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ABSTRACT

In this paper, the authors propose a hybrid algorithm combining two different metaheuristic 
methods, genetic algorithms (GA) and sperm swarm optimization (SSO), for the global optimization 
of multimodal benchmarks functions. The proposed hybrid genetic algorithm and sperm swarm 
optimization (HGASSO) operates based on incorporates concepts from GA and SSO which generates 
individuals in a new iteration not only by crossover and mutation operations as proposed in GA 
but also by techniques of local search of SSO. The main idea behind this hybridization is to reduce 
the probability of trapping in local optimum of multi-modal problem. The algorithm is compared 
against GA and SSO metaheuristic optimization algorithms. The experimental results using a suite 
of multimodal benchmarks functions taken from the literature have evinced the superiority of the 
proposed HGASSO approach over the other approaches in terms of quality of results and convergence 
rates which obtained good results in solving the multimodal benchmarks functions including cosine, 
sine, and exponent in their formulation.

Keywords
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INTRODUCTION

During the last decades, there has been a huge growing in the area of evolutionary computing, which 
has indicated modern techniques for solving various types of optimization problems. In contrast to 
classical or traditional optimization approaches, which emphasize exact and accurate computation, 
but these approaches may fall down in obtaining the solution of a global optimum. Based on that, 
evolutionary computation emerged to provide more efficient and robust technique for solving complex 
problems (Shehadeh et al. 2018a; Fogel, 2005). “Genetic algorithm (GA)” is one of the most prevalent 
branches between the existing evolutionary approaches. GA is considered as an inherently discrete 
stochastic search approach depends on the techniques of generating genetics, natural selection, and 
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evolution (Shehadeh et al, 2018a; Paulinas and Ušinskas, 2007). Since this type of metaheuristics 
simultaneously can search and evaluate many sites in the domain of problem, which is more likely 
to discover the global optimum of an optimization problem. Furthermore, it easy to implement and 
use, which uses a measure of performance of simple scalar that does not use or require derivative 
information (Shehadeh et al., 2018a).

More recently, Hisham A. Shehadeh et al. (Shehadeh et al., 2017; Shehadeh et al. 2018b, Shehadeh 
et al. 2018c) proposed a new metaheuristic method, namely ‘‘Sperm Swarm Optimization’’ (denoted 
as SSO). The idea of this approach is inspired by the behaviors of sperm swarm through the procedure 
of natural fertilization. The theory of SSO represents a solution process, which each sperm swims 
through the domain of multidimensional search space while the sperm’s position and velocity are 
constantly updated based on the previous position of the sperm, as well as the best performance of 
the swarm in the entire population.

In contrast with GA, SSO is an inherently continuous approach in which has various attractive 
features. It has memory, so the prior knowledge can be retained by all the sperms in each generation; 
whereas in GA, the scenario is different, which is considered as an inherently discrete approach, so 
the prior knowledge of the problem is discarded each iteration by reserving the best individuals and 
eliminating the worst individuals at each generation. To date, SSO has been successfully applied to 
generate the optimal solution for different continuous nonlinear functions in practice (Shehadeh et al., 
2018c), but until recently it had not been hybridized to deal with multimodal problems. SSO seems 
particularly appropriate for multimodal tasks mainly because of the good quality of solutions and the 
high speed of convergence that the algorithm shows for solving different kinds of single-objective 
problems (Shehadeh et al., 2018c).

There are many studies that have been investigated the hybridization of evolutionary algorithms 
with local search. We can summarize them as follows:

Soleimani et al. proposed a hybrid approach that integrates “Particle Swarm Optimization 
(PSO)” with GA. The proposed approach was used to optimize problems of supply chain network. 
The results showed that the proposed approach has better convergence and quality of solution than 
GA (Soleimani & Kannan, 2015).

On the other hand, Samuel et al. suggested new optimization approach that merges the 
functionality of PSO and GA. The proposed approach was used to solve the scheduling problem of 
power generator. The results proved the efficiency of the proposed approach in finding solution for 
the aforementioned problem (Samuel & Rajan, 2015).

In different view, Fang et al. proposed a new hybrid approach that integrates “Artificial Fish 
Swarm Algorithm (AFSA)” with GA. This approach was used to solve scheduling problem of the 
hydrothermal systems. To prove the performance of the proposed approach, Fang et al. tested this 
approach on two hydrothermal systems (Fang et al., 2014).

In a different work, Kao et al. proposed a hybrid approach that integrates PSO with GA. The 
proposed approach was applied to solve 17 multi-modal functions. The results showed that the proposed 
approach has better convergence and quality of solution than other approaches (Kao & Zahara, 2008).

Gholami et al. discussed a hybrid approach that merges the functionality of PSO with GA. 
They used this approach to optimize bank shape problem. The result showed the performance of the 
approach under different scenarios (Gholami et al., 2018).

On the other hand, Gacem et al. proposed a hybrid approach that integrates the functionality of 
GA and PSO. The proposed approach is applied to optimize the power flow problem. The results 
showed that the proposed approach has better convergence and quality of solution than GA and PSO 
(Gacem & Benattous, 2017).

In a later study, Chaudhary et al. proposed a hybrid approach that combines the functionality 
of GA and “Gravitational Search Algorithm (GSA)”. They used this approach to optimize the load 
scheduling problem in cloud computing (Chaudhary & Kumar, 2019).
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As mentioned in the aforementioned studies, the hybridization is always referred to the concept of 
memetic algorithm in which the procedures of two or more algorithms are merged as one procedure 
to solve a problem. Taking feature of the compensatory property of SSO and GA, in this paper, we 
propose a new method that merges evolutionary natures of SSO and GA. The proposed “Hybrid 
Genetic Algorithm and Sperm Swarm Optimization (HGASSO)” will be evaluated against a set of 
multimodal bed problems gathered from (Kao & Zahara, 2008; Surjanovic & Bingham, 2013) and 
the results are compared extensively with the original GA and SSO.

This paper is organized as follows: background on “Genetic Algorithm (GA)” and “Sperm 
Swarm Optimization (SSO)” is summarized in Sect. 2. Section 3 shows “Hybrid Genetic Algorithm 
and Sperm Swarm Optimization (HGASSO)”. Section 4 summarizes experimental results. Sect. 5 
summarizes the discussion. This work is concluded in Sect. 6.

