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ABSTRACT

Ensemble selection is a crucial problem for ensemble learning (EL) to speed up the predictive 
model, reduce the storage space requirements, and to further improve prediction accuracy. Diversity 
among individual predictors is widely recognized as a key factor to successful ensemble selection 
(ES), while the ultimate goal of ES is to improve its predictive accuracy and generalization of the 
ensemble. Motivated by the problems stated, the authors have devised a novel hybrid layer-based 
greedy ensemble reduction (HLGER) architecture to delete the predictor with lowest accuracy and 
diversity with evaluation function according to the diversity metrics. Experimental investigations are 
conducted based on benchmark time series data sets. Support vectors regression algorithm utilized 
as base learner to generate homogeneous ensemble, HLGER uses locally weight ensemble (LWE) 
strategies to provide a final ensemble prediction. The experimental results demonstrate that, in 
comparison with benchmark ensemble pruning techniques, HLGER achieves significantly superior 
generalization performance.
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1. INTRODUCTION

Ensemble learning (EL) has been successfully used as a desirable learning scheme for many regression 
and classification problems because of its potential to greatly increase predictive accuracy (Idris, Khan, 
& Lee, 2013; Nadig, Potter, Hoogenboom, & Mcclendon, 2013; P. Sun & Lee, 2014). An ensemble 
refers to a group of base learners whose decisions are aggregated with the goal of achieving better 
performance than its constituent members (Caruana, Munson, & Niculescu-Mizil, 2006). Typically, 
EL algorithm consists of two main stages: first, the production of multiple base classifiers for one 
specific task, and then the combination of these classifiers to get a final predictive decision (Banfield, 
Hall, Bowyer, & Kegelmeyer, 2005; Li, Yu, & Zhou, 2012; Tsoumakas, Partalas, & Vlahavas, 2009).

However, it is obvious that combining all of the classifiers in an ensemble adds a lot of 
computational overheads (Tsoumakas et al., 2009) (Polikar, 2009). Both theoretical and empirical 
studies have shown that instead of using the whole ensemble, a subset of the ensemble can achieve 
equivalent or even better generalization performance (Lu, Wu, Zhu, & Bongard, 2010; Y. Zhang, 
Burer, & Street, 2006). Therefore, an additional intermediate stage that deals with the selection of 
an appropriate sub-ensemble prior to its combination has to be considered (Dai, 2013a; Dai & Liu, 
2013). This stage is generally termed as ensemble pruning (EP) (Lu et al., 2010), selective ensemble 
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(C. X. Zhang & Zhang, 2011), ensemble selection(Maskouni, Hosseini, Abachi, Kangavari, & Zhou, 
2018), or ensemble thinning (Banfield et al., 2005).

The problem of pruning an ensemble of classifiers has been proven to be NP-complete (Tamon 
& Xiang, 2000). Finding the best sub-ensemble through exhaustive searching is not feasible for the 
original ensemble with large or even moderate size (Partalas, Tsoumakas, & Vlahavas, 2008).

EP can be further categorized into two types, namely static pruning (SP) and dynamic pruning 
(DP) methods (Soto, García-Moratilla, Martínez-Muñoz, Hernández-Lobato, & Suárez, 2017). In SP 
methods, a fixed set of predictors from an initial pool is selected from the ensemble for all test patterns, 
while DP methods predictors are selected based on the test pattern. Of the SP methods, search-based 
(Jiang, Liu, Fu, & Wu, 2017), clustering-based (Fan, Tao, Zhou, & Han, 2017), optimization-based 
(Lessmann, Caserta, & Arango, 2011), ordered aggregation methods (L. Guo & Boukir, 2013), and 
other methods exist that have a combination of these categories or use elaborate pruning methods 
are the most commonly used (C. X. Zhang & Zhang, 2011).

The greedy algorithms (Hernández-Lobato, Martínez-Muñoz, & Suárez, 2011) (Partalas, 
Tsoumakas, & Vlahavas, 2012) (Martínez-Muñoz, Hernández-Lobato, & Suárez, 2008), also known 
as hill climbing algorithms, which reduce the search space appropriately, seem to be a good choice. 
Various greedy ensemble selecting (GES) algorithms have been proposed, just as in Refs. (Banfield 
et al., 2005) (Martínez-Muñoz & Suárez, 2004) (Abdesslem, Marwa, & Maroua Bencheikh, 2013) 
(Dai, 2013b) (Gevezes & Pitsoulis, 2015) (Pérez-Gállego, Castaño, Quevedo, & Coz, 2018) (Partalas, 
Tsoumakas, & Vlahavas, 2010).

There are two key elements for GES algorithms: the search direction and evaluation 
measure(Partalas et al., 2012) (Partalas et al., 2010) (Baron, 2019). Typically, there are two search 
directions, i.e., forward expansion and backward shrinkage. Many researchers have compared the 
effect of the two different search directions in their research works (Banfield et al., 2005) (Martínez-
Muñoz & Suárez, 2004) (Partalas et al., 2012) (Partalas et al., 2010) (Q. Sun & Pfahringer, 2012). 
As to the factor of evaluation measure, various evaluation measures have been proposed to guide the 
pruning algorithm and have made a success. The measures of uncertainty weighted accuracy (UWA) 
(Partalas et al., 2012) (Partalas et al., 2010), complementariness (COM) (Martínez-Muñoz & Suárez, 
2004) and concurrency (CON) (Banfield et al., 2005), which will be discussed in detail in Section 
2, are the three diversity measures particularly suitable for GES algorithm. It is worth to mention 
that UWA can be seen as an improvement to COM and CON, and it leads to better performance 
compared to the other two.

