
DOI: 10.4018/IJAMC.292508

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Software Vulnerability Prediction
Using Grey Wolf-Optimized Random
Forest on the Unbalanced Data Sets
Wasiur Rhmann, Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation,
Vaddeswaram, India*

ABSTRACT

Any vulnerability in the software creates a software security threat and helps hackers to gain
unauthorized access to resources. Vulnerability prediction models help software engineers to
effectively allocate their resources to find any vulnerable class in the software before its delivery to
customers. Vulnerable classes must be carefully reviewed by security experts and tested to identify
potential threats that may arise in the future. In the present work, a novel technique based on grey wolf
algorithm and random forest is proposed for software vulnerability prediction. Grey wolf technique is
a metaheuristic technique, and it is used to select the best subset of features. The proposed technique
is compared with other machine learning techniques. Experiments were performed on three datasets
available publicly. It was observed that the proposed technique (GW-RF) outperformed all other
techniques for software vulnerability prediction.

Keywords
Grey Wolf, Machine Learning Techniques, Prediction, Random Forest, Vulnerability

1. INTRODUCTION

A vulnerability is a weakness in the software that, when exploited, causes a security failure. Due to
time constraints, software developers usually do not concern much about the security aspects at the
initial stages of the software development that results in security failures in the operational stages.
It is difficult to detect the vulnerability in the software until they hinder the normal operation of the
software. Prediction of software vulnerability during the early stage of the life cycle is a promising
approach. Software organizations perform security checks to avoid software failures and the presence
of vulnerabilities in the software may lead to software failures. A fault in the software specification,
development, or its configuration is vulnerability if its execution results in a violation of security
policy (McGraw & Potter, 2004). A fault in the software system if accidentally executed then the
software may not be able to perform its required or expected function (Shin & Williams, 2008).
Software faults are defects or bugs in the software system and vulnerability refers to those software
faults which leads security failure if exploited. Software metrics are heavily used in literature to
predict software maintainability and change (Bansal, 2017) and defect proneness (Gyimothy et
al., 2005) Numerous studies have shown the relation between software architecture and structural
software metrics like complexity, coupling, and cohesion (CCC).CCC metrics are very efficient in
measuring the quality of software architecture (QSA) and QSA influences the quality of software.
Despite being heavily used of these metrics there is no available proper guideline on how one can

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

2

use these structural metrics in the prediction of the software vulnerability. The use of these structural
metrics in vulnerability prediction may lead to more secure and reliable software (Walden, et al.,2014)
. Early-stage detection of security vulnerabilities in the software development life cycle may mitigate
the risk of software security failures. In recent years a number of metaheuristics algorithms like
Particle swarm optimization(PSO), Genetic algorithm(GA), Firefly algorithm(FA) etc are applied for
feature selection and hyper-parameter optimization of machine learning and deep learning algorithms.
Neggaz et al. (2020a) have used a novel Henry gases solubility optimization for feature selection.
Proposed Henry gases solubility optimization is compared with six other algorithms on 12 datasets.
This technique has shown improved accuracy with less number of features. Neggaz et al. (2020b)
have proposed improved slap swarm algorithm for feature selection. They have used Sine Cosine
algorithm and Disrupt Operator and compared accuracy with other swarm intelligence algorithms
and found better results. In our previous work(Rhmann et al., 2021) metaheuristic algorithms firefly
algorithm, genetic algorithm and black hole optimization algorithms are used for optimization of
software efforts using ensemble techniques. In this study metaheuristic algorithms based random
forest techniques are applied for software vulnerability prediction.

The rest of the paper is organized as follows: Section 2 describes the related work Section 3
describes the data-sets used in the study. Section 4 describes the proposed software vulnerability
model. Section 5 describes the performance evaluation measures. In Section 6 experimental setup
and results of prediction models are given. In section 7 comparative analysis of the work is presented
and section 8 describes the application of work. Section 9 describes the threats to the validity and
finally, section 10 is used to conclude the work.

