deadline Constrained Time-Cost effective Salp Swarm Algorithm (DTC-SSA) 
to efficiently trade-off between cost and makespan. It is the optimal mapping of a user’s request with 
cloud resources, also known as task scheduling. DTC-SSA minimizes the total execution cost as well 
as makespan while meeting the user has given deadline. It is proved by experimental results that 
DTC-SSA also optimizes the resource utilization as compared to PSO and GWO. It also decreases 
the deadline violation of incoming tasks by rescheduling. The motivation to work on these QoS 
constraints is that a request is completed within a given deadline with minimum cost and makespan 
satisfies the user more. Experimental results prove the effectiveness and efficiency of the proposed 
work for this problem.

In the future, we would extend the proposed algorithm by developing a hybrid that optimizes 
other QoS parameters like reliability availability while maintaining the SLA within user-specified 
deadline and budget.
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