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ABSTRACT

Electroencephalography (EEG) analysis exploits computer technologies and mathematical signal analysis
techniques to derive useful information from EEG signals. EEG analysis aims to help scientists better
understand the brain, help physicians make better decisions about patient diagnoses and treatment choices
and advance the Brain-Computer Interface (BCI) technology. Over the last years, machine learning has
been very much used in EEG analysis. Artificial neural networks (ANNs) are among the most effective
machine learning algorithms that perform computing tasks similar to biological neurons in the human
brain. Nevertheless, the neural network model’s performance might significantly degrade and overfit due
to some irrelevant features that negatively influence the model performance. Therefore, feature selection
should be the first step of the model design. Furthermore, neural networks performance relies heavily on
the algorithm that is employed to train them. Backpropagation is a common technique for training neural
networks; however, backpropagation might get stuck into a set of sub-optimal weights and biases from
which it cannot escape. Both feature selection and training can be formulated as optimization problems.
Thus, proper optimization techniques to use for feature selection and training will contribute to performance
improvement. Swarm optimization algorithms are robust and powerful techniques that can be employed to
find high-quality solutions to such problems. In this paper, Grey Wolf Optimizer (GWO) and Particle Swarm
Optimization (PSO) algorithms are applied for the feature selection and the training of a Feed-forward
Neural Network (FFNN) to classify the state of the eye as closed or open based on brain wave data (EEG).
The aim is to enhance the FFNN’s ability to detect the eye state with high accuracy. The performance
of the FFNN in terms of test accuracy, precision, recall, and F1_score is investigated. To better estimate
the ability and effectiveness of the proposed model, five classical machine learning classifiers are used:
(1) Support Vector Machine; (2) k-Nearest Neighbors; (3) Decision Tree; (4) Gaussian Naive Bayes; (5)
Logistic Regression. Experimental results proved that the FFNN model outperforms all other classifiers,
particularly when feature selection and training are performed with the GWO algorithm.
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1. INTRODUCTION

Electroencephalography, or EEG for short, is an electrophysiological process to record the brain’s
electrical activity using EEG electrodes placed on the scalp (Kosmyna and Lécuyer, 2019). EEG data
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are hard to deal with, as they can be very noisy. Neuroscientists, biomedical engineers, and clinicians
often receive years of training to understand and extract meaningful EEG data information. Moreover,
the raw recorded data must be processed before it can be viewed by professionals. Raw EEG data
is just a discrete-time multivariate (i.e., with multiple dimensions) time-series. The number of EEG
channels defines the dimension of each point in the time series. Each time point corresponds to an
EEG sample obtained at the same time point. The number of points in the time series depends on the
recorded time and the sampling rate (Perronnet et al. 2016). These raw signals are rarely used because
they may include DC offsets and drifts, electromagnetic noise, and artefacts that must be filtered.
Temporal and spatial filtering is frequently used to remove noise, filter out artefacts, or isolate an
enhanced version of the signal of interest. Hereafter, frequency filters like band-pass filters or low-
pass are applied on the clean EEG data to isolate the bands of interest and remove those frequencies
of no interest as the human brain processes in the P300 evoked response that occurs in the Theta
band (4-7 Hz).

Feature extraction is applied to extract important features from the cleaned EEG data (Dry et al.
2020). Before the popularity of deep learning, feature extraction relied on custom methods of the brain’s
interest process ranging from handcrafted features to more complex technologies, such as linear and
nonlinear spatial filtering. The following ranges from general methods such as independent component
analysis and principal component analysis, to more specific EEG methods such as CSPs (Blankertz
et al. 2008) and (Ang et al. 2008) for energy features and (Rivet et al. 2009) for the temporal ones.
The features extracted are usually fitted to the preferences of a specific application, such as finding
differences between experimental conditions, distinguishing between a set of predefined categories,
predicting behavior, finding anomalies in relation to a normative database. The current state of the
art technologies includes Riemannnet based classifiers, filter banks, and adaptive classifiers, used to
deal with EEG data challenges with various levels of success (Lotte et al. 2018).