It is found through our investigation that, evaluation measures adopted in GES algorithms 
are usually focused on the ensemble diversity or its accuracy solely, while ignore the counterpart. 
However, actually, both diversity and accuracy are crucial in the ensemble, and they interrelate with 
each other closely. A successful ensemble should possess a sufficiently high level of diversity, while 
an ensemble shows the success in its good predictive accuracy. If an ensemble possesses better 
predictive accuracy than its constituent members, its diversity is expected to reach a high enough 
level. Equivalently, if an ensemble does not possess sufficiently high error-correction ability among 
its components, combination will do little to improve its classification performance. Accordingly, 
diversity and accuracy should not be considered separately, but rather, they should be taken into 
account simultaneously. This is the major argument of this study. We found in this work that 
through considering diversity and accuracy simultaneously for ES, pruned ensemble with excellent 
classification performance and superior generalization capability can be achieved, which is just the 
scientific value added of our paper.

Contribution A novel hybrid layered based greedy ensemble reduction (HLDER) approach 
is proposed for improving the prediction accuracy and generalization of the ensemble, that change 
the order in which ensemble predictors are combined. The proposed method modifies the order of 
aggregation through distributing the ensemble selection over the entire training set, which is then 
dynamically used based on closeness of a test pattern to the training patterns. This dynamic method 
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is compared, using the Reduced Error Pruning method without back fitting, with other static methods 
as well as incorporating them in this dynamic approach.

2. RELATED WORK

This section briefly reviews the related work on the ensemble diversity and pruning.

2.1 Background Knowledge of the Diversity and Accuracy
Diversity is an important property for an ensemble of base classifiers, which is usually measured on 
the basis of a precise pruning dataset (Dai & Liu, 2013). The more uniformly distributed in the errors 
are, the greater the ensemble diversity could be, and vice versa (Gang, Zhang, Jian, & Cheng, 2011; 
Li et al., 2012). The property of diversity cares about the characteristics of difference and similarity 
among the base classifiers in an ensemble.

In (Li, Yu, & Zhou), Zhou et al. theoretically analyzed the effect of diversity on the generalization 
performance of ensemble combined with voting method in the PAC-learning framework, and concluded 
that enhancing diversity could be a good way to realize selective ensemble learning. Empirical 
results have demonstrated that there exists a correlation between the accuracy of an ensemble and 
the diversity among its base classifiers (Cavalcanti, Oliveira, Moura, & Carvalho, 2016) (H. Guo et 
al., 2017). However, it is hard to identify this correlation.

Although the difference among individual classifiers is widely recognized to be the key issue 
to the success of an ensemble, however, diversity cannot guarantee the generalization capability of 
the final pruned ensemble (Idris et al., 2013). One reason is that there does not exist any generally 
accepted formal definition of the ensemble diversity in the literature (Li et al., 2012).

Pruning the ensemble according to the accuracy of its base learners while maintaining a 
sufficiently high level of diversity among them is typically considered a proper approach for effective 
ensemble selection (Tsoumakas et al., 2009). Both of the two factors of ensemble diversity and accuracy 
should be considered simultaneously, so as to ensure that the success of the ensemble selection as far 
as possible. Motivated by the above ideas, in this paper, we propose three different measures which 
take into account both of the two crucial factors, i.e. diversity and accuracy, at the same time.

With regard to the question of why diversity and accuracy are two crucial factors for ensemble 
selection, we present the following explanations.

First, diversity has a very significant impact on the ensemble’s performance. Suppose that the 
predictive decisions of base classifiers in the ensemble are very close to each other, then, combination 
will do little to improve its classification performance, which is against our expectation. Second, 
accuracy is obviously another essential factor for ensemble selection. The ultimate goal of ensemble 
pruning is to improve its predictive accuracy. When an ensemble has a high predictive accuracy on 
a pruning dataset, it can be more likely to correctly classify an unseen sample. Therefore, diversity 
and accuracy are both crucial for ensemble selection.

In regard to the other crucial factors for ensemble selection, different diversity measure criterions, 
evaluation measures for assessing each specific ensemble and pruning approaches utilized, etc., are 
very important factors. Compared to these decisive factors, there are also some non-crucial ones. For 
example, it seems that whether base classifiers is heterogeneous or homogeneous is not that vital. In 
addition, which base learner is utilized to generate the initial ensemble is also not that vital. Finally, 
size of the original ensemble before pruning is not crucial.

2.2 Ensemble Pruning based on GES Approach
Greedy search is a relatively fast heuristic search algorithm; GES strategies make a locally optimal 
option with the hope that this option will result in a globally optimal solution. GES schemes, such 
as the directed hill climbing algorithm, greedily choose, from the neighborhood of the current state, 
the next state to visit (Dai, 2013b) (Liu, Dai, & Liu, 2014). States, in the EP problem investigated in 
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this work, are the different subsets of the initial ensemble ENS h x
i i

L

   ≡ ( ){ }
=1

 of L  member 

classifiers, where h
i
 denotes the ith  component classifier in ENS , and x  denotes an instance 

(Partalas et al., 2010) (Dai, 2013b) (Liu et al., 2014). The neighborhood of a subset of component 
classifiers S ENSÍ  contains those subsets which can be constructed by expanding one component 
into S  or deleting one component from S  (Partalas et al., 2010). An example of the search space 
map for an ensemble initially composed of four component nets is illustrated in Figure 1. As we 
indicated in the previous section, there are mainly three factors in the classical GES algorithms: the 
search direction, evaluation dataset and evaluation measure.