2. RELATED WORK

Various MLT and statistical techniques are used to predict software quality. Different structural metrics
are significantly contributing to the prediction of software quality attributes. These structural metrics
can be also helpful in the prediction of software vulnerability. Chowdhury et al. (2011) have proposed
a framework that used the cyclomatic complexity metric to predict the vulnerabilities. Vulnerability
prediction models are constructed using different data mining techniques like C4.5 Decision Tree,
Random Forests, Logistic Regression, and Naïve Bayes. Alenezi and Abunadi(2016) compared the
performance of classification techniques in the detection of vulnerable files. Three large open-source
web projects are used in an empirical study for the investigation of vulnerable code using software
metrics. With the detection of vulnerable code software professionals can prioritize verification efforts.
It was observed that software metrics are helpful in the prediction of vulnerabilities and detection of
vulnerable code is helpful in security auditing efforts. Walden et al. (2014) compared vulnerability
prediction models based on text mining and models based on software metrics. It was observed that
the prediction rate of models based on text mining was better compared to the models based on
software metrics. Basili et al. (1999) used the OO metrics for the prediction of fault-prone classes.
Eight medium size projects are used for the collection of data for fault prediction and technique was
used for fault prediction. It was observed that 88% of faulty classes were able to predict with 60%
precision. Menzies et al. (2007) performed experiments on NASA repository to predict defects using
software metrics. Prediction models were built using the J48, Naive Bayesian model. The authors
detected 71% of defects with a 25% false-positive rate. Alenezi et al. (2014) predicted faulty classes
with Naive Bayes, Bayesian Networks, J48, and Random Forests techniques. 92% of the defects were
detected using Random Forest models. Various soft computing and search based algorithm (SBA) are
also found to be used in the development of models for prediction of faults (Gyimothyetetal, 2005;
Catal, 2007; Vandecruys et al., 2008; Carvalho et al, 2010; Pendharka, 2010) and efforts ((Shukla,
2000; Burgess and M. Lefley 2001; Bardsiri,2013; Minku and Yao; 2013) . Bozorgi et al. (2010) have
predicted the exploitation of vulnerability using publicly available databases. They trained their model
with data features like text field, time, stamp, and other entries available in the vulnerability report.

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

3

Their model performed better in comparison to the available standard to predict vulnerability based
on expert knowledge and heuristics. Shar et al. (2015) have built supervised and semi-supervised
learning based vulnerability prediction models. They performed experiments on seven open-source
projects with vulnerabilities like SQL injection, cross-site scripting, remote code execution, etc. and
it was observed that semi-supervised model have better recall and low probability of false alarm with
the low amount of labeled vulnerability data.

3. DATASETS USED IN THE STUDY

In this study, we have used PHP data-sets due to wide acceptance of PHP as the server-side
programming language in the web development and it is open source and known for its poor security
reputation (Chowdhury, et al.,2011) PHP data-set is collected from open source community by
(Waldenetal,2014). Open-source software is usually considered secure due to the involvement of large
numbers of the developer to detect and fix vulnerabilities in software code (Meneely and Williams,
2010). The data set contains the vulnerability information of PHP files along with the software metrics.
The data-set contains different applications which are Drupal6, Moodle2, and phpMyAdmin3.3.
Drupal6 is a content management system. Moodle is an open-source learning management system.
phpMyAdmin3.3 is a free web-based management tool to write web applications in PHP for MySQL
database. Descriptive statistics about the data-set are given in Table 1. Followings are the software
metrics which are included in this data-set are:

Lines of code: Number of lines in a PHP source. It includes PHP tokens and excludes the lines
without PHP tokens.

Lines of code (non-HTML LOC): It is defined as the number of lines of code skipping the HTML
content embedded in PHP files.

Number of functions: It is calculated as the number of functions and method definitions in a PHP file.
Cyclomatic complexity: The control flow graph of the program gives the cyclomatic complexity of

the program. It can be also computed by adding one to the decision statements in the PHP file.
Maximum nesting complexity: The Maximum nesting complexity refers to the maximum depth up

to which loops and control structures in the php data file are nested.
Halstead’s volume: In the calculation of this metric the number of unique operators and operands

and the number of total operators and operands in the file are used. This metric is derived with
the consideration of method names and PHP language operators as operators, and parameter
and variable names are operands.

Total external calls: It is defined as the number of instances where a statement in the file which is
being measured invokes a function defined in a different file.

Fan-in: It is measured as the number of files that contain statements that invoke a function or method
defined in the file of which fan-in is being measured.

Fan-out: It is measured as the number of files that contain functions or methods invoked by statements
in the file of which fan-out is being measured.

Internal functions or methods called: It is calculated as the number of functions or methods
defined in the file of which it is being measured, which are called at least once by a statement
in the same file.

External functions or methods called: It is calculated as the number of functions or methods defined
in other files which are called at least once by a statement in the file of which it is being measured.