Once features are ready, the processed EEG data can then be inspected visually to recognize
anomalies, alterations in mental status, or to examine average responses in a number of people.
However, the visual inspection process is tedious, long, and costly. It does not scale accurately and
cannot be ported to BCI applications. In contrast, Artificial Intelligence (Al), in particular, Machine
Learning (ML), is an ideal approach to automating, expanding, and enhancing the analysis of EEG
data. Automated machine learning approaches can be efficiently applied to solve the time series
classification problems like EEG. A favorite type of machine learning is supervised learning, which
uses a set of examples called training data to learn a model that can predict, classify, or identify EEG
patterns based on the extracted features. A generous variety of techniques exist. The most well-known
are classification techniques, which classify an EEG pattern into one of a set of predefined classes
or regression techniques that transform the EEG pattern into a different signal (for instance, motion
direction). Adopted approaches include simple linear techniques (Multiple Linear Regression and LDA
for classification), SVM like kernel methods, K-Nearest Neighbors, neural networks, and many more.

Whatever the method, supervised methods must have a labeled training dataset. This dataset is
used to train and evaluate the method, normally using some performance metrics such as prediction
accuracy. Artificial neural networks (ANN5s) are one of the most well-known and widely used methods.
ANNSs are computation methods inspired by the human brain and widely used to solve a variety of
complex problems in many application areas (Bataineh et al. 2018a). The reason is that they are
universal and capable of solving any problem if they are properly trained and have enough data. Just
like any supervised learning algorithm, in ANNs, the network topology is determined first; then, the
input is fed. After that, the error is calculated by comparing the actual output with the predicted output,
and then the error is optimized using some optimization algorithm. The most common algorithm to
train ANNSs is backpropagation since it is flexible and traceable (Al Bataineh, 2019).

However, the backpropagation algorithm cannot guarantee an optimal solution. In real-world
applications, the backpropagation algorithm may converge locally into a set of sub-optimal weights
and biases that it cannot escape. As a consequence, the neural network is usually incapable of
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obtaining a desirable solution to a specific problem. As opposed to, swarm population-based search
algorithms such as Particle Swarm Optimization (PSO) and Grey Wolf Optimizer (GWO) are global
optimization techniques that can avoid local optima solutions through their essential component, and
that is the randomness of the initial solutions. In this paper, a neural network with fixed topology is
employed to detect the eye state (open/close) of a person using the EEG eye state dataset. To enhance
the detection ability of the neural network model, we first apply feature selection using each algorithm
via PSO and GWO optimization algorithms; next, the neural network is trained using each swarm
algorithm with the features selected by each algorithm. This work utilized the EEG eye state dataset
(Rosler and Suendermann, 2013) to benchmark the performance of the neural network model with
each proposed algorithm.

Analyzing EEG data is an excellent approach to investigate many different aspects of human
cognition, emotions, and behavior. EEG technology not only helps to study the human brain but also
has useful applications in health, emotional and effective monitoring (Dry et al. 2020). It can assist
doctors in establishing a medical diagnosis, researchers to learn the brain processes that underlie
individual behavior and human to enhance their productivity and wellness. Notwithstanding, EEG
data is difficult to interpret. It contains much noise, differs for each individual, and even for the same
person, it changes dramatically with time. Recently, machine learning has been significantly utilized
to analyze EEG data in an efficient way. Machine learning can automate, extend, and enhance EEG
data analysis.

Therefore, this motivates our work to use machine learning, particularly neural networks for EEG
data analysis, as they are capable of solving almost any task if a great amount of data available and
proper trainer to use to learn the task, which is often accomplished by backpropagation. However,
backpropagation depends highly on the initial parameters of the model in which can cause it to be
trapped into local minima solutions. For this reason, this work applies alternative approaches to
train the neural network model, specifically PSO and GWO, to improve the ability of the model to
accurately predict EEG data of a person’s eyes state as open or closed. Both algorithms have been
extensively proposed to train neural networks by many researchers and have proved their efficiency
in obtaining global solutions. This also motivates us to use these algorithms not only for training the
neural network but also for feature selection. Feature selection is vital in time series classification
problems like EEG as many machine learning applications from medical diagnosis arise from
complex relationships between features. Therefore, it is important to identify and remove irrelevant
and redundant features that decrease the accuracy of the predictive model.

Evaluating machine learning models on time series classification problems like EEG data is very
challenging. Therefore, the proper classifier must be selected that is capable of delivering the best
results. This research has the following objectives:

1. Utilizing the particle swarm optimization (PSO) and grey wolf optimizer algorithms (GWO)
to select the relevant features which will be fed to the neural network model in an attempt to
enhance its performance.