BACKGROUND ON GENETIC ALGORITHMS (GA) 
AND SPERM SWARM OPTIMIZATION (SSO)

This section constructs the need for the study and gives a general background related to “Genetic 
Algorithm (GA)” and “Sperm Swarm Optimization (SSO)”. In addition, this section presents view 
in-depth at pseudocodes of these optimization algorithms and their concepts.

GENETIC ALGORITHMS (GA)

GA is proposed by Holland in 1993, which refers to Biology Inspired Search (BIS) method that is 
inspired by Darwinian’s theory of evolution (Goldberg & Holland, 2002). GA has been successfully 
applied to solve different complex and nonlinear problems and proved its eligibilities over many 
classical optimization approaches, specifically when the problem under study has solutions of 
many local optimums. Each solution in GA is commonly formalized as a binary string, namely a 
chromosome. Usually, there is a fitness function has been used to evaluate this chromosome after the 
chromosome has been formalized. Upon accomplishment of the estimation, an operation called roulette 
wheel selection is utilized to choose pairs of better chromosomes randomly from the population to 
utilize such genetic operations as mutation as well as crossover that mimic natural procedure. The 
weak chromosome will be discarded from the population each time run. This evaluation procedure 
continues until the end criterion is achieved. The GA pseudocode is summarized in Algorithm 1 
(Langdon & Poli, 2002).
Algorithm 1 Genetic Algorithm (GA)
Begin 
Step 1: Set the problem based on a genetic representation.
Step 2: Initialize population p x x

N
( ) ,....0

1
0 0= .

Step 3: Calculate the average fitness F F z N
i

N

i

−

= ∑ ( ) /  and give a 

normalized fitness value for each individualF z N
i
t( ) / . 

Step 4: Give every z
i
 a probability p z t

j
( , )based on its fitness. 

Based on that, select N vectors from P(t). This provides the set 
S(t).
Step 5: Pair values in S(t) at random forming N/2 pairs. Perform 
crossover with probability pcross to each pair. Perform mutation 
to form a new population P(t+1).
Step 6: Set t = t +1, go to step 3.
End.
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SPERM SWARM OPTIMIZATION (SSO)

“Sperm Swarm Optimization (SSO)” is one of the latest optimization approaches developed by 
Hisham Shehadeh et al. (Shehadeh et al., 2017; Shehadeh et al. 2018b, Shehadeh et al. 2018c). SSO 
concept is depends on a metaphor of the procedure of natural fertilization of sperm swarm. Sperms 
represent as candidate solutions in the SSO approach, which swim around in the multidimensional 
search space domain. The position of each sperm is adjusted based on the previous position and the 
global best solution of the swarm. The global best solution represents the closest sperm to the egg, 
which is called the winner. The winner is depicted in Figure 1. Sperm movement affects by many 
limitations of reproductive system of female. These limitations can be summarized in the following 
points (Shehadeh et al., 2018a; Shehadeh et al., 2017; Shehadeh et al. 2018b, Shehadeh et al. 2018c):

•	 pH value, which is a random number between 7–14.
•	 Temperature value, which is a random number between 35.1–38.5.

The sperm adjust its velocity based on three rules. These rules can be summarized as follows:

•	 Initial velocity of the sperm, which is affected by pH value of the area.
•	 Personal best solution of the sperm, which is affected by pH and temperature values of the 

reached location. This velocity will be adjusted in the memory just if the current location is 
better than the old one.

•	 Global best solution, which is affected by pH and temperature values of the visited location. This 
velocity is recorded by the closest sperm to the egg, which is called the winner.

� (1)
where,

•	 D –factor of velocity damping, which is a random value between 0 and 1;
•	 pH_Rand1, pH_Rand2, and pH_Rand3 – the pH value of visited area, which is a random value 

between 7–14;
•	 Temp_Rand1, Temp_Rand2 – the temperature value of visited area, which is a random value 

between 35.1–38.5;
•	 vi –velocity of sperm;
•	 xi – current position of sperm;
•	 xsbest – personal best location of sperm i;
•	 xsgbest – global best location of the swarm.

The current best solution can be calculated by the following formula:
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x t x t v t
i i i
( ) ( ) ( )= + 	 (2)

The full procedure of “Sperm Swarm Optimization (SSO)” approach can be summarized as 
follows (Shehadeh et al., 2018b; Shehadeh et al., 2018c):
Algorithm 2 Sperm Swarm Optimization (SSO)
Begin 
Step 1: For the each sperm, initialize location. 
Step 2: for i=1: size of population do
Step 3: evaluate the fitness for swarm
                 if obtained fitness > xsbest

  then
                Assign the current value as the x

sbest

                end if
             end for 
Step 4: appoint the x

sgbest
 based on the winner.

Step 5: for i=1: size of population do
                Apply Eq(1) 
               Apply Eq(2)
             end for
Step 6: while maximum criterion is not reached go to step 2 
End.

HYBRID GENETIC ALGORITHM AND SPERM SWARM OPTIMIZATION (HGASSO)

Usually, the main idea of the hybrid optimization algorithm can be considered as applying a local 
search approach with the genetic algorithm operations such as crossover and mutation in one procedure 

Figure 1. The sperm swarm and winner
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(Pomar et al., 2017; Moin et al. 2015). This section summarizes the structure of our proposed 
algorithm (denoted by HGASSO). From the pseudocode of algorithm 3, we can notice that GA and 
SSO both evaluate the same initial population. The individuals of the population may be represented 
as sperms in the case of SSO, or as chromosomes in the case of GA. In the proposed HGASSO, 
the local search is applied first with all the individuals, which includes the process of selecting the 
global best sperm (the winner), the process of selecting the personal best solution of the sperm, and 
the process of applying the sperm velocity update rule (Equation 1). This is followed by evaluating 
a fitness function. The crossover operator of the real-coded GA comes at this stage to have the site 
on the procedure, which is applied to all the individuals based on a crossover probability to prepare 
them for the mutation operation stage. The operator of GA, called mutation is used after the crossover 
operation to adjust an candidate solution with a value based on a random selection in the problem’s 
space domain. The mutation is operated depends on a mutation probability that is determined at the 
beginning of the procedure. The full procedure of “Hybrid Genetic Algorithm and Sperm Swarm 
Optimization (HGASSO)” can be summarized as follows:
Algorithm 3 Hybrid Genetic Algorithm and Sperm Swarm Optimization 
(HGASSO)
Begin 
Step 1: Initialize the population. 
Step 2: apply SSO method  
              for i=1: size of population do
            evaluate the fitness for each sperm 
                 if obtained fitness > x

sbest
 then

                appoint the current value as the x
sbest

                end if
               end for 
             appoint the x

sgbest
 depends on the winner.