External calls to functions or method: It is calculated as the number of files calling a particular
function or method defined in the file of which it is being measured summed across all functions
and methods in the same file.

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

4

4. PROPOSED PREDICTION MODELS

In this section smote technique, grey wolf algorithm, random forest and proposed technique for the
creation of vulnerability prediction model are described.

4.1 SMOTE
Oversampling is used to tackle the problem of an imbalanced dataset. The minority samples are
synthetically generated to balance the datasets using augmentation to original datasets. This technique
is called Synthesized Minority Oversampling Technique(Chawla, 2002). K-nearest neighbors are
generated for each instance of the minority class. Based on the imbalanced proportion of datasets N
samples are selected from the k-nearest neighbor of each instance and collection of these is a new
Set A. Then for each member of set A new instances are generated using:

x’=x+rand(0,1)*|x-x’|	

where rand(0,1) gives a random number between 0 and 1.

4.2 Metaheuristic Algorithms
Metaheuristic Algorithms are search based optimization algorithms and are very helpful to find optimal
solutions when getting exact optimal solution with available resources is difficult to achieve. These
algorithms are like a template which can be used to find optimal solutions of different problems.

4.3 Grey Wolf Algorithm
Grey wolf algorithm is inspired by the nature of grey wolves(Mirjalil, 2014). Grey wolves leadership
and haunting mechanism help to design a new metaheuristic algorithm with three steps: searching
prey, encircling prey, and attacking prey.

The wolves live in packs and there are around 12-15 in a group. These wolves have a hierarchical
management system. α wolves are the team leader and strongest and direct all other wolves in the
group. β and γ are next to α and their task is to support α. Ω is at the bottom of the hierarchy and
these wolves are in large quantity they are responsible for the internal relationship.

Di=|C. Xp(t)-X(t)|	
X(t+1)= Xp(t)-A.Dp	

X(t) and X(t+1) are the current positions of the grey wolf and its next position. t is the iteration
number. A and C are coefficient vectors computed as:	
A=2ar1-a	
C=2r2	
r1, r2 are random numbers with values between 0 and 1.	
a=2-2t/tmax	

where tmax is the maximum iteration number. Values of a decrease from 2 to 0.

Table 1. descriptive statistics about the data-set

Data-set Vulnerable Files Total Files

Drupal 6 62 202

Moodle 2 24 2942

phpMyAdmin3.3 27 322

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

5

The movements of omega wolves are guided by the position of α, β and γ wolves. The movements
of these wolves are calculated using the following equations:

Dα=|C. Xp(t)-X(t)|	
Dβ=|C. Xp(t)-X(t)|	
Dγ =|C. Xp(t)-X(t)|	
X1= Xα (t)-A.Dα	
X2= Xβ (t)-A.Dβ	
X3=Xγ(t)-A.Dγ	
Xp(t+1)=(X1 + X2+ X3)/3	

α, β and γ gives optimal solution, sub optimal solution and third optimal solution. Movements
of all other grey wolves are guided by these three wolves as they are closed to the prey.

After surrounding the prey, grey wolves will capture it. |A|<1 then the grey wolf will capture the
prey by approaching. |A|≥1 then grey wolves will move away from the prey and will do the global
search.

4.4 Particle Swarm Optimization
PSO is a very simple stochastic optimization algorithm which doesn’t require function to be
differentiable(Kennedy and Eberhart, 1995). It is inspired from social behavior of birds. There are
very few hyper parameters which make is very efficient for many applications. Initial population is
generated randomly and after each iteration new population with better fitness is generated. Particles
are moved in search space with a velocity and update its position according to their best position and
swarm’s best known position.

4.4.1 Genetic Algorithm(GA)
Genetic algorithm is biological evolution based optimization algorithm(Mitchell, 1998). This algorithm
finds optimal solution by searching in solution space.

Following are the main steps to get optimal solution of a problem:

Initial population generation:

Initial population of candidate solutions are generated randomly and a function which measures
the appropriateness of generated solutions is used. This function is called fitness function and it
depends upon the problem objective

Selection of good solutions

Based on fitness of solutions individuals from populations are selected for crossover operation
to generated new solutions

Crossover and mutation

For generation of new solutions crossover and mutation are used in crossover two individuals
are combined while in mutation only some bits of individual solutions are changed

These steps are repeated till we get optimal solution or we have reached at a predefined number
of generations.