2.3 The Two Search Directions of GES Algorithms
Concerning the factor of search direction of the classical GES algorithm, there are mainly two: forward 
and backward search directions (Partalas et al., 2010) (Liu et al., 2014), as showed in Figure 1. In the 
forward expanding GES algorithm (Martínez-Muñoz & Suárez, 2004) (Dias & Windeatt, 2014), the 
subset S is initialized as an empty set. The algorithm is implemented by iteratively expanding to S
one component network h ENS S

i
∈ − in accordance with a specific evaluation measure (Partalas 

et al., 2010). In contrast, in the backward contracting GES algorithm (Banfield et al., 2005), the subset 
S  is initialized as the whole ensemble ENS , and the algorithm is implemented by iteratively removing 
from S  one network h S

i
Î  on the basis of a specific evaluation measure (Partalas et al., 2010).

2.4 Evaluation Measures of GES Algorithms
The evaluation measure is computed based upon the classification performance of the candidate 
subset of a pruning set, which is denoted as Pr x y i N

i i Pr
     = =( ){ }, , , ,...,1 2 , where x

i
 indicates 

a feature vector and y
i
 indicates the value of the corresponding target variable. For both of the two 

search directions, an amount of L L  +( )1 2/ subsets are required to be evaluated by the searching 
procedure. Accordingly, the computational complexity of a greedy classical ensemble selection 
algorithm equals O L f L N

Pr
2  ,( )( )  where f L N

Pr
,( ) indicates the computational complexity of the 

specific evaluation measure(Dai, 2013b) (Liu et al., 2014) (Dai & Li, 2015). The evaluation measures 

Figure 1. GES algorithm for an initial three ensemble component net (Partalas et al., 2010)
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utilized in the classical GES algorithms can be roughly separated into two categories: accuracy-
focused and diversity-focused measures. Diversity is considered to be a key success factor for ensemble 
learning method, and a number of diversity-focused evaluation measures have been proposed, including 
Kappa (Banfield et al., 2005), margin distance minimization (MAR) (Martínez-Muñoz & Suárez, 
2004), complementariness (COM) (Martínez-Muñoz & Suárez, 2004) (Partalas et al., 2010) (Partalas 
et al., 2012) (Gonzalo, Daniel, & Alberto, 2009), concurrency (CON) (Banfield et al., 2005) (Martínez-
Muñoz & Suárez, 2004) (Partalas et al., 2012), Kohavi-Wolpert variance (Tang, Suganthan, & Yao, 
2006) and inter-rater agreement(Tang et al., 2006). Researchers agree that diversity is proportional 
to the independent errors that each base classifier makes. However, no clear definition of diversity 
has been given up to now. The main difference among the classical greedy ensemble selection 
algorithms is the specific construction of their evaluation measures. In (Banfield et al., 2005), authors 
analyze the correlation between diversity and accuracy, and they propose a new evaluation measure, 
concurrency (CON). In (Martínez-Muñoz & Suárez, 2004), Martınez-Munoz and Suárez discuss the 
correlations among the individual classifiers in bagging, and they propose the measures of Reduce-
Error pruning (RE), Complementariness (COM) and Margin Distance Minimization (MAR). 
In(Partalas et al., 2010), authors analyze the drawback of CON and COM, and they propose a new 
diversity-focused measure, i.e. Uncertainty Weighted Accuracy (UWA).

2.5 The Correlation and Difference among COM, CON and UWA
As these three diversity-focused measures, which possess similar motives, are used in our experiments, 
it is necessary to analyze the correlation and difference among them. Firstly, it is important to clarify 
the four events concerning the decisions of a component net h and a subset S with respect to an 
instance x y

i i
,( ) (Partalas et al., 2010):

e h S x y h x y and S x y
i i i i i i

00 , , , :         ( ) ( ) ( )≠ ≠ 	 (1)

e h S x y h x y and S x y
i i i i i i

01 , , , :         ( ) ( ) ( )≠ = 	 (2)

e h S x y h x y and S x y
i i i i i i

10 , , , :         ( ) ( ) ( )= ≠ 	 (3)

e h S x y h x y and S x y
i i i i i i

11 , , , :         ( ) ( ) ( )= = 	 (4)

The measures COM (Martínez-Muñoz & Suárez, 2004) (Gonzalo et al., 2009) and CON (Banfield 
et al., 2005) are calculated as follows:

COM h S e h S x y
i i

i

NPr

, , , ,( ) ( )= ( )
=
∑     10

1

	 (5)

CON h S e h S x y
i i

i

NPr

, , , ,( ) ( )= ( )
=
∑     2 10

1

 	
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+ ( )− ( )( ) ( ) ||     e h S x y e h S x y
i i i i

11 2 00, , , || , , , 	 (6)

where || .( )  is an indicator function || true( ) =( )  1  and || )false( )( )=  0  (Liu et al., 2014).
An effectual measure for EP via DHCEP termed as UWA, proposes in (Partalas et al., 2010), 

which takes into account the uncertainty of the decision of the current subset and has clear semantics. 
It defines as following:

UWA h S e h S x y NT
i i

i

N

i

Pr

, , , ,( ) ( )= ( )
=
∑      10

1

	

− ( )( )   e h S x y NT
i i i

00 , , , 	

+ ( )( )  e h S x y NF
i i i

11 , , , 	

−( )( )e h S x y NF
i i i

01 , , ,  	 (7)

Where NT
i
represents the proportion of component nets in the current subset S that correctly 

classify instance x y
i i
,( ) , and NF NT

i i
    = −1 , represents the proportion of nets in S that that 

provide wrong classification decision to it (Partalas et al., 2010). || .( ) is an indicator function; Pr
denotes the pruning dataset (Dai, 2013b) (Liu et al., 2014) (Dai & Li, 2015) (Dai & Han, 2016).