2. Employing each PSO and GWO algorithms to train the neural network mode along with the
selected features to further increase the accuracy of the predictive model to detect the eye state
based on EEG data. The PSO and GWO algorithms were shown to be successful at obtaining
global solutions.

The paper is divided into eight sections as follows: Section 1 provides an introduction. A literature
review based on previous research is presented in Section 2. Section 3 presents the basic definition
of neural networks, their mathematical model, and the topology used for this research. Swarm-based
algorithms GWO and PSO are explained in section 4. The proposed GWO and PSO techniques for
feature selection and training are discussed and explained in Section 5. Results are provided in section
6. Finally, sections 7 and 8 present the conclusion of this research and future work, respectively.
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2. LITERATURE REVIEW

Multiple machine learning approaches have been widely used to classify EEG data, such as K star,
SVM, AR models, ANN, etc. The most commonly used classifier by many authors is the k-nearest
neighbor (kNN). Most of the predictive classifiers have not considered the temporal ordering of the
observations and predict the eye state based on the current EEG observation. Intuitively, it is not
regarded as sufficient, but it was the approach used by Rosler and Suendermann in their paper, who
collected the EEG eye state data (Rosler and Suendermann, 2013). Mainly, they evaluated a wide
range of classification algorithms in Weka software using 10-fold cross-validation of this problem’s
framing. They achieved more than 90% accuracy with many algorithms, including instance-based
learners such as k-nearest neighbors, IB1 and KStar. Since then, several papers have used the dataset
with the same methodology and finding. Wang et al. (2014), proposed EEG eye state detection based
on Incremental Attribute Learning (IAL). Results show that IAL can efficiently cope with time series
classification problems with proper feature extraction and feature ordering.

(Sahu et al. 2015) investigated the EEG system’s eye state identification by finding feature subset
selection named Incremental Feature Reordering (IFR). It provides the most non-dominant feature
(MND) for Electroencephalography (EEG) signal corpus and creates a reorder set. The removal of
MND delivers optimal subset feature, and it improves the classifier accuracy and efficiency. (Li et al.
2009) used Autoregressive (AR) power spectral density estimation method to analyze EEG signals
in eyes-open and eyes-closed states. The two states can be discriminated from the topographical
distributions of the delta, theta, alpha, and beta power spectrum. The results showed that the AR
model’s optimum order could be more suitable for estimating different states’ EEG power spectrum.
(Sulaiman et al. 2011) proposed Relative Energy Ratio (RER), Shannon Entropy (SE), and Spectral
Centroids (SC) techniques to extract stress features from EEG signals during the close and open eye
states. The combination of RER, SE, and SC methods with the training and testing of k-NN detected
and classified the group with the unique stress features with 88.89% accuracy. (Chambayil et al.
2010) presented a new application of training two types of neural networks namely Cascade-forward
Backpropagation (CFBP) and Feed-forward Backpropagation (FFBP) classifiers using Kurtosis
coefficient, maximum amplitude, and minimum amplitude to detect the eye blink artifact in the EEG
signal. The results concluded that the performance of the CFBP network is better compared to the
FFBP network in classifying a signal to an eye blink or not.

(Sadatnezhad et al. 2011) implemented a piecewise linear classifier based on XCSF to classify
EEG signals of the two mental diseases via Bipolar Mood Disorder (BMD) and Attention Deficit
Hyperactivity Disorder (ADHD), 43 patients participated, 21 patients with ADHD and 22 patients
with BMD. Their electroencephalogram (EEG) signals are recorded by 22 electrodes in two eyes-
open and eyes-closed resting conditions. Experimental results of XCSF-LDA showed a significant
improvement of 86.44% accuracy compared to standard XCSF with 78.55% accuracy. (Pour et al.
2008) presented a system that uses the human ability to control a video game on a mobile device
using EEG Mu rhythms. The signals were collected using a specially designed electrode cap and
equipment and then sent via a Bluetooth connection to a computer that processes it in the real time.
The signal is then mapped to two control signals and transmitted through a wireless connection to a
mobile gaming device. The human ability to play the video game by manipulating neuronal motor
cortex activity in the presence of a visual feedback environment was also investigated. Participants
played the video game by using their ideas only with up to 80% accuracy over controlling the target.