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

6

4.5 Random Forest
Random Forest uses multiple algorithms to give better performance in which several decision trees
(DT) are generated in training time and a class level is given by each tree. It is more robust to noise
comparison to DT in the presence of inter correlated features. All complexity metrics are usually
inter-correlated so we have selected the RF. It is expected to perform better than the decision tree.
It can take input variables with binary, categorical, continuous features, and doesn’t require feature
scaling. It can handle over fitting efficiently. Although it is computationally complex it gives better
accuracy with large data.

The proposed framework of software vulnerability prediction is shown in fig. 1. The three
datasets used in the study are unbalanced as the numbers of vulnerable to non-vulnerable classes
are unequal. To make the datasets balance SMOTE(Synthetic Minority Oversampling technique) is
used. Then datasets are preprocessed and they are standardized to make all the features with mean
of 0 and standard deviation 1

Then 80% of the dataset in spitted in stratified manner is used for training the Random forest
classifier and 10-cross validation is used to measure the performance of the classifier. Obtained
f-measure is used as a fitness function for the metaheuritic algorithms. Then the metaheuristic
algorithm finds the best features with the optimized precision, recall, and f-measures.

Figure 1. Proposed framework of software vulnerability prediction

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

7

The main steps of the metaheuristic algorithm based Random forest algorithm are given as:

The pseudo-code of the proposed Metaheuristics-RF is given below:

5. PERFORMANCE EVALUATION MEASURES

In our work, we have used the data of Drupal6, Moodle2, and phpMyAdmin3.3. We performed
experiments with the aim to identify the technique which is more accurately predicts the software
vulnerability. In the present study, positive cases are vulnerable classes while negative cases are
non-vulnerable classes. As the number of vulnerable and non-vulnerable classes are unequal for each
data-set Precision, recall and f-measure are used for measurement of performances. These measures
are described as follows:

Table 2. Algorithm

Algorithm

Input: Dataset (D)
Output: Optimized cross-validated Results
{Precision, Recall, f-measure}
Step1: Initialize the initial population for Metaheuritic algorithms as:
{a1,a2,a3,…..,an}
where ai=[0,1]
0 means feature is not selected
1 means feature is selected
and n is the number of features in the dataset.
Step2: Take the Fitness function as
F=f-measure of Random forest on a subset of D
Step3: Repeat the process up to 2 steps until the desired number of iterations or we get maximum
f-measure =1.

Table 3. Pseudo-code of metaheuristics-RF

Pseudo of Metaheuristics-RF:

Input: Vulnerability dataset=D
Output: Optimal values of f-measure, precision and recall
Initialize the values: Number of dimension=independent features of dataset
Number of generation=n, population size=N
Take initial candidate solution as {a1, a2,a3,…..,an} where ai=[0,1] and n is the number of features in the dataset.
For each iteration:
Selection features set D’ from D
Divide D’ into 80:20 ratio {Dtr, Dte}
Preprocess and standardize the dataset D’
Train a random forest (RF) with Dtr
Evaluate the RF with 10-cross validation.

Return fitness=
2 * *Precision Recall

Precision Recall+
After n generation or f-measure=1
Best f-measure, precision and recall on 10-cross validation.
 End

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

8

TP(True Positive) It is the number of vulnerable classes declared as vulnerable.	
FP(False Positive) It is the number of non-vulnerable classes declared as vulnerable.	
FN(False Negative) It is the number of vulnerable classes declared as non-vulnerable.	

Precision

Precision is defined as the ratio of correctly predicted vulnerable classes to the total number of
classes predicted as vulnerable by model.

Precision=
TP

TP FP+
	

5.1 Recall
Recall is defined as the ratio correctly predicted vulnerable classes to total vulnerable classes in data.

Recall= TP

TP FN+
	

5.2 F-measure(F1-score)
For binary classification f-measure is simply harmonic mean of precision and recall.

Values of precision and recall, f-measure lie in between 0 and 1. Best values of both are 1.

6. EXPERIMENTAL SETUP AND RESULT

All the experiments are performed in python using python packages Scikit-learn (Pedregosa et al.,
2011) and Niapy(Vrbancic et al., 2018). Machine learning algorithms used in the study are Support
Vector Machine (SVM), Naïve bayes(NB), Gradient Boosting(GB), and Random forest. All Machine
learning techniques are applied in the default setting. Metaheuristics algorithms used in the study
are Grey wolf optimization, particle swarm optimization and genetic algorithm and these algorithms
are implemented in Niapy package. For efficient working of prediction models, transformation is
performed. Datasets are divided into 80:20 for training and testing purpose and 10-cross validations
are used for measuring the performances of different techniques. For each technique precision, recall
and f-measures are calculated on different datasets and presented in table 2.