            for i=1: size of population do
                Apply Eq(1) 
               Apply Eq(2)
             end for
Step 3: apply GA method  
            Perform crossover such as two-parent crossover based 
on a determined crossover probability 
           Perform mutation based on a determined mutation 
probability       
          Perform sorting to determine the global best solution of 
the swarm (winner) 
Step 4: while maximum criterion is not reached go to step 2 
End.

In this procedure, the crossover and mutation are applied to help the local search method to skip 
the local minima easily. Crossover and mutation help to make diversity in the population in the range 
of the problem’s space domain. This is very important to be applied, especially with multimodal 
problems that contain multi-local extremes. Based on pseudocode of Algorithm 3, the algorithm 
sorts the population to determine the global best solution of the swarm. Therefore, the complexity 
of HGASSO is equal to O(n log n).

EXPERIMENT AND RESULTS

In order to compare the proposed HGASSO with both GA and SSO, we apply two assessments, 
including, quantitative and qualitative tests. For the quantitative test, we measure the best fitness, 
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standard deviation, median, maximum value and average value that are achieved by the approaches 
for each benchmark function. Furthermore, we adopt a statistical test, namely “one-way ANOVA 
(Tukey’s test)” to compare between approaches. This will be discussed later in Tables from 2 to 14, 
while for the qualitative test, we compare between the solution set that is achieved by our approach 
and the solution set that achieved by the other approaches. This refers to the concept of algorithm 
convergence, which is utilized to measure the ability of an algorithm to reach the optimal solution 
of a problem within a determined number of iterations. This will be discussed later in Figures from 
12 to 22.

These assessments are measured based on several well-known multimodal benchmark functions. 
Benchmark model is a nonlinear problem, which is utilized to estimate and validate the metaheuristic 
approaches (Krzeszowski & Wiktorowicz, 2016). These functions are selected carefully as they are 
considered as standard bed test problem for estimating the optimization methods (Kaipa & Ghose, 
2017; Adorio & Diliman, 2005; Molga & Smutnicki, 2005; Back, 1996). The listed below benchmarks 
functions have several local extremes and all of them are minimization models, which their results 
should be minimum. The following points summarize the benchmarks functions that are used in this 
work:

•	 Rastrigin Function

The search space domain of this function is usually estimated on the hypercube xi ∈ [-5.12, 5.12], 
∀ i = 1, …, d. Rastrigin problem has multiple local minima regularly distributed in its search space 
domain as depicted in Figure 2. The mathematical formulation of this problem is shown in Equation 
3 (Surjanovic & Bingham, 2013).

f y d y y
i i

i

d

( ) = + −



=
∑10 10 22

1

cos( ) ,π 	 (3)

•	 Ackley Function:

Ackley function is considered as a very complex problem in which many metaheuristics methods 
are trapped in one of its multiple local minima. The optimal value of this function is 0 with a single 
global minimum at (0, …, 0), as depicted in Figure 3. The mathematical formulation of this problem 
is shown in Equation 4. This problem can be estimated on the hypercube xi ∈ [-32.768, 32.768], ∀ i 
= 1, …, d. The recommended values of the parameters c, b and a are 2π, 0.2, and 20 respectively 
(Surjanovic & Bingham, 2013).

f y a
d

y
d

cy
i

i

d

i
i

d

( ) exp exp cos= −











− ( )



= =
∑ ∑-b

1 12

1 1







+ +a exp( ),1 	 (4)

•	 Bukin Function:

This problem is always estimated on the rectangle x1 ∈ [-15, -5], x2 ∈ [-3, 3]. Bukin function 
has a single global minimum at (-10, 1) and many local minima with an optimal value of 0. Figure 4 
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shows its local extremes, which lie in a series of ridges. The mathematical formulation of this problem 
is shown in Equation 5 (Surjanovic & Bingham, 2013).

f y y y y( ) = − + +100 0 01 0 01 10
2 1

2
1

. . , 	 (5)

•	 Griewank Function

Griewank model has many widespread local minima in its search space domain. This problem 
has a global minimum at (0, 0) with an optimal value of 0. Griewank function is depicted in Figure 
5, which the zoomed-in plots present its complexity. This problem is always estimated on the hypercube 
xi ∈ [-600, 600], ∀ i = 1, …, d. The mathematical formulation of this problem can be described as 
in Equation 6 (Surjanovic & Bingham, 2013).

f y
y y

i
i

i

d
i

i

d

( ) = −










+

= =
∑ ∏

2

1 14000
1cos , 	 (6)

Figure 2. Rastrigin function
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•	 Cross-In-Tray Function

Cross-In-Tray function has an optimal value of -2.06261 with several global minima at (1.3491, 
-1.3491), (-1.3491, 1.3491), (-1.3491, -1.3491), and (1.3491, 1.3491). This function is depicted in 
Figure 6 in which the right plot shows its characteristic of a cross with its several global minima. 
This problem is mainly estimated on the square xi ∈ [-10, 10], ∀ i = 1, 2. The mathematical formulation 
of Cross-In-Tray can be represented as in Equation 7 (Surjanovic & Bingham, 2013).

f y y y
y y

( ) = − ( ) ( ) −
+












0 0001 100

1 2
1
2

2
2

. sin sin exp
π 

+












1

0 1.