3. NEURAL NETWORKS

Machine learning is essential for very complex tasks that humans cannot directly code. Some tasks
are impractical and even impossible for humans to explicitly resolve and code all of the nuances
(Keneni, 2019). So, alternately, a large amount of data is provided to the machine learning algorithm
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and let the algorithm work on it by examining that data and scanning for a model that fulfills what the
programmers set it to achieve (Bataineh et al. 2019a). Within the general machine learning literature,
there is a successful class of models called neural networks. Neural networks are algorithms that have
transformed the machine learning field. Biological neurons in the human brain inspire them, and the
current so-called deep neural networks have shown to work exceptionally well. Neural Networks are
themselves nonlinear universal function approximations, which is why they can be applied literally
to any complex machine learning problem where the problem is about learning a mapping from the
input to output space. There are different topologies of neural networks: Multi-layer perceptron also
called Feed-forward neural network (Rosenblatt, 1958), Convolutional neural network (Lecun et al.
1998), Recurrent neural network (Elman, 1990), Autoencoders (Rumelhart et al. 1985), and Generative
adversarial network (Goodfellow et al. 2014). For this research, we are employing the feed-forward
neural network (FFNN) for classifying the eye state based on EEG data. Feed-forward neural networks
(FNNNS5s) have been employed extensively to tackle supervised learning problems. FFNN is such a
type in which information is fed in a forward direction on a layer-by-layer basis. FFNN contains one
or more hidden layers. It has one input layer, which accepts signals or data from the external world,
at least one middle or hidden layer of neurons between input and output to detect features, and one
output layer of neurons accepting the features from the hidden layers to specify the output pattern.
The popularity of FFNNs (or MLPs) grew with the invention of the backpropagation method in 1986
(Rumelhart et al. 1986). The backpropagation approach uses gradient descent to optimize the weights
and biases of the neural network. The algorithm has two phases. In the first phase, the network input
layer receives a training input pattern then propagates the input pattern through each layer in the
network until the output layer generates the output pattern, next, the difference between the generated
output pattern and the desired output (error) is computed. In the second phase, the computed error
is propagated backward from the output layer to the input layer through the network, and the initial
weights and biases are adjusted while the error is being propagated. It iteratively computes the values
of weight using a learning algorithm such as a gradient descent algorithm (Bataineh et al. 2018b).
Every neuron in the hidden and output layers determines its output by computing the net weighted
input based on Eqn. (1).

Output = Ewixi +5b (D

i=0

where n is the number of inputs, and b is the bias value applied to the neuron, then this input
value is passed through soft activation or transfer function (sigmoid) based on Eqn. (2).

1
1+e

sigmoid (:c) = 2)

X

Training FFNNs using backpropagation does not always guarantee an optimal solution as might
get trapped into local minima solutions. Also, data features that we apply to train FFNNs models
significantly impact the performance that can be achieved. Irrelevant features can negatively influence
the model performance. Feature selection is crucial and should be the first step of the model design.
Therefore, this research proposes PSO and GWO as alternatives to backpropagation to train FFNN
for the EEG classification problem. These algorithms proved their efficiency in discovering a global
solution when the search space is large and challenging (Bataineh and Kaur, 2019) Furthermore, unlike
gradient descent based backpropagation, there is no need for the cost function to be differentiable.
They are a straightforward implementation.
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In the next sections, the GWO and PSO algorithms are employed to select optimal features and
train the FFNN. The proposed topology of the FFNN in this work consists of three layers; one input
layer contains neurons that correspond to the number of features selected by each swarm algorithm,
one hidden layer of 100 neurons, and one output layer which includes one neuron corresponding to
the eye state (open/close).

4. SWARM- BASED OPTIMIZATION ALGORITHMS

Recently, Optimization algorithms that mimic the swarming behavior have reached immense
popularity. The main judgment for their risen applications can be associated with its unique benefits
over preceding evolutionary and conventional approaches. Self-organizing abilities are popular
with swarm algorithms; all entities that embody the solutions imitate the flocking behaviors within
the populations and camps of diverse animals, mammals, and birds. Their application is directed
at achieving exploration and exploitation as the swarm proceeds (Mairaj et al. 2019). A popular
evolutionary algorithm, such as a Genetic algorithm (GA) uses genetic operators such as crossover,
mutation and selection (Whitley, 1994). However, swarm-based algorithms are quite different. In
general, in these algorithms, all living entities are turning towards their prey or source of food, then
information is shared with others if one of the agents finds the food source. There are different varieties
of these algorithms, e.g., some mimic the behaviors of particles, wolves, whales, etc. These algorithms
can be utilized for identifying optimal solutions to optimization problems. For example, the global
optimization problems are often seen as synonymous to minimization problems, but these problems
can be easily converted to maximization problems by negating the function. In such functions, the
optimal solution may be a set of points within the available points in the search space, instead of a
single minimum or maximum value. There is a possibility of a multitude of optimal solutions that
are dependent on the domain of the search space. The purpose of utilizing any global optimization
algorithm is to identify the globally optimal or sub-optimal solutions. The following sub-sections
present a detailed discussion on these two swarm algorithms GWO and PSO, respectively.