The highest f-measure on phpmyadmin3.3 dataset is 0.959 by the PSO-RF technique. For
moodle2 dataset highest f-measure is 0.990 obtained by PSO-RF and GW-RF. For drupal6 dataset
highest f-measure is 0.869 for PSO-RF. Hence PSO-RF technique has shown the best performance
on all three datasets.

Fig. 2, Fig. 3 and Fig. 4 have presented the graph of precision, recall, and f-measure of different
techniques.

It is clear that precision on all datasets is achieved by the PSO-RF techniques and random forest
is next to the PSO-RF on all datasets. Recall values of PSO-RF, random forest, and gradient boosting
are very close on all datasets. From fig. 4 f-measure is best for the PSO-RF technique. MLT have
shown f-measure next to the PSO-RF.

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

9

Fig. 5 is box-plot of the values of f-measure of different techniques and it is clear that GW-RF,
PSO-RF and GA-RF have shown better f-measures compared to machine learning techniques.

7. COMPARATIVE ANALYSES WITH RELATED WORK

In the present section different studies that have used the datasets phpmyadmin3.3, moodl2 and drupal6
are compared with our proposed technique. Khalid et al. (2018) have predicted software vulnerability

Table 4. Performances of different techniques

Data-set Technique Precision Recall F-measure

phpmya dmin3.3 SVM 0.74 0.59 0.66

Naive Bayes 0.76 0.34 0.46

GB 0.87 0.95 0.90

Random Forest 0.90 0.97 0.94

GW-RF 0.954 0.962 0.955

PSO-RF 0.962 0.968 0.959

GA-RF 0.951 0.95 0.955

moodle2 SVM 0.79 0.68 0.73

Naive Bayes 0.80 0.35 0.48

Gradient boosting 0.91 0.99 0.95

Random Forest 0.96 1 0.98

GW-RF 0.984 0.998 0.990

PSO-RF 0.984 0.998 0.990

GA-RF 0.982 0.998 0.988

Drupal 6 SVM 0.74 0.64 0.67

Naive Bayes 0.81 0.41 0.52

GB 0.76 0.88 0.81

Random Forest 0.80 0.90 0.85

GW-RF 0.841 0.921 0.865

PSO-RF 0.83 0.93 0.869

GA-RF 0.83 0.92 0.866

Figure 2. Precision of different techniques

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

10

Figure 3. Recall of different techniques

Figure 4. F-measure of different techniques

Figure 5. Box-plot of f-measure of different techniques for different datasets

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

11

on the same datasets phpmyadmin3.3, moodle2, and drupal7. They experimented with weka software
and used random forest and decision trees and a meta classifier for the development of a prediction
model. Abunadi et al. (2016) have performed experiment on the same web-based datasets as used in
the study. They used weka software and applied machine learning techniques without considering
balancing the datasets in 10 cross-validation manner. Zhang et al. (2015) have used the web datasets
phpmyadmin3.3m moodle2 and drupal6 and applied ensemble techniques. Walden et al. (2014) have
used the three same web datasets and used random forest as their main classifier with 100 forest in
weka and compared their performance with text mining-based vulnerability prediction. The f-measures
of these studies are compared with our proposed technique and results are given in Table 3.

7.1 Friedman Test
It is a statistical non-parametric test which is used to compare performances of different techniques
applied on multiple datasets. The result of the test tells whether performances of techniques are
statistically equivalent or not. It is not necessary that population is normally distributed. It is based
on chi distribution where n-1 is degree of freedom when there are n techniques and hypothesis are
checked at p-value=0.05

Followings are the hypothesis of the test:

Table 5. Comparative analysis of different techniques

Author and year Data-set Best technique F-measure

Proposed phpmy admin3.3 PSO-RF 0.959

moodle2 GW-RF and PSO-RF 0.990

Drupal 6 PSO-RF 0.869

Khalid et al. (2018) phpmya dmin3.3 Meta classifier(Random
forest)

0.463

moodle2 Meta classifier (Decision
tree(J48))

0.202

Drupal 6 Meta classifier (Random
forest)

0.848

Abunadi et al.
(2016)

phpmya dmin3.3 Random forest 0.913

moodle2 Random forest 0.991

Drupal 6 Random forest 0.752

Zhang et al., (2015) phpmy admin3.3 and
text feature

Ensemble 0.340

moodle2 and text
feature

Ensemble 0.071

Drupal 6
and text feature

Ensemble 0.683

Walden et al.
(2014)

phpmy admin3.3 Random forest 0.227

moodle2 Random forest 0.035

Drupal 6 Random forest 0.562

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

12

H0(Null): The performances of various software vulnerability prediction techniques are statistically
same.