, 	 (7)

•	 Levy Function N.13

The input values of this benchmark problem are commonly estimated on the square xi ∈ [-10, 
10], ∀ i = 1, 2. This problem has a single global minimum at (1, 1) with an optimal value of 0 as 
depicted in Figure 7. The mathematical formulation of Levy function N.13 can be described as in 
Equation 8 (Surjanovic & Bingham, 2013).

Figure 3. Ackley function
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f y y y y y y( ) = ( )+ −( ) + ( )
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
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2 2
2 2

2 23 1 1 3 1 1 2π π πsin
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
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•	 Branin

This benchmark is usually estimated on the square x1 ∈ [-5, 10], x2 ∈ [0, 15], as shown in Figure 
8. The optimal value of this function is 0.39789 with three local minima values at (-3.14, 12.275), 
(3.14, 2.275), and (9.42478, 2.475). The mathematical representation of Branin can be represented 
as in Equation 9 (Surjanovic & Bingham, 2013).

f y y
y y

( )
.

.
= − + −












+ −




1

51 95

5 1

4

5
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10

8
2

1

2

2

1

2

π π π







−





















cos( ) . ,y1 44 81 	 (9)

Where,

y y1 115 5= − , 	 (9.1)
y y2 15 2= 	 (9.2)

Figure 4. Bukin function
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•	 Easom (ES)

This benchmark is mainly estimated on the square xi ∈ [-100, 100], ∀ i = 1, 2, as shown in Figure 
9. The Easom problem has several local minima with a single global minima at (3.14, 3.14). The 
optimal value of this function is -1. The mathematical formulation of Easom can be described as in 
Equation 10 (Surjanovic & Bingham, 2013).

Figure 5. Griewank function

Figure 6. Cross-In-Tray function
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f y y y y y( ) cos( )cos( )exp( ( ) ( ) ),= − − − − −
1 2 1

2
2

2π π 	 (10)

•	 Goldstein and Price (GP)

The model is mainly estimated on the square xi ∈ [-2, 2], ∀ i = 1, 2. The optimal value of this 
function is 3 with a single global minimum at (0, -1) as shown in Figure 10. The mathematical 
formulation of this problem can be described as in Equation 11 (Surjanovic & Bingham, 2013).

f y y y y y y y y y( ) ( ) ( )

(

= + + + − + − + +



 ×

+

1 1 19 14 3 14 6 3

30
1 2

2
1 1

2
2 1 2 2

2

22 3 18 32 12 48 36 27
1 2

2
1 1

2
2 1 2 2

2y y y y y y y y− − + + − +



) ( ) ,

	 (11)

•	 Shubert

The model is mainly evaluated on the square xi ∈ [-10, 10], ∀ i = 1, 2, although this may be 
restricted to the square xi ∈ [-5.12, 5.12], ∀ i = 1, 2. The optimal value of this benchmark is -186.7309, 
as shown in Figure 11, which the zoomed-in plot presents its multiple local minima. The mathematical 
formulation of this problem can be described as in Equation 12 (Surjanovic & Bingham, 2013).

Figure 7. Levy function N.13
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•	 Shekel

Shekel function is usually evaluated on 4 dimensions search space domain, which has multiple 
local minima and 4 global minima values. This benchmark is mainly evaluated on the hypercube xi 
∈ [0, 10], ∀ i = 1, 2, 3, 4. The optimal value of this function is mainly less or equal to -10.5 in which 
is changed depends on the value of m and x. The mathematical formulation of this problem can be 
represented as in Equation 13 (Surjanovic & Bingham, 2013).

f y y c
j ji i

ji

m

( ) ,= −( ) +








==

−

∑∑
2

1

4

1

1

β 	 (13)

Where,

Figure 8. Branin function
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β =
1

10
( ,1, 2, 2, 4, 4, 6, 3, 7, 5, 5)T 	 (13.1)

c =

4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0

4.0 1.0 8.0 6.0 7..0 9.0 3.0 1.0 2.0 3.6

4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0  7.0

4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6













, 	 (13.2)

The MatLab 2017a has been utilized to implement the proposed approach. All of the tests are 
carried out on a computer with 4 GB RAM and Intel dual-core CPU T3200 running Windows 7. 
The parameters of all the algorithms have been standardized during the evaluation of the proposed 
benchmark problems, as recommended in (Shehadeh et al., 2018b; Shehadeh et al., 2018c; Saravanan 
& Sachithanandam, 2001) to compare the result of HGASSO against the results of GA and SSO. The 
parameters of HGASSO, SSO, and GA are listed in Table 1, which the parameters of SSO are set as 
follows; D is a velocity damping factor, which sets in the range of (0, 1); pH_Rand1, pH_Rand2, and 
pH_Rand3 are the potential of Hydrogen values of the visited location, which set in the range of (7, 
14). Temp_Rand1 and Temp_Rand2 are the temperature parameters of the visited location, which set 
in the range of (35.1, 38.5) (Shehadeh et al., 2018b; Shehadeh et al., 2018c). The parameters of GA 

Figure 9. Easom problem
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are set as follows; crossover and mutation are set to 0.8 and 0.05 respectively as in (Shehadeh et al., 
2018c; Saravanan & Sachithanandam, 2001).

Overall, every test function is evaluated in a total of ten-time runs. The experimental outcomes 
for HGASSO, SSO, and GA are presented in Tables from 2 to 12. Each table shows the number 
of iterations, the best fitness value of each benchmark problem, the average value, median value, 
maximum value, and the standard deviation. The algorithm convergences of HGASSO, SSO, and GA 

Figure 10. Goldstein and Price (GP) function

Figure 11. Shubert function
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are depicted in Figures from 12 to 22. We follow the standard strategy of comparing the proposed 
approach against GA and SSO in which the number of generations has been changed through the 
evaluation. This scenario of evolution is used to estimate many well-known approaches, such as in 
(Shehadeh et al., 2018c; Banharnsakun et al, 2011; Sathya & Radhika, 2013; Rbouh & Imrani, 2014; 
Shi & Eberhart, 1999).