4.1. Grey Wolf Optimizer (GWO)

Grey wolf optimizer (GWO) is a swarm-based optimization technique proposed by (Mirjalili et al.
2014). GWO mimics the leadership hierarchy of the grey wolves and their hunting mechanism. It
belongs to the Canidae family and most of them favor living in a pack. They have a strict social
ruling hierarchy; the leader (male or female) is called Alpha (@). The alpha is responsible for making
decisions about hunting, sleeping place, time to wake, and so on. The pack should follow the orders
of the leader (alpha). The Betas () are the second level in the hierarchy, which is the advisor for the
alpha in making decisions and discipliner for the pack. The lowest ranking grey wolf is the Omegas
(w), which have to submit to all other dominant wolves. The wolf that is not Alpha or Beta or Omega
is called Delta (). Delta wolves report to alpha and beta but dominate omegas. Figure 1 shows the
hierarchy of the grey wolf; the dominance decreases from top-down.

The grey wolf optimizer mathematical model was designed and implemented by acknowledging
the fittest solution as the alpha (a). Consequently, the best second and third solutions are called (5)
and delta () respectively. The rest of the candidate solutions are named omega (w). In the GWO
algorithm, the hunting is guided via a, f, and 6. The @ wolves follow the tracking of these three
wolves. The wolves encircle the prey during the hunting and update their positions around «a, 3, or
6 based on Eqns. (3) and (4).
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Figure 1. Hierarchy of the grey wolf
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vector of prey and X indicates position vector of grey wolf. The coefficient vectors A and C are
calculated based on Eqns. (5) and (6).
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The components of @ are linearly decreased from 2 to O throughout the iterations and 7, , 7,
are random vectors in the interval [0, 1]. The grey wolves finish the hunting by attacking the prey
when it stops moving. To mathematically model this behavior of approaching the prey, the value of

a is decreased in each iteration and the fluctuation range of A is also reduced by @ . The wolf can
relocate itself around the prey with the stated equations (1) and (2) where the random parameters of

A and C let the wolves relocate to any position in the continuous space around the prey. This will
make the grey wolves identifying the location of prey and encircle it. The alpha usually leads the
hunt. New beta and delta emerge in each iteration as all the other wolves update their positions. We
assume that the alpha (best candidate solution), beta, and delta have better knowledge about the
potential location of prey. This information is used to simulate the hunting behavior of grey wolves
mathematically. Therefore, we save the first three best solutions obtained so far and update the
positions of the other search agents including the omegas according to the position of the best search
agent. This was performed by proposing and implementing Eqns. (7) to (13).
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4.2. Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is a population-based stochastic optimization technique proposed
by Eberhart and Kennedy in 1995 (Kennedy and Eberhart, 1995). It is formed on the coordinated
behavior of groups such as flocks of birds and schools of fish. Each particle has a virtual position
that represents a potential solution to a minimization problem. In the case of a neural network, a
particle’s position represents the values for the neural network’s weights and biases. The goal is to
find a position (weights and biases) to minimize the difference between the network’s predicted output
and the true. PSO employs a set of particles, which is an iterative process (Bataineh et al. 2019b). In
every iteration, each particle moves to a new position, hoping that it will be a better solution to the
problem. The movement of a particle is based on the current speed and direction (velocity) of the
particle, the best position detected by the particle at any moment, and the best position detected by
any particle in the swarm (McCaffrey, 2013). The velocity and position updates can be computed
based on Eqns. (14) and (15).