The CON measure (Banfield et al., 2005) attaches importance to the concurrence between 
the current candidate classifiers and the current sub-ensemble. While the COM measure attaches 
importance to the classifiers whose performance is complementary to the current sub-ensemble (Dai & 
Han, 2016) (Martínez-Muñoz et al., 2008). And UWA keeps a watchful eye on the instances on which 
the classifiers within the sub-ensemble greatly differ in their opinions. According to the presentation 
of authors in (Partalas et al., 2010), UWA embodies a very simple idea of them. Instances on which 
the member classifiers’ decisions highly disagree with each other should be paid more attention to.

3. MATERIALS AND METHODS

Motivated by the problems stated in the previous section, we have devised a novel hybrid layered 
based greedy ensemble reduction (HLGER) architecture for TSP. In this section, we describe the 
details of HLGER algorithm. The objective of HLGER is twofold, to improve the ac curacy and 
diversity of the base predictors, and to improve forecasting accuracy. HLGER technique employs a 
layer-wise mechanism by which important lag or time window for a time series is identified first in 
layer one. Then using this lag information, design an ensemble where the base predictors has higher 
accuracy and diversity. Finally, HLGER uses a powerful combination algorithm to provide a final 
forecast. The significant problem of ES research is how to design practical algorithms leading to 
sub- ensembles without sacrificing or even improving the generalization performance contrasting 
to all-member ensembles. The major steps of HLGER can be described by Figure 2., which explain 
further as following:
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3.1 Ensemble Generation
The process of generation of the initial set (the pool) of the base models. When all models are 
generated having the same induction algorithm, the approach is called homogeneous. Otherwise, it 
names heterogeneous. The heterogeneous approach is claimed to obtain models with higher diversity 
[36,37], which is important to increase the accuracy of the ensemble.

3.2 Step1: Training Set Generation

A training set in the form X Y
i i i

N
;  { }

=1
 is necessary for obtaining optimal or near optimal weight of 

a RBF network using the SVR algorithm. Here X
i
 represents input to the network and may have 

several components i.e.,X x x x
i d
=        

11 12 1
, , . . . , . For the sake of simplicity and without loss of 

generality, we assume that the output Y
i
 has one component. To generate the training set for a TSP 

problem, we need some extra effort because only data points of a given time series are available. The 
parameter needed in such generation is the lag (time window), which determines how many previous 
data points will influence the next point.

An appropriate lag of a time series is not known in advance. As mentioned before, the aim of 
our ensemble generation step 1 is to find the appropriate lag. Lacking of knowledge about such a lag 
enforces HLGER to vary the lag from 1  to l

max
. And HLGER generates a different training set using 

each of different lags. Let the lag equal to 5 and the data points d d d
k1 2

, ,...,   are used for generating 
the training set. The generation process takes the lag as a window and shifts it in generating the 
training set. That is, X d d

1 1 5
   = ...  and Y d

1 6
= , X d d

2 2 6
=    ...  and Y d

2 7
 = , this process 

continues until the Y
i
 reaches at the end of the series i.e., d

k
 dk. It is now clear that it is possible to 

get a different training set by using a different lag.

3.3 Step 2: Base Predictors Generation
In the ensemble generation step 2, the training sets for base predictors are generated in two steps. At 
the first step, using the lag obtained from the ensemble generation step 1 and the data points 
d d d

k1 2
, ,...,  , HLGER generates the training set, D

tr
. In the second step, bootstrapped sampling is 

applied on D
tr

 for generating N training sets, one for each base predictor in the ensemble generation 
step 2.

Figure 2. Model of a hybrid layered-based greedy ensemble reduction (HLGER) scheme
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3.4 Model Selection for Ensemble
GES algorithm attempts to find the globally best subset of ensembles by taking local greedy decision 
for changing the current subset. In this study, backward elimination is exploited in the greedy selection. 
Firstly, the current classifier subset S  is initialized to the complete base learner set H . Then, at each 
iteration, the classifier h

t
, S  that optimizes the evaluation function f will be removed from S  to 

improve the forecasting accuracy. With the idea of greedy methods, the evaluation function f selects 
the classifier h

t
 which has the smallest diversity in the current subset S . The iterative process will 

not stop until the error of ensemble subset S  starts to increase. This process is named as back-forward 
reduction of diversity (BRD). The description of BRD is illustrated in Algorithm 1.