Ha: The performances of various software vulnerability prediction techniques are statistically different.

The performances of different techniques are compared with f-measure and Friedman test is
applied in R code.

Friedman rank sum test

data: Sample
Friedman chi-squared = 17.778, df = 6, p-value = 0.00681
As p-value <0.05

So, Null hypothesis is rejected. Hence there is statistical difference between the performances
of different techniques

Since performance of different techniques are statistically different wilcoxon test is used to
compare pair wise performance of different techniques
Wilcoxon signed rank test
data: dataset$SVM and dataset$GW.RF
V = 0, p-value = 0.125
alternative hypothesis: true location shift is less than 0
Pair wise comparisons are performed between all techniques and
p-values are greater than 0.05

Hence there are no pair of techniques which are statistically different in performance.

8. APPLICATION OF THE WORK

Results of this study can be useful for both software security expert and software professionals as
well as researchers in the following way:

•	 A tester can use resources effectively by identifying vulnerable classes and can detect security
flaws in the system in the early stage of software development.

•	 Software developers can take decisions regarding the optimal use of resources available. They
can decide which class requires larger resources to be non-vulnerable.

•	 Different techniques that are used for vulnerability prediction come from machine learning.
This study suggests the efficiency of the technique in the detection of vulnerable software and
proposed a novel technique which better than other machine learning techniques.

•	 Classes may be redesign in such a way that they reduce the vulnerability of classes. For example,
if a software metric is found strongly related to the vulnerability then the designer can redesign
the class to reduce that metric

•	 Metrics used in this study can be used in the software industry and by security experts to set
quality benchmarks for different software organizations. An ideal range of metrics values can
be set to check the software vulnerability and Metrics values of software products (similar to
phpMyAdmin3.3, Moodle2, Drupal6) can be compared with the benchmarks set for software
vulnerability if security experts or developers found that there is a large deviation from normal
range then they can take the remedial step.

9. THREATS TO VALIDITY

In this section, we have discussed various threats to the validity of the study:

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

13

9.1 Construct Validity
This validity poses threats if the dependent and independent variables are not accurately measured
(Zhou et al., 2009).There is a gap between the theoretical meaning of variables and actual measure.
In our study, we used the data sets provided from the data repository however the severity of the
vulnerability is not considered as it may be subjective.

9.2 Internal Validity
There is a threat of internal validity if there is a causal effect of independent variables on dependent
variables. Controlled experiments are conducted to determine this effect. The possibility of the
threat of internal validity in the study is present if software metrics are indirectly related to software
vulnerability. The programmer’s capability and experience are not considered while constructing the
prediction model for software vulnerability prediction this may pose an internal validity problem.

9.3 External Validity
As external validity depends on up to which extent the results of a study can be generalized and in
our study we have taken three data sets available in the literature. Data sets which are considered for
vulnerability check are PHP based and there is a need to study other types of programming languages
like (Java). So for generalization of results of our research, there is a need to explore different types
of data from different application domains to replicate the study. Different parameters in the study
are specified completely that increases the chance of generalizability of results.

10. CONCLUSION

Accurate prediction of the software vulnerability can mitigate the risk of software failure or
unauthorized access to the system. Substantial efforts can be devoted to rectify the vulnerable software
classes in the early stages of software development.

The main aim of this work is to investigate the performances of various MLT and metaheuristics
based techniques for the detection of vulnerable software classes and Compared the performance of
the MLT and metaheuristic based technique in the prediction of the vulnerable software.

The major findings of our work are as follows:

•	 Precision, recall, and f-measure of Metaheuristics based Random Forest are better compared
to other MLT.

•	 Although Metaheuritic based Random Forest techniques are best as they uses optimization for
features selection however these techniques consumes larger time compare to all other techniques

•	 Particle swarm optimization based random forest algorithm(PSO-RF) has given best results for
software vulnerability prediction

Our future plan is to replicate our work on large data sets of different domains and we may
improve the performance of used metaheurtistics techniques in the study for better results and novel
metaheuristics technique can also be proposed for software security.