(141 = (w0 (o 1) 1) o) o) a9
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p(t+1)=z(t)+o(t+1) (15)

where v(¢ + 1) is the velocity of a particle at time ¢ + 1, w is a constant called inertia weight, v(¢)
is the current velocity at time ¢, ¢, is a constant called the cognitive (personal) weight, c, is a constant
called the social or global weight. The r and r, are random variables in the range [0, 1), the p(¢) vector
value is the particle’s best position found so far. The x(¢) vector value is the particle’s current position.
The g(¢) vector value is the best-known position found by any particle in the swarm so far. Once the
new velocity, v(z + 1) has been determined, it is used to compute the new particle position x(¢ + 1).

5. FEATURE SELECTION AND TRAINING FFNN USING PSO AND GWO

Feature selection is known as input selection, is one of the main tasks in machine learning. It is the
process of identifying the optimal features that are suitable for a classification task and removing less
irrelevant and redundant features that do not contribute or decrease the accuracy of the predictive
model (Li, 2006) (Bataineh, 2019). By applying feature selection, the number of features is reduced,
resulting in dimensionality reduction in data (Al Bataineh, 2020). This can prevent the curse of
dimensionality and may actually speed up the classification. Feature selection is formulated as a
combinational optimization problem. The objective function to optimize is the generalization
performance of the predictive model (e.g., neural network), represented by the error on the selected
features of a dataset. However, obtaining the best set of features is a challenging task and has
exponential computational growth, especially if there are a large number of features belong to the

dataset. For instance, there are 14 features in the EEG eye dataset; therefore, there are almost oM
solutions. So, using a grid or exhaustive selection of features methods to find the optimal features is
not an effective approach and impracticable. Therefore, we require intelligent techniques that enable
the selection of features in practice. PSO and GWO are some of the most advanced algorithms for
feature selection. They are more efficient, and they can guide the feature selection process faster since
they do not search for the whole search space (Al-Tashi, 2019).

In order to implement features selection using PSO or GWO, the first step is to create and initialize
the individuals in the population. In GWO, these individuals are called gray wolves where in PSO;
they are called particles. As these algorithms are stochastic optimization techniques, the individuals’
genes are usually initialized at random. For instance, let us consider the proposed neural network
with 14 features for the EEG eye state dataset. If we create a population of 10 individuals, we will
have 10 different neural networks with random features. Every individual (particle or gray wolf) in
the population will be represented by 14 binary genes, as shown in Figure 2. If the gene value is set
to 1, then that corresponding feature is included in the neural network model; however, if the gene
value is set to 0, then the corresponding feature will be dropped and not include in the neural network.
Next, we need to assign a fitness value to each individual in the population. Here, the fitness value
is calculated based on some objective function and that is Mean Squared Error (MSE). MSE is the
average of the squared differences between the predicted and actual values shown in Eqn. (16).

MSE = lz" Y —Y) (16)

n i=1

where n is the number of training samples in the dataset, Y is the predicted output, and Y™ is
the actual output. Minimum MSE implies better fitness.

Note that calculating the fitness value (error) indicates training the neural network with the
training data for that corresponding individual with the selected features. For example, if we have 10
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Figure 2. n-dimensional binary mask vector
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particles in the case of PSO, then in each generation (swarm), we will train 10 different neural
networks. It is good to mention that in this phase, we are employing a backpropagation algorithm for
training the predictive model or the neural network, as shown in Figure 3. Finally, in GWO, the best
position or the binary vector obtained (selected features) is represented by X (t + 1) , whereas, in

PSO, the best global position or the binary vector (selected features) is represented by X, . After
finding the best features by each algorithm that are suitable for the classification task, the next step
is to train the neural network model using PSO and GWO instead of backpropagation to further
improve the classifier performance. Each algorithm will train the neural network model with its
selected features. Fig. 4 illustrates the complete procedure of the neural network training process with

the proposed algorithms.
To use swarm-based algorithms in training FFNNs, we almost followed the same steps applied
for the features selection. The only difference is the representation of the problem. In the features

Figure 3. Schematic diagram of GWO/PSO-based FFNN for feature selection
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section problem, we used the binary version of the swarm-based algorithms. However, for training the
FFNN model, we will be using the standard versions of these algorithms. The FFNN uses labeled data
and a trainer (such as GWO or PSO) to find a set of parameters (weights and bias) values to generate
outputs that closely match the known outputs. Here, both GWO and PSO accept the parameters in
the form of a vector as shown in Eqn. (17).

10
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where w, shows the connection weight from the i, node in the input layer to the j, node in the
hidden layer, bj is the bias of the j, hidden node, Wy is the connection weight from the j, node in the
hidden layer to the k, node in the output layer, and b, is the bias of the k, output node.