Table 1. Algorithm 1: Forward-backward search reduction

Algorithm 1: Forward-Backward Search Reduction (FBSR)

Input: Training set D
train

,Test set D
test

,

Original base learnersH h h h
t

= { , ,..., }
1 2

;

Output: Selected base learners S s s s
n

= { , ,..., }
1 2

, n t< ;
 Begin
 

01 D x y x y x y
train m m
= { }( , ),( , ),...,( , )

1 1 2 2

of N  samples;  
02 for i to= 1  t  do

03 D Bootstrap D
i train
= ( ) ;

04 Trainh H
i
Î with D

i
 ;

05 end for;
06 
07 Calculate DIV using Eq.() for H ;
08 S H= ;
09 E Error ensemble S

0
= ( )( ) ;

10 While (S )¹ f  do

11 h f S d
hkÎs k

= arg min ( , );   

12 E Error Ensemble S h
1
= ( )( )- ;{ }

13 if E E
1 0
<=   then

14 E E S S h
0 1
= = { }; - ;  

15 end if;
16 Return S
 End;
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3.5 Evaluation Measures
The evaluation measures can be categorized such as performance-based and diversity-based measure. 
The goal of performance-based measures is to find the model that optimizes the performance of the 
ensemble produced by adding (removing) a model to (from) the current ensemble. Performance-based 
measure includes the root-mean-squared-error RMSE is calculated in the forward selection for a 
model h  with respect to the current sub-ensemble S  and the set of examples D as follows:

RMSE S h D
N S

h x y
N

h x y
FS i i j j i

j

N

j

N

i

T

( , , ) ( ( ) ) ( ( ) )= − + −
===
∑∑∑1 12 2

111

	 (11)

The calculation of performance-based metrics requires the decision of the ensemble on all 
examples of the pruning dataset.

It is generally accepted that an ensemble should contain diverse models in order to achieve high 
predictive performance. In the experimental section we use the diversity-based measure (DIV) 
proposed in (Hernandez-Lobato, Martinez-Munoz, & Suarez, 2006). The DIV is calculated in the 
forward selection for model h  with respect to the current sub-ensemble S  and the set of examples 
D  as follows:

DIV S h D
S

C C C
FS h h h h hh

i

S

j

S

i

S

i j i
( , , )= + +












===
∑∑∑1

2
111 

	 (12)

where C
h hi j

 expresses the correlation between the two learners h
i
 and h

j
. The value C

h hi j
 is 

computed as follows:

C
N

h x y h x y
h h i n n

n

N

j n ni j
= − −

=
∑1

1

( ( ) )( ( ) ) 	 (13)

4. EXPERIMENTAL SETUP

4.1 Description of Experimental Data
In this sub-section, the proposed GES algorithm evaluated based on the analysis of hyper-parameters 
setting and the influence of these hyper-parameters in SVR performance. Well-known datasets were 
chosen as a benchmark to assess the performance of the suggested model. The benchmark datasets 
downloaded from (www.kaggle.com) include US air passengers, Korean won against US dollar 
exchange rate, gasoline retail price in New York city, IBM stock time series, American electric power 
consumption and gold price, the descriptions of all datasets are outlined in Table 1, including the 
notation, names of the datasets, time stamp type, time period, total size, size of sample data used in 
the experiments for train and test.
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4.2 Base Predictors
The only experimental study of ensemble selection algorithms considering homogeneous models by 
using Weka tool. The optimization of SVR hyper-parameters is performed by using GES approach 
in the training set data using 10-fold cross validation which gives the smallest value of RMSE error, 
we selected parameters range of the SVR ensemble model as in Table 2. The regularization constant 
(the complexity parameter C ), e  parameters of the ε - insensitive loss function, kernel parameters 
of the degree d  of the polynomial kernel, the width of RBF kernel g , and PUK kernel parameters 
s  were optimized see Table 2.

In the next step, we use the greedy ensemble selection algorithm (GES) after setting the parameters 
of direction, evaluation dataset and evaluation measure. We experiment with the direction parameter 
using both forward (F) and backward (B) as values. For the evaluation dataset, we use both the 
training set (T) and a separate selection set (S) as the evaluation dataset, as explained in the previous 
paragraph. Concerning the evaluation measure, we use the following 2 measures: RMSE and DIV. 
Table 3 shows the acronyms for the different instantiations of the greedy ensemble selection algorithm.

Table 3. Parameters range for the SVR-based all kernel model.

Parameter Value

Kernel Poly, PUK, RBF

Regularization constant (C) 1-1000

ε-insensitive (ε) 0.1: 10-9

Kernel parameter (λ) 10E-5:10E6

Table 2. data sets description

Notation Data set Time Period Size Train Test

D1 Air Passengers Monthly 1949 to 1960 144 101 43

D2 Exchange Rate Daily 2002 to 2017 4584 3209 1375

D3 Gasoline Price Weekly 2000 to 2012 901 631 270

D4 IBM Stock Daily 2005 to 2017 3272 2290 982

D5 Electric Consumption Hourly 2002 to 2018 143207 100245 42962

D6 Gold Price Weekly 2013 to 2017 247 173 74
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5. RESULTS AND DISCUSSION

In this section we present and discuss results concerning homogeneous models are analyzed from 
the perspectives of predictive performance, final ensemble size and the relationship between them.

5.1 Predictive Performance
Table 4 and 5 presents the RMSE and the corresponding rank respectively for each algorithm on each 
dataset, as well as the average error and rank across all datasets. We start the performance analysis 
of the different algorithms based on their average rank across all datasets. We first notice, that the 
best performing algorithm is FSR, obtaining the best performance on all datasets, followed by FSD. 
Figure 3 presents aggregates of the mean ranks for the different values of the search direction (3a), 
evaluation dataset (3b) and evaluation measure (3c) parameters. Additionally, Figure 3d–f present 
aggregates for the different values of parameter pairs.