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

14

REFERENCES

Abunadi, I., & Alenezi, M. (2016). An empirical investigation of security vulnerabilities within web applications.
Journal of Universal Computer Science, 22(4), 537–551.

Alenezi, M. (2014). Fault-proneness of open source systems: An empirical analysis. International Arab Conference
on Information Technology, 164–169.

Alenezi, M., & Abunadi, I. (2015). Evaluating Software Metrics as Predictors of Software Vulnerabilities.
International Journal of Security and Its Applications, 9(10), 231–240. doi:10.14257/ijsia.2015.9.10.21

Bansal, A. (2017). Empirical analysis of search based algorithms to identify change prone classes of open source
software. Computer Languages, Systems & Structures, 47, 211–231. doi:10.1016/j.cl.2016.10.001

Bardsiri, V. K. (2013). PSO-based a model to increase the accuracy of software development effort estimation.
Software Quality Journal, 21(3), 501–526. doi:10.1007/s11219-012-9183-x

Basili, V. R., Briand, L. C., & Melo, W. L. (1996). A validation of object-oriented design metrics as quality
indicators. IEEE Transactions on Software Engineering, 22(10), 751–761. doi:10.1109/32.544352

Bozorgi, M. (2010). Beyond Heuristics: Learning to Classify Vulnerabilities and Predict Exploits. Proceeding
KDD 16th ACM conference on Knowledge discovery and data mining, 105-114. doi:10.1145/1835804.1835821

Burgess, C. J., & Lefley, M. (2001). Can genetic programming improve software effort estimation? A comparative
evaluation. Information and Software Technology, 43(14), 863–873. doi:10.1016/S0950-5849(01)00192-6

Carvalho, A. B. (2010). A symbolic fault-prediction model based on multi-objective particle swarm optimization.
Journal of Systems and Software, 83(5), 868–882. doi:10.1016/j.jss.2009.12.023

Catal, C. (2007). An artificial immune system approach for fault prediction in object-oriented software.
Proceedings of the second international conference on dependability computer systems, 1–8. doi:10.1109/
DEPCOS-RELCOMEX.2007.8

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-
sampling technique. Journal of Artificial Intelligence Research, 16, 321–357. doi:10.1613/jair.953

Chowdhury, I., & Zulkernine, M. (2011). Using complexity, coupling, and cohesion metrics as early indicators
of vulnerabilities. Journal of Systems Architecture, 57(3), 294–313. doi:10.1016/j.sysarc.2010.06.003

Gyimothy, T., Ferenc, R., & Siket, I. (2005). Empirical validation of object– oriented metrics on open source
software for fault prediction. IEEE Transactions on Software Engineering, 31(10), 897–910. doi:10.1109/
TSE.2005.112

Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization. Proceedings of IEEE International Conference
on Neural Networks, 1942–1948. doi:10.1109/ICNN.1995.488968

Khalid, . (2018). Predicting web vulnerability in web applications based on Machine learning, Intelligent
Technologies and Applications. In INTAP 2018. Communications in Computer and Information Science. Springer.

Malhotra, R. (2015). Empirical Research in Software Engineering: Concepts, Analysis, and Applications. CRC
Press.

McGraw, G., & Potter, B. (2004). Software security testing. IEEE Security and Privacy, 2(5), 81–85. doi:10.1109/
MSP.2004.84

Meneely, A., & Williams, L. (2010). Strengthening the empirical analysis of the relationship between linus’ law
and software security. Proceedings of the 2010 ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, 1-10. doi:10.1145/1852786.1852798

Menzies, T., Greenwald, J., & Frank, A. (2007). Data mining static code attributes to learn defect predictors.
IEEE Transactions on Software Engineering, 33(1), 2–13. doi:10.1109/TSE.2007.256941