Overall, the proposed HGASSO algorithm obtained the best fitness for Rastrigin, Ackley, 
Bukin, Griewank, Levy function N.13, and Shekel benchmark functions, followed by SSO and GA as 
outlined in Table 13. However, for Easom and Shubert test functions, the proposed HGASSO attained 
the same rank with SSO. In addition, for Cross-in-Tray, Branin, and Goldstein and Price (GP) test 
functions, the proposed HGASSO attained the same rank of best fitness value with SSO and GA. For 
the average best of ten-runs on the proposed benchmarks test functions, the HGASSO is the best on 
Rastrigin, Ackley, Bukin, Griewank, Levy function N.13, Branin, Easom (ES), Goldstein and Price 
(GP), and Shubert test functions. However, for Cross-in-Tray and Shekel test functions, the proposed 
HGASSO attained the same rank of best average with SSO. This shows that the proposed HGASSO 
has a better convergence than the other algorithms to explore the search space domain. Particularly, in 
solving the very complex benchmarks functions that contain exponent, cosine, sine, summation, and 
multiplications of multiple variables in their formulation. This is clear in the algorithm convergence 
measurement as depicted in the prior Figures from 12 to 22 in which HGASSO has the ability more 
than other approaches in skipping the multiple local extremes of the problems.

Table 14 presents the statistical analysis using “one-way ANOVA (Tukey’s test)” for all 
benchmarks functions when the population size for all the approaches is set to 1000. As outlined in the 

Table 1. Parameters of the algorithms

Parameters Value

HGASSO

Crossover probability 0.8

Probability of mutation 0.05

velocity damping factor (D) Rand (0, 1)

Temperature Rand (35.5, 38.5)

pH Rand (7, 14)

Population sizes 20

Numbers of generations/iterations 30, 100, 400, and 1000

SSO

velocity damping factor (D) Rand (0, 1)

Temperature Rand (35.5, 38.5)

pH Rand (7, 14)

Population sizes 20

Numbers of generations/iterations 30, 100, 400, and 1000

GA

Probability of mutation 0.05

Crossover probability 0.8

Population sizes 20

Numbers of generations/iterations 30, 100, 400, and 1000
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Table 2. Comparison of experimental results between HGASSO, SSO, and GA in terms of mean, standard deviation, maximam 
value, median, and best fitness for the Rastrigin test function. The bold font with the highlighted background represents the 
best fitness and mean for the respective benchmark function

Algorithm Iteration no. Average, mean Std. Max. Median Best fitness

Function: Rastrigin

HGASSO 30 0.83069 2.3583 5.354263043 0.00056906 6.499e-05

100 0.02177 0.38374 1.22085478 9.77392e-07 9.7739e-07

400 0.018452 0.24184 4.345719212 1.42109e-14 1.4211e-14

1000 0.046841 0.27594 4.191540893 0 0

SSO 30 1.058 0.224 2.0155 0.99520 0.99496

100 1.023 0.22607 3.248725968 0.994959057 0.029416

400 0.074 0.2228 1.180860894 0.020193641 0.010194

1000 0.053 0.27557 8.073771956 0 0

GA 30 7.598 3.4325 15.98928286 0.99589 0.99496

100 1.6349 0.87803 5.100138537 1.060852 0.99496

400 0.76901 1.6062 24.12894 0.087708 0.017129

1000 0.29101 0.50583 10.4 6.14716e-06 6.1472e-06

Figure 12. Comparison of experimental results between HGASSO, SSO, and GA in term of convergence for the Rastrigin test function
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Table 3. Comparison of experimental results between HGASSO, SSO, and GA in terms of mean, standard deviation, maximam 
value, median, and best fitness for the Ackley test function. The bold font with the highlighted background represents the best 
fitness and mean for the respective benchmark function

Algorithm Iteration no. Average, mean Std. Max. Median Best fitness

Function: Ackley

HGASSO 30 0.33743 0.99988 5.670564 0.4076E-05 2.4366E-08

100 0.0736 0.64297 7.352609216 0.114E-11 8.0824E-14

400 0.017362 0.2218 8.111862635 3.991E-13 1.8649E-15

1000 0.0054678 0.12183 6.923460765 6.91E-16 6.9165E-16

SSO 30 0.45821 0.99405 5.516434 0.001582 2.9937E-08

100 0.18659 0.50742 7.669341 1.52E-11 9.8412E-14

400 0.023298 0.24924 7.347074 8.8E-15 2.6645E-15

1000 0.0078659 0.15351 10.4051 8.88E-16 8.8818E-16

GA 30 3.1013 1.9973 6.623962 2.34069 1.7499

100 1.951 1.2934 6.162792 1.6357 1.2311

400 1.4138 0.76135 3.379967 1.5219 1.2312

1000 1.7328 0.44703 3.332738 1.8725 1.6505

Figure 13. Comparison of experimental results between HGASSO, SSO, and GA in term of convergence for the Ackley test function
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Table 4. Comparison of experimental results between HGASSO, SSO, and GA in terms of mean, standard deviation, maximam 
value, median, and best fitness for the Bukin test function. The bold font with the highlighted background represents the best 
fitness and mean for the respective benchmark function

Algorithm Iteration no. Average, mean Std. Max. Median Best fitness

Function: Bukin

HGASSO 30 3.1538 9.4634 32.4804 0.09003 0.04691

100 0.4906 2.306 14.23453 0.065994 0.065994

400 0.14783 0.9582 12.58949 0.0507 0.044777

1000 0.10513 0.6923 16.2696 0.053808 0.053808

SSO 30 34.488 7.9943 38.08249 0.431059 0.09003

100 5.6346 2.1636 16.89265 0.126685 0.12669

400 1.9536 0.67845 122.5681 0.044777 0.0447

1000 0.5872 0.73588 16.41006 0.055188 0.055188

GA 30 13.5755 9.1456 31.43089 0.838493 0.199

100 8.6237 11.7059 74.92827 0.237401 0.13858

400 1.8721 3.1999 42.25904 0.058669 0.058669

1000 0.54051 3.1527 86.18405 0.140932 0.0714093

Figure 14. Comparison of experimental results between HGASSO, SSO, and GA in term of convergence for the Bukin test function
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Table 5. Comparison of experimental results between HGASSO, SSO, and GA in terms of mean, standard deviation, maximam 
value, median, and best fitness for the Griewank test function. The bold font with the highlighted background represents the 
best fitness and mean for the respective benchmark function