Figure 4. The complete procedure of the neural network training process with the PSO/GWO optimizer
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The length of the vector is based on the FFNN topology. For instance, the FFNN topology for
solving the EEG eye state dataset with 10 selected features is 10-100-1. Therefore, the length vector
is (10 * 100) + (100 * 1) + (100 + 1) = 1201 parameter; 1100 elements represent the weights of the
FFNN, and the remaining 101 elements represent the biases of the neurons in the FFNN. Here, the
vector is simply a particle or grey wolf that represents a candidate neural network with its own weights
and bias. The fitness of a given vector is evaluated by just plugging its weights and biases values in
the cost function, such as the MSE cost function. In other words, both GWO and PSO algorithms
keep iterating for a specific number of generations (iterations) defined by the designer to find a set

of weights and biases that minimizes the MSE function. In PSO, the best position vector X, found

1"
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by the swarm will be the optimal weight and bias parameters of the neural network, whereas, in GWO,

the best position X (t + 1) will be the optimal weight and bias parameters of the neural network.

6. RESULTS AND DISCUSSION

In order to simulate and validate the proposed work, the EEG eye state dataset by (Rosler and
Suendermann, 2013) was adopted and applied. The EEG recording was performed for one person
for 117 seconds while the subject was opened and closed their eyes; they were recorded through a
video camera. The open/closed state is recorded for each time step in the EEG trace manually. EEG
was recorded using Emotiv EEG Neuroheadset, resulting in 14 traces. A total of 14,980 observations
were obtained within 117 seconds (128 observations per second). In other words, the dataset contains
14,980 instances. Each instance comprises of 14 features describing the values of the various electrodes
(AF3,F7,F3,FC5,T7,P,01,02,P8,T8,FC6,F4,F8,AF4) and an eye-state class (either O for open, or 1
for closed). Completely closed eyes were categorized as closed; however, open, or partially open
eyes were categorized as open. For this research, we have removed a total of 676 instances that are
four standard deviations or more from the mean. These are called outliers and removing them helps
better understand the relationship between the EEG traces and the state of the eyes open/closed.
Therefore, the instances of the dataset correspond to the eye open are now 7,855 (54.92%), and the
instances to the eye closed state are 6,449 (45.08%). 80% of the data was used as training and the
remaining 20% for testing the model. This work is divided into two major parts; firstly, the feature
selection is applied then training of the topology of the FFNN using PSO and GWO, respectively.
It is assumed that the optimization process starts with generating random weights and biases in the
range of [-5,5]. Other assumptions for the GWO and PSO are given in Table 1. An attempt was
made for increasing the population size and the number of iteration for each algorithm; however, no
performance improvement was observed.

6.1 Performance Evaluation

Table 1. The initial parameters of the algorithms

Algorithm Parameter Value
GWO A linearly decreased from 2 to 0
Population Size (grey wolfs) 20
Maximum number of iterations 200
PSO Population Size (Swarms) 20
Maximum number of iterations 200
cognitive (or local) weight (C1) 0.5
social (or global) weight (C2) 0.3
momentum or inertia weight (w) 0.9

In general, any machine learning approach contains the following steps for evaluation purpose:

e  Prepare the dataset to get the data into a suitable format for the predictive model (classifier) and
remove any anomalies or outliers. These outliers can negatively impact the predictive model’s
performance.

Split the data into training/testing sets.
Instantiate and train the predictive model on training split; afterward, a prediction is made with
the classifier.
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o  Finally, evaluate the performance, which indicates how accurate the classifier is.

Mainly, there are three types of problems in machine learning: classification, regression, and
clustering. Depending on the problem on hand, we apply particular metrics to estimate the model’s
performance (Al Bataineh, 2021). We have used four different metrics for this research: accuracy,
precision, recall, and F1_Score. Before listing the metrics, there are four essential terms to define:

True Positives (TP): The model predicted positive and the actual output is positive.
True Negatives (TN): The model predicted negative and the actual output is negative.
False Positives (FP): The model predicted positive and the actual output is negative.
False Negatives (FN): The model predicted negative and the actual output is positive.

1. Accuracy: The ratio between the correctly classified instances and the total number of instances
based on Eqn. (18).

Accuracy = TP+TN x 100% (18)
TP+TN + FP+ FN

2. Precision: It is an excellent indicator of the model performance when the class distribution is
imbalanced. The EEG eye state is an imbalanced dataset in which the instances belong to the
open state is more frequent than the close state. Mathematically, precision is defined based on
Eqn. (19).