Table 4. Kernel, search direction, evaluation dataset, evaluation measure, and acronym for the different 
instantiations of the greedy ensemble selection algorithm

Kernel Direction Dataset Measure Acronym

Poly

Backward

Selection
Diversity POBSD

RMSE POBSR

Training
Diversity POBTD

RMSE POBTR

Forward

Selection
Diversity POFSD

RMSE POFSR

Training
Diversity POFTD

RMSE POFTR

RBF

Backward

Selection
Diversity RBSD

RMSE RBSR

Training
Diversity RBTD

RMSE RBTR

Forward

Selection
Diversity RFSD

RMSE RFSR

Training
Diversity RFTD

RMSE RFTR

PUK

Backward

Selection
Diversity PUBSD

RMSE PUBSR

Training
Diversity PUBTD

RMSE PUBTR

Forward

Selection
Diversity PUFSD

RMSE PUFSR

Training
Diversity PUFTD

RMSE PUFTR
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Based on Figure 3a we notice that the algorithms that search in the forward direction obtain slightly 
better mean rank (4.42) for Poly kernel, (4.3) for PUK kernel, and (4.46) for RBF kernel than those 
that search in the backward direction (4.5) for Poly kernel, (4.7) for PUK kernel, and (4.5) for RBF 
kernel. We therefore conclude that the search direction does not significantly affect the performance 
of the ensemble selection algorithms in this application.

In Figure 3c we observe a very interesting fact, as the mean rank of the algorithms that use the 
selection set (2.8) for Poly kernel, (3) for PUK kernel, (3) for RBF kernel for evaluation is considerably 
larger than the mean rank of those that use the training set (6.1, 6, 6) for Poly, PUK and RBF kernels 
respectively. This finding indicates a clear superiority of the xxxSx algorithms and leads to the 
conclusion that using a separate selection set improves the efficiency of the algorithms.

Table 5. Average errors for the different algorithms on each predicted data set

Base Learner D1 D2 D3 D4 D5 D6 Avg. Error

Poly kernel algorithms

POBSD 0.094 0.165 0.167 0.127 0.135 0.144 0.139

POBSR 0.096 0.093 0.112 0.102 0.148 0.128 0.113

POBTD 0.096 0.855 0.179 0.302 0.222 0.228 0.314

POBTR 0.089 0.100 0.119 0.281 0.130 0.149 0.145

POFSD 0.083 0.172 0.083 0.107 0.113 0.130 0.117

POFSR 0.067 0.091 0.101 0.101 0.119 0.112 0.098

POFTD 0.611 0.291 0.241 0.112 0.274 0.303 0.305

POFTR 0.222 0.222 0.212 0.136 0.248 0.293 0.222

RBF kernel algorithms

RBSD 0.815 0.856 0.014 0.105 0.249 0.249 0.381

RBSR 0.087 0.091 0.094 0.099 0.101 0.103 0.096

RBTD 0.928 0.049 0.152 0.303 0.392 0.464 0.382

RBTR 0.099 0.103 0.114 0.116 0.125 0.134 0.115

RFSD 0.086 0.086 0.091 0.095 0.099 0.103 0.093

RFSR 0.075 0.076 0.077 0.076 0.078 0.076 0.076

RFTD 0.790 0.956 0.250 0.375 0.589 0.780 0.623

RFTR 0.509 0.555 0.616 0.625 0.677 0.688 0.612

PUK kernel algorithms

PUBSD 0.658 0.732 0.853 0.011 0.094 0.191 0.423

PUBSR 0.079 0.081 0.085 0.091 0.093 0.094 0.087

PUBTD 0.646 0.429 0.235 0.424 0.652 0.814 0.533

PUBTR 0.150 0.151 0.168 0.172 0.180 0.192 0.169

PUFSD 0.077 0.077 0.083 0.081 0.082 0.082 0.080

PUFSR 0.069 0.072 0.075 0.079 0.083 0.085 0.077

PUFTD 0.610 0.642 0.806 0.740 0.822 0.851 0.745

PUFTR 0.326 0.818 0.537 0.686 0.808 0.963 0.690

Note: The bold number indicates the best accuracy value.
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Algorithms that use the training set for evaluation run the risk of overfitting which leads to 
low performance. On the other hand, the algorithms that use a separate selection set have better 
generalization performance as they are more robust to unseen data and resilient to noise. This behavior 
is also noticed in Figure 3e where the xxBTx algorithms have mean rank 5.17 the xxBSx algorithms 
3.75, and the xxFTx, xxFSx 6.97 and 1.81 correspondingly.

Concerning the evaluation measures, the mean ranks of the algorithms are 3.8 for RMSE and 
5.13 for DIV in case of Poly kernel, while are 4 for RMSE and 5 for DIV in case of PUK and RBF 
kernels. We notice that RMSE obtain the best performance despite its simplicity. For the DIV measure 
we can conclude that it does not succeed to select learners with a high diversity degree. The strength 
of the RMSE measure can be verified if we compare the ranks of the pairs of algorithms that use the 
same value for the direction and evaluation parameters, and different value for the evaluation measure.