Algorithm Iteration no. Average, mean Std. Max. Median Best fitness

Function: Griewank

HGASSO 30 0.0724772 0.016421 0.025229 6.31E-05 6.2751e-05

100 0.012366 0.0080656 0.039221 0.007408 0.007391

400 0.0057372 0.01106 0.193659 0.009865 2.1959e-05

1000 0.0011059 0.0060654 0.076761 1.558E-06 5.3584e-08

SSO 30 5.0707 2.366 12.94653 0.034655 0.01972

100 2.5189 0.36012 2.60039 0.081556 0.081362

400 0.75265 0.20696 3.587809 0.206964 0.20696

1000 0.34638 0.33338 10.38389 0.13664 0.13664

GA 30 0.098954 0.015128 0.062387 0.013702 0.013702

100 0.037079 0.0016401 0.016512 0.007396 0.007396

400 0.012626 0.00048227 0.010224 0.007396 0.007396

1000 0.010697 0.0054164 0.096065 0.007396 0.0073962

Figure 15. Comparison of experimental results between HGASSO, SSO, and GA in term of convergence for the Griewank test function



International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

21

Table 6. Comparison of experimental results between HGASSO, SSO, and GA in terms of mean, standard deviation, maximam 
value, median, and best fitness for the Cross-in-Tray test function. The bold font with the highlighted background represents 
the best fitness and mean for the respective benchmark function

Algorithm Iteration no. Average, mean Std. Max. Median Best fitness

Function: Cross-in-Tray

HGASSO 30 -2.0624 0.0065705 -2.06036 -2.06261 -2.0626

100 -2.0626 0.0019581 -2.06004 -2.06261 -2.0626

400 -2.0626 0.00065859 -2.05285 -2.06261 -2.0626

1000 -2.0626 0.001813 -2.006 -2.06261 -2.0626

SSO 30 -1.9725 0.061039 -1.86304 -2.06261 -2.0626

100 -2.0314 0.0017321 -2.05025 -2.06261 -2.0626

400 -2.0626 0.0014933 -2.04194 -2.06261 -2.0626

1000 -2.0626 0.0020119 -2.00025 -2.06261 -2.0626

GA 30 -2.0324 0.011546 -2.01877 -2.06261 -2.0626

100 -2.0547 0.00077371 -2.05743 -2.06261 -2.0626

400 -2.0601 0.0036624 -2.03175 -2.06261 -2.0626

1000 -2.0621 0.00082917 -2.04536 -2.06261 -2.0626

Figure 16. Comparison of experimental results between HGASSO, SSO, and GA in term of convergence for the Cross-in-Tray 
test function
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Table 7. Comparison of experimental results between HGASSO, SSO, and GA in terms of mean, standard deviation, maximam 
value, median, and best fitness for the Levy N.13 test function. The bold font with the highlighted background represents the 
best fitness and mean for the respective benchmark function

Algorithm Iteration no. Average, mean Std. Max. Median Best fitness

Function: Levy function N.13

HGASSO 30 0.11263 0.48914 2.112283 1.67E-06 1.0054e-06

100 0.0098208 0.1288 0.53653 7.18E-16 1.3498e-31

400 0.0040293 0.060411 0.984788 2.21E-15 1.3498e-31

1000 0.00040945 0.011655 0.213259 1.35E-31 1.3498e-31

SSO 30 1.0284 0.14993 1.453477 0.01309 0.0056401

100 0.40176 0.16547 1.148953 9.39E-23 1.335E-31

400 0.20985 0.043645 1.297072 1.349E-31 1.335E-31

1000 1.0284 0.14993 1.092091 2.034E-30 2.0345e-30

GA 30 2.9547 1.5963 8.523651 0.014209 1.955e-05

100 0.88172 0.36938 2.160539 3.98E-11 3.9844e-11

400 0.31151 0.37344 7.442983 4.47E-10 4.4668e-13

1000 0.099797 0.37253 8.727115 1.35E-31 1.3490e-31

Figure 17. Comparison of experimental results between HGASSO, SSO, and GA in term of convergence for the Levy N.13 test function
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Table 8. Comparison of experimental results between HGASSO, SSO, and GA in terms of mean, standard deviation, maximam 
value, median, and best fitness for the Branin test function. The bold font with the highlighted background represents the best 
fitness and mean for the respective benchmark function

Algorithm Iteration no. Average, mean Std. Max. Median Best fitness

Function: Branin

HGASSO 30 0.49065 0.53949 2.479416 0.397887 0.39789

100 0.40034 0.085994 0.521464 0.397887 0.39789

400 0.39964 0.037387 0.748338 0.397887 0.39789

1000 0.39884 0.031369 1.321689 0.397887 0.39789

SSO 30 1.4434 0.093386 0.807697 0.397887 0.39789

100 1.1274 0.020624 0.605062 0.397887 0.39789

400 0.6506 0.030288 0.80531 0.397887 0.39789

1000 0.4296 0.030804 1.221217 0.397887 0.39789

GA 30 6.0451 0.46534 1.912022 0.415508 0.39789

100 1.9106 0.17979 1.233101 0.397887 0.39789

400 1.2753 0.56752 9.194571 0.397887 0.39789

1000 0.57151 0.27957 5.506512 0.397887 0.39789

Figure 18. Comparison of experimental results between HGASSO, SSO, and GA in term of convergence for the Branin test function
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Table 9. Comparison of experimental results between HGASSO, SSO, and GA in terms of mean, standard deviation, maximam 
value, median, and best fitness for the Easom (ES) test function. The bold font with the highlighted background represents the 
best fitness and mean for the respective benchmark function

Algorithm Iteration no. Average, mean Std. Max. Median Best fitness

Function: Easom (ES)