Precision = _rr x 100% (19)
TP + FP

3. Recall: It is another well-known metric defined as the fraction of samples from a class that is
correctly predicted by the model based on Eqn. (20).

Recall = _rr x 100% (20)
TP+ FN

4. Fl-score: Itis a metric that combines both precision and recall as there are numerous applications
in which precision and recall are necessary. Mathematically, it is the harmonic mean of recall
and precision, which can be defined based on Eqn. (21).

L
F1_ Score = 2* Precision®Recall «100% @

Precision + Recall

13



International Journal of Applied Metaheuristic Computing
Volume 13 - Issue 1

6.2 Experimental Results for PSO and GWO

PSO and GWO were applied for training the proposed neural network with the features that were
selected by the algorithm itself in the first phase as discussed in section 5. PSO selected all features
except the feature labeled O2 where GWO selected all features except the feature labeled T7. We also
use all features for purpose of comparison. The results are shown in Table 2. We can indicate that
the neural network performance of detecting the eye state with PSO and GWO as a trainer is better
with the feature O2 and T7 being removed. This means that PSO and GWO are a good algorithm for
training neural networks and was also able to discover the optimal features that maximize the neural
network model’s ability to classify patterns. Note that the accuracy achieved with backpropagation on
the PSO selected features was about 89%. Note that the accuracy achieved with backpropagation on the
GWO selected features was about 89.9%. From a statistical point, the GWO algorithm outperformed
the PSO in training the neural network and the selection of the best features that give the best results.
The reason for that is the high local optima avoidance of this algorithm.

Table 2. Performance Evaluation of PSO and GWO

Performance PSO with all PSO with selected | GWO with all features GWO with selected
Parameter features features features
Accuracy 95.00% 96.40% 95.89% 97.67%
Precision 94.19% 96.86% 95.91% 97.41%
Recall 94.61% 94.84% 94.90% 97.34%
F1_Score 94.40% 95.84% 95.40% 97.37%

6.3 Performance Comparison

This research has also implemented five classical machine learning classifiers for the purpose of
comparison. The five algorithms are Support Vector Machine, k-Nearest Neighbors, Decision Tree,
Gaussian Naive Bayes, and Logistic Regression. Each algorithm used its default parameters setting in
the Sklearn library. Every algorithm was trained with a max number of iterations equal to 300. Data
also was split into 80% for training and 20% to test the models. The test accuracy is used to compare
the performance in this section. Table 3 shows the results for the five algorithms. The test accuracy is
calculated for each classifier that is trained with all features, GWO features, and PSO features. When
comparing the results in Table 3 with Table 2, experimental results show that the feed-forward neural
network outperforms all other classifiers when the training and features selection is employed using
the GWO algorithm. This indicates that neural networks are leading-edge predictive models if proper
training is applied. Furthermore, this research shows that GWO is an excellent algorithm to select
relevant features and to train neural networks, which will contribute to enhancing the performance
of the classifier.
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Table 3. Performance Evaluation of the 5 Machine learning Classifiers

Algorithm Accuracy with all Accuracy with GWO Accuracy with PSO
feature features features

Support Vector Machine 90.91% 91.22% 90.10%

k-Nearest Neighbors 94.75% 95.63% 94.79%

Decision Tree 81.75% 82.03% 81.92%

Gaussian Naive Bayes 64.17% 64.41% 63.99%

Logistic Regression 60.39% 63.47% 63.36%

7. CONCLUSION

In this study, we have proposed a predictive model represented by a feed-forward neural network
(FFNN) to classify the eye state (open or closed) of a person based on EEG signals. First, we proposed
two different swarm algorithms via Grey Wolf Optimizer (GWO) and Particle Swarm Optimization
(PSO) for finding the most relevant features that can contribute to or increase the accuracy of the
neural network model. Second, we investigated training the FFNN model using GWO and PSO instead
of backpropagation on the same features selected through each algorithm. Finally, we compared our
approach with five different machine learning algorithms, namely, Support Vector Machine, k-Nearest
Neighbors, Decision Tree, Gaussian Naive Bayes, and Logistic Regression. Experimental results have
shown that the FFNN-GWO trainer with GWO selected features outperforms all algorithms achieving