Minku, L. L., & Yao, X. (2013). Software effort estimation as a multi objective learning problem. ACM
Transactions on Software Engineering and Methodology, 22(4), 1–32. doi:10.1145/2522920.2522928

http://dx.doi.org/10.14257/ijsia.2015.9.10.21
http://dx.doi.org/10.1016/j.cl.2016.10.001
http://dx.doi.org/10.1007/s11219-012-9183-x
http://dx.doi.org/10.1109/32.544352
http://dx.doi.org/10.1145/1835804.1835821
http://dx.doi.org/10.1016/S0950-5849(01)00192-6
http://dx.doi.org/10.1016/j.jss.2009.12.023
http://dx.doi.org/10.1109/DEPCOS-RELCOMEX.2007.8
http://dx.doi.org/10.1109/DEPCOS-RELCOMEX.2007.8
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1016/j.sysarc.2010.06.003
http://dx.doi.org/10.1109/TSE.2005.112
http://dx.doi.org/10.1109/TSE.2005.112
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1109/MSP.2004.84
http://dx.doi.org/10.1109/MSP.2004.84
http://dx.doi.org/10.1145/1852786.1852798
http://dx.doi.org/10.1109/TSE.2007.256941
http://dx.doi.org/10.1145/2522920.2522928

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

15

Mirjalili, S., Mohammad, S., & Lewis, M. A. (2014). Grey Wolf Optimizer. Advances in Engineering Software,
69, 46–61.

Mitchell, M. (1998). An introduction to genetic algorithms. MIT Press.

Neggaz, N., & Ewees, A.A., AbdElaziz, M., & Mafarja, M. (2020a). Boosting salp swarm algorithm by sine
cosine algorithm and disrupt operator for feature selection. Expert Systems with Applications, 145, 113103.

Neggaz, N., Houssein, E. H., & Hussain, K. (2020b). An efficient henry gas solubility optimization for feature
selection. Expert Systems with Applications, 152, 113364.

Pedregosa, . (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12,
2825–2830.

Pendharka, P. C. (2010). Exhaustive and heuristic search approaches for learning a software defect prediction
model. Engineering Applications of Artificial Intelligence, 23, 34–40.

Rhmann, W., Pandey, B., & Ansari, A. A. (2021). Software effort estimation using ensemble of hybrid search-
based algorithms based on metaheuristic algorithms. Innovations Syst Softw Eng. 10.1007/s11334-020-00377-0

Shar, L. K., Briand, L. C., & Tan, H. B. K. (2015). Web Application Vulnerability Prediction Using Hybrid
Program Analysis and Machine Learning. IEEE Transactions on Dependable and Secure Computing, 12(6),
688–707. doi:10.1109/TDSC.2014.2373377

Shin, Y., & Williams, L. (2008). Is complexity really the enemy of software security? Proceedings of the Fourth
ACM Workshop on Quality of Protection, 47–50.

Shukla, K. K. (2000). Neuro-genetic prediction of software development effort. Information and Software
Technology, 42, 701–713.

Vandecruys, O. (2008). Mining software repositories for comprehensible software fault prediction models.
Journal of Systems and Software, 81, 823–839.

Vrbancic, G. (2018). NiaPy: Python microframework for building nature-inspired algorithms. Journal of Open
Source Software, 3(23), 1–2.

Walden, J. (2014). Predicting vulnerable components: Software metrics vs text mining. IEEE 25th International
Symposium on Software Reliability Engineering (ISSRE), 23–33.

Zhang, Y., Lo, D., Xia, X., Xu, B., Sun, J., & Li, S. (2015). Combining software metrics and text features for
vulnerable file prediction. 2015 20th International Conference on Engineering of Complex Computer Systems
(ICECCS), 40–49.

Zhou, Y. (2009). Examining the Potentially Confounding Effect of Class Size on the Associations between
Object-Oriented Metrics and Change-Proneness. IEEE Transactions on Software Engineering, 35, 607–623.

Wasiur Rhmann is an Assistant Professor at the Department of CSE at KL Deemed to be University, Green Fields,
Vaddeswaram, A.P., India. Before Joining KL University he worked as an Assistant professor at Department of
Computer Application at Shri Ramswaroop Memorial University (SRMU), Barabanki, Uttar Pradesh, India. Before
joining SRMU he had worked as a Resource Person (Guest faculty) in the Department of Computer Science and
Information Technology at Babasaheb Bhimrao Ambedkar University (A Central University), Satellite Campus
Amethi, U.P., India. He did his Ph.D. (Computer Science) from Babasaheb Bhimrao Ambedkar University (A Central
University), Lucknow, India. He is an alumnus of the prestigious Aligarh Muslim University, India, and completed
his Master of Computer Application (M.C.A) and B. Sc. (Physics) from Aligarh Muslim University, Aligarh, India. He
has published several research papers in international journals of repute. His research interests include Software
testing, machine learning, software quality assurance, and UML modeling.

http://dx.doi.org/10.1109/TDSC.2014.2373377