HGASSO 30 -0.93629 0.067942 -0.57854 -1 -1

100 -0.98936 0.19349 -0.00023 -1 -1

400 -0.99574 0.061802 -0.00932 -1 -1

1000 -0.9996 0.013206 -0.58761 -1 -1

SSO 30 -0.45032 0.45255 -1.30E-80 -9.96E-01 -1

100 -0.78718 0.34859 -3.0E-171 -1 -1

400 -0.96241 0.14033 -6.55E-84 -1 -1

1000 -0.98494 0.080968 0 -1 -1

GA 30 -2.0138e-05 2.6482e-05 -4.38E-07 -1.24E-05 -8.1095e-05

100 -7.1524e-05 0.086161 -0.70954 -0.99288 -8.1101e-05

400 -7.9285e-05 2.2619e-05 -3.68E-13 -8.11E-05 -8.11e-05

1000 -0.93195 9.2674e-06 -1.12E-07 -8.11E-05 -0.99291

Figure 19. Comparison of experimental results between HGASSO, SSO, and GA in term of convergence for the Easom (ES) test 
function
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Table 10. Comparison of experimental results between HGASSO, SSO, and GA in terms of mean, standard deviation, maximam 
value, median, and best fitness for the Goldstein and Price (GP) test function. The bold font with the highlighted background 
represents the best fitness and mean for the respective benchmark function

Algorithm Iteration no. Average, mean Std. Max. Median Best fitness

Function: Goldstein and Price (GP)

HGASSO 30 7.9669 13994.6643 59.90158 3.009872 3

100 5.0281 24078.6216 90.36963 3 3

400 3.3042 3045.3292 67.17167 3 3

1000 4.2432 610.4686 1154.375 3 3

SSO 30 346.1439 0.18953 75.95701 3 3

100 710.5087 1.2212 15.27657 3.000677 3

400 91.9061 1.4806 31.75424 3 3

1000 13.9474 0.048025 4.277457 3 3

GA 30 18301161.1854 0.023637 64052.63 5.059146 3

100 1264107.5031 93246.1569 689269.2 3 3

400 69346.2974 0.18467 3.999575 3 3

1000 77245.4291 2580.6349 81517.88 3 3

Figure 20. Comparison of experimental results between HGASSO, SSO, and GA in term of convergence for the Goldstein and 
Price (GP) test function
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Table 11. Comparison of experimental results between HGASSO, SSO, and GA in terms of mean, standard deviation, maximam 
value, median, and best fitness for the Shubert test function. The bold font with the highlighted background represents the 
best fitness and mean for the respective benchmark function

Algorithm Iteration no. Average, mean Std. Max. Median Best fitness

Function: Shubert

HGASSO 30 -172.1084 7.2895 -181.491 -186.711 -186.7309

100 -175.6017 4.5234 -167.469 -186.926 -186.7309

400 -183.1624 15.3322 -39.1642 -186.7 -186.7309

1000 -186.2046 2.6593 -114.26 -186.707 -186.7309

SSO 30 -83.8316 28.3472 -38.3897 -186.728 -186.7309

100 -167.5589 6.8631 -126.795 -186.731 -186.7309

400 -179.9879 15.2599 -71.217 -186.731 -186.7309

1000 -181.9694 6.2583 -73.0234 -186.731 -186.7309

GA 30 -100.130 11.0655 -132.217 -186.411 -186.1020

100 -164.6632 28.7466 -75.3547 -185.645 -186.5432

400 -175.7541 22.8959 -26.1109 -186.731 -186.7309

1000 -185.0282 5.742 -79.429 -186.731 -186.7309

Figure 21. Comparison of experimental results between HGASSO, SSO, and GA in term of convergence for the Shubert test function
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Table 12. Comparison of experimental results between HGASSO, SSO, and GA in terms of mean, standard deviation, maximam 
value, median, and best fitness for the Shekel test function. The bold font with the highlighted background represents the best 
fitness and mean for the respective benchmark function

Algorithm Iteration no. Average, mean Std. Max. Median Best fitness

Function: Shekel

HGASSO 30 -6.8296 2.1785 -0.47689 -7.37539 -8.109

100 -7.7206 1.336 -0.70059 -8.06945 -8.1013

400 -5.0144 0.29884 -0.42681 -4.04711 -8.6471

1000 -10.1939 0.54918 -0.4664 -10.2329 -10.5

SSO 30 -3.0108 0.88317 -1.20946 -4.06778 -4.0699

100 -3.8949 0.40467 -0.97569 -4.0687 -4.066

400 -4.0436 0.097992 -2.14548 -4.0687 -4.0687

1000 -10.4368 0.3629 -3.40547 -10.5 -10.5

GA 30 -1.8848 0.8852 -0.48731 -2.19278 -3.5802

100 -3.6846 0.85376 -0.19777 -4.0617 -4.0617

400 -3.9919 0.32832 -0.37066 -4.05631 -4.0775

1000 -10.246 0.96724 -0.30462 -10.5317 -10.5

Figure 22. Comparison of experimental results between HGASSO, SSO, and GA in term of convergence for the Shekel test function
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Table 14, HGASSO significantly outperforms GA in solving the majority of benchmarks functions. 
This is clear in the p-Value and mean difference between HGASSO and the other approaches, which 
is significant at the 0.05 level.

At the end, comparisons between SSO, GA, and HGASSO can be summarized as in Table 15 
(Shehadeh et al., 2017; Shehadeh et al., 2018c).

DISCUSSION

Multimodal problems include a set of mathematical operations in their evaluation, such as cosine, sine, 
exponent, and multiplications of multiple variables. Furthermore, these problems mainly have several 
local extremes, which many optimization algorithms are trapped in one of their several local minima. 
Based on that, many local search approaches have been hybridized with evolutionary algorithms to 
skip these local minima easily until obtaining the optimal solution of global minima. The concept 
of the hybrid algorithm is usually used to combine the concept of the evolutionary method with the 
concept of local search in one procedure. SSO method is a promising optimization approach that is 
inspired by sperm motility. This method is suitable for solving variant types of continuous nonlinear 
functions, but until recently it had not been hybridized with evolutionary algorithms to deal with 
multimodal problems.

In this paper, HGASSO, SSO, and GA have been evaluated on multimodal test bed suites. 
Standard metrics are calculated in the experiments, namely the best fitness value, mean value, median, 
maximum value, standard deviation and the algorithm convergence. In addition, the statistical test, 
called “one-way ANOVA (Tukey’s test)” is adopted in this study to compare between approaches. For 
each approach evaluated in the experiment, the maximum iteration for each benchmark function is set 
to 30, 100, 400, and 1000 respectively. The evaluation is reaccredited 10 times for each benchmark 
test function to ensure the convergence of the results.