Table 6. Average ranks for the different algorithms on each predicted data set

Base Learner D1 D2 D3 D4 D5 D6 Avg. Rank

Poly kernel algorithms

POBSD 4.0 4.0 5.0 5.0 4.0 4.0 4.3

POBSR 5.0 2.0 3.0 2.0 5.0 2.0 3.2

POBTD 5.0 8.0 6.0 8.0 6.0 6.0 6.5

POBTR 3.0 3.0 4.0 7.0 3.0 5.0 4.2

POFSD 2.0 5.0 1.0 3.0 1.0 3.0 2.5

POFSR 1.0 1.0 2.0 1.0 2.0 1.0 1.3

POFTD 8.0 7.0 8.0 4.0 8.0 8.0 7.2

POFTR 7.0 6.0 7.0 6.0 7.0 7.0 6.7

RBF kernel algorithms

RBSD 7.0 7.0 1.0 4.0 5.0 5.0 4.8

RBSR 3.0 4.0 4.0 3.0 3.0 3.0 3.3

RBTD 8.0 1.0 6.0 6.0 6.0 6.0 5.5

RBTR 4.0 5.0 5.0 5.0 4.0 4.0 4.5

RFSD 2.0 3.0 3.0 2.0 2.0 2.0 2.3

RFSR 1.0 2.0 2.0 1.0 1.0 1.0 1.3

RFTD 6.0 8.0 7.0 7.0 7.0 8.0 7.2

RFTR 5.0 6.0 8.0 8.0 8.0 7.0 7.0

PUK kernel algorithms

PUBSD 8.0 7.0 8.0 1.0 4.0 4.0 5.3

PUBSR 3.0 3.0 3.0 4.0 3.0 3.0 3.2

PUBTD 7.0 5.0 5.0 6.0 6.0 6.0 5.8

PUBTR 4.0 4.0 4.0 5.0 5.0 5.0 4.5

PUFSD 2.0 2.0 2.0 3.0 1.0 1.0 1.8

PUFSR 1.0 1.0 1.0 2.0 2.0 2.0 1.5

PUFTD 6.0 6.0 7.0 8.0 8.0 7.0 7.0

PUFTR 5.0 8.0 6.0 7.0 7.0 8.0 6.8

Note: The bold number indicates the best rank value.



International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

14

5.2 Statistical Analysis
In order to statistically evaluate differences between base learners, Friedman rank test (Cavalcanti 
et al., 2016) at significance level α=0.05, and critical difference (CD), CD = 2.90. The CD is the 
minimum required difference of the average ranks of two algorithms, so that their difference can 
be deemed significant. The best ranks are to the right and the groups of algorithms that are not 
significantly different are connected with a bold line.

Figure 4 graphically represents the results of the test with Poly kernel, the obtained output as 
one can see, POFSR (which are gathered near rank 1.) outperform all base learners. POFTD was 
confirmed to be the most and least accurate learner. We see there is a significant difference between 
POFSR and POBTD (p-value = 0.000725), POFTR (p-value = 0.001442), and POFTD (p-value = 
0.000217). Similarly, POFSD and POBTD (p-value = 0.028489), POFTR (p-value = 0.046961), and 
POFTD (p-value = 0.011498) are significantly different, POBSR and POFTD (p-value = 0.039906) 
are significantly different.

Figure 3. Mean rank across all datasets for different values of parameters and parameter pairs
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Figure 5 graphically represents the results of the test with PUK kernel, the obtained output as 
one can see, PUFSR (which are gathered near rank 1.) outperform all base learners. PUFTD was 
confirmed to be the most and least accurate learner. We see there is a significant difference between 
PUFSR and PUBTD (p-value = 0.045718), PUFTR (p-value = 0.004136), and PUFTD (p-value = 
0.002617). Similarly, POFSD and PUFTR (p-value = 0.009848), and PUFTD (p-value = 0.006433) 
are significantly different.

Figure 4. Critical difference (CD) diagram of the post-hoc Nemenyi test (α = 0.05) between Poly kernel algorithms

Figure 5. Critical difference (CD) diagram of the post-hoc Nemenyi test (α = 0.05) between PUK kernel algorithms

Figure 6. Critical difference (CD) diagram of the post-hoc Nemenyi test (α = 0.05) between Poly kernel algorithms
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Figure 6 graphically represents the results of the test with RBF kernel, the obtained output as one 
can see, RFSR (which are gathered near rank 1.) outperform all base learners. RFTD was confirmed 
to be the most and least accurate learner. We see there is a significant difference between RFSR and 
RFTR (p-value = 0.001631), and RFTD (p-value = 0.001001). Similarly, RFSD and RFTR (p-value 
= 0.02196), and RFTD (p-value = 0.01483) are significantly different.

5.3 Ensemble Size
Table 6 shows the average size of the selected ensembles for each algorithm on each predicted variable. 
Figure 7 presents aggregates of the mean size of the selected ensemble for the different values for 
the search (7a), evaluation dataset (7b) parameters, evaluation measures (7c) as well as for pairs of 
values of the direction and evaluation dataset parameters (7d).

Table 6. Average size of the selected ensembles for the different algorithms on each predicted data set