Overall, the proposed HGASSO algorithm outperformed both SSO and GA algorithms in solving 
benchmarks functions that include the cosine, sine, and exponent in their evaluation. HGASSO 
outperformed SSO and GA in solving the Rastrigin, Ackley, Bukin, Griewank, Levy function N.13, 
and Shekel multimodal functions, and obtained better fitness value than GA of Easom and Shubert 
multimodal functions. Additionally, the high-quality performance of the proposed HGASSO was 

Table 13. Ranking the algorithms from best to worse obtained fitness value

Function The approaches are ranked from the best-obtained 
fitness value to the worse obtained fitness value

Rastrigin HGASSO, SSO, GA

Ackley HGASSO, SSO, GA

Bukin HGASSO, SSO, GA

Griewank HGASSO, GA, SSO

Cross-in-Tray All in the same rank

Levy function N.13 HGASSO, SSO, GA

Branin All in the same rank

Easom HGASSO and SSO in the first rank, followed by GA

Goldstein and Price (GP) All in the same rank

Shubert HGASSO and SSO in the first rank, followed by GA

Shekel HGASSO, SSO, GA
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reflected on the metrics of convergence in which attained a typical convergence regarding to these 
benchmark functions. This proves that the proposed HGASSO has a better convergence than the 
other algorithms to explore the domain of search space and to skip the multiple local minima easily.

CONCLUSION

In this article, a hybrid approach consists of two methods has been proposed to solve multimodal 
benchmark functions. This method integrates the concept of discreet procedures of the evolutionary 
method that is originally inspired by GA with the concept of local search of SSO. The proposed 
approach is validated in two ways. First, we used the standard multimodal problems that are currently 
adopted in the evolutionary single objective optimization community. The fitness value, average, 
maximum value, median value and standard deviation have been chosen to compare between the 
proposed algorithm and other algorithms based on a set of generation sizes, such as 30, 100, 400, 
and 1000. Furthermore, a statistical test, called “one-way ANOVA (Tukey’s test)” is used in this 
study to compare between approaches. Second, the algorithm convergence of each algorithm for 

Table 14. Analysis of “one-way ANOVA (Tukey’s test)” between SSO, GA and HGASSO for all benchmarks functions

Benchmark function
Algorithm 

(I)
Algorithm 

(J)

Mean 
Difference 

(I-J) p-Value

Rastrigin HGASSO GA -0.244169 0.043378

SSO -0.006159 <0.001*

Ackley HGASSO GA -1.7273322 <0.001*

SSO -0.0023981 <0.001*

Bukin HGASSO GA -0.43538 <0.001*

SSO -0.48207 0.794144

Griewank HGASSO GA -0.0095911 <0.001*

SSO -0.3452741 0

Cross-in-Tray HGASSO GA -0.0005 0.240279

SSO 0 0.654482

Levy function N.13 HGASSO GA -0.09938755 0.096145

SSO -1.02799055 0.720205

Branin HGASSO GA -0.17267 0.127417

SSO -0.03076 0.197382

Easom HGASSO GA -0.06765 0

SSO -0.01466 0.012605

Goldstein and Price (GP) HGASSO GA -77241.1859 0.288343

SSO -9.7042 0.122608

Shubert HGASSO GA -1.1764 <0.001*

SSO -4.2352 0.363168

Shekel HGASSO GA 0.0521 0.017848

SSO 0.2429 <0.001*

*Mean Difference is significant at the 0.05 level.
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each benchmark function has been drawn, after that, compared based on different generation sizes. 
The results of these comparisons demonstrated that HGASSO synthesizes the merits of both SSO 
and GA, and it is yet effective model and simple to handle various types of continuous optimization 
problems. Moreover, the experimental results show that the proposed HGASSO is a viable alternative 
since HGASSO has a good ability to solve the multimodal benchmark functions, which is superior 
to the other approaches in the ability to reaching the global optimum easily.

The benchmarks models in this study may have their limitations, which other metrics in real 
experiments may affect the outcomes of the studies. Hence, in the future, the proposed HGASSO should 
be implemented to solve real problems that utilize cosine, sine, and exponent in there mathematical 
modeling such as minimizing propagation loss and interference of wireless, telecommunication 
and mobile networks (Shehadeh et al., 2020; Hamdan et al., 2015; Hamdan, 2018), engineering 
applications (Jayabarathi et al., 2018), designing the optimal spacing and length of Yagi–Uda antenna 
(Baumgartner et al., 2017). Furthermore, in the future, the proposed HGASSO should be compared 
against a set of well-known approaches, such as “Chaotic Gravitational Search Algorithm (CGSA)” 
(Rather & Bala, 2020), “Grey Wolf Optimizer (GWO)” (Mirjalili et al., 2014), and “Sine Cosine 
Algorithm (SCA)” (Mirjalili et al., 2016).

Table 15. Comparison between SSO, GA, and HGASSO (Shehadeh et al., 2017; Shehadeh et al., 2018c)

Criteria of 
comparison

SSO GA HGASSO

Type of procedure Continuous procedure. Discrete procedure. Hybrid procedure.

Type of a metaphor Mimics the motility 
of swarm of sperm 
through the natural 

fertilization procedure 
of an egg.

Mimics the theory of evolution 
applied to biology that proposed by 
Darwin. This procedure simulates 

the structure of the chromosome and 
its evolution.

Mimics the theory of 
evolution applied to biology 

that proposed by Darwin 
as well as it uses the local 
search procedure of SSO.

Sorting the 
population

Population will not be 
sorted.

Population needs ranking and 
selection.

The population will be sorted 
at the end of the procedure 
to determine the global best 

solution.

Use crossover 
operation

No need for crossover 
Operation.

Apply crossover operation. Apply crossover operation.

Use mutation 
operation

No need for mutation. Apply mutation operation. Apply mutation operation.

Best solution effects 
Population

The value of winner 
(the best solution) is 
used as a reference 

value for the swarm to 
modify their velocities.

Treat with every individual 
independently.

Apply a local search strategy 
of SSO to enhance the 

results.
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