Base Learner D1 D2 D3 D4 D5 D6 Avg. Size

Poly kernel algorithms

POBSD 199.0 199.0 199.0 199.0 199.0 199.0 199.0

POBSR 16.2 11.5 17.7 14.5 15.5 17.5 15.5

POBTD 199 193.1 199 199 199 199 198.0

POBTR 2.4 12.4 6.2 11.9 10.9 12.9 9.5

POFSD 7.2 8.9 15.2 20.5 11.5 12.5 12.6

POFSR 4.9 10.9 12.5 11.1 9.1 8.2 9.5

POFTD 2.4 4.9 4.7 4.4 5.6 6.6 4.8

POFTR 2.7 5.4 6.5 4.1 6.4 5.9 5.2

RBF kernel algorithms

RBSD 199.0 196.0 199.0 194.0 199.0 195.0 197.0

RBSR 17.2 10.5 17.5 13.4 15.2 16.5 15.05

RBTD 199.0 193.1 192.0 199.0 194.0 199.0 196.0

RBTR 2.4 12.4 6.2 11.9 8.9 12.9 9.1

RFSD 7.2 8.9 16.0 18.4 10.5 12.3 12.2

RFSR 4.9 10.9 12.5 11.1 7.1 8.2 9.1

RFTD 2.6 4.9 4.7 4.4 5.5 3.6 4.3

RFTR 2.4 5.1 4.5 4.1 6.4 5.3 4.6

PUK kernel algorithms

PUBSD 198.0 196.0 194.0 195.0 199.0 193.0 195.8

PUBSR 16.2 11.5 17.7 14.5 15.5 17.5 15.5

PUBTD 197 193.1 199 194 199 195 196.2

PUBTR 2.4 12.4 6.2 11.9 8.9 12.9 9.1

PUFSD 7.2 8.9 16 20.5 8.5 12.3 12.2

PUFSR 4.9 8.9 12.5 11.1 9.1 8.2 9.1

PUFTD 2.4 5.9 3.7 4.5 5.3 4.6 4.4

PUFTR 3.4 5.6 3.5 4.2 4.4 5.8 4.5
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A remarkable observation in Figure 5a is that the algorithms that search in the backward direction 
produce larger ensembles (105.49) than those that search in the forward direction (8.0) in case of 
Poly kernel, (104.15) than those that search in the forward direction (7.55) in case of PUK kernel, 
and (104.30) than those that search in the forward direction (7.56) in case of RBF kernel. Based on 
the previous finding, that the direction parameter does not affect significantly the performance of 
the greedy ensemble selection algorithm, we conclude that the advisable direction for an ensemble 
selection algorithm is the forward direction.

In Figure 7b, we notice that the average size of the selected ensembles for the xxxSx (59.14) 
algorithms is slightly larger than the xxxTx (54.35) algorithms in case of Poly kernel, (58.35) 
algorithms is slightly larger than the xxxTx (55.2) algorithms in case of PUK kernel, and (58.17) 
algorithms is slightly larger than the xxxTx (53.55) algorithms in case of RBF kernel. This observation 
is also verified if we look at Figure 7d. We can assume that the xxxTx algorithms contain stronger 
learners than the xxxSx algorithms and select fewer learners in order to achieve the maximum 
performance. But the performance of the xxxTx algorithm is worse than the performance of the 
xxxSx algorithms which means that those strong models are over trained.

5.4 Predictive Performance vs. Ensemble Size
Figure 8a and b present the RMSE curve both on the train and the test set during the ensemble 
selection for one data set (D1). Firstly, in Figure 8a and b we notice that the ensemble selection 
procedure improves the RMSE using a small number of learners. Note that the final sub-ensemble 
that is selected, is the one that corresponds to the minimum of the evaluation set RMSE curve. In the 
figures we observe that this minimum point corresponds to a near optimal point in the test set RMSE 

Figure 7. Mean size of selected ensemble based on (a) search method, (b) evaluation dataset parameters, (c) evaluation measures 
(d) pairs of values of the direction and evaluation dataset parameters
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curve. This observation shows that the greedy ensemble selection algorithm manages this way to 
select an appropriate size for the ultimate sub-ensemble, which allows it to achieve high predictive 
performance.

In Figure 9a and b we notice that the FSD and BSD algorithms respectively, fail to select a 
good sub-ensemble. More specifically, in the case of FSD the DIV measure guides ineffectively the 
algorithm, as at the first steps it inserts for learners that have bad performance. The BSD algorithm 
seems to remove continually the superior learners from the ensemble, leading it to increase the error.

5.5 Type of Models
Figure 10 presents aggregates concerning the type of models that are selected across all the predicted 
data sets. We focus on the results of the four best performing algorithms (FSR, FSD, BSR, BTR). 
The algorithms select equal sizes of both SVR-based Poly learner (5.0), SVR-based PUK learner 
(5.8) and SVR-based RBF learner (6.2).

Figure 8. Predictive performance of FSR and BSR against ensemble size

Figure 9. Predictive performance of FSD and BSD against ensemble size
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6. CONCLUSION

In this study, we presented a novel framework for a hybrid layered based greedy ensemble reduction 
(HLDER) approach is proposed for improving the prediction accuracy and generalization of the 
ensemble. We decomposed HLDER algorithm into different layers and we emphasized the various 
options for pruning layer. Additionally, we applied the framework of real data concerning time series 
data, and experimented with an ensemble of 200 learners consisting of SVR based (Poly, PUK and 
RBF) kernels. The results have shown that using a separate unseen set for the evaluation, leads the 
algorithm to increase its performance. Also, the algorithm is able to select an appropriate size for the 
final selected ensemble achieving a near-optimal performance. In this way there is no necessity to 
predefine the percentage of the models that must be pruned from the initial ensemble. Finally, as far as 
the direction parameter is concerned, we concluded that it does not affect importantly the performance 
of the HLDER algorithm, in both cases, the direction parameter does not affect significantly the 
performance and based on this conclusion we suggest the use of the forward direction as it produces 
smaller ensembles than the backward direction. Concerning the size of the ensemble that is selected, 
we concluded that selecting it based on the maximum accuracy on the evaluation set, leads to small 
ensembles with superior predictive performance.

Figure 10. Selected models by the best performing algorithms (FSR, FSD, BSR and BTR)
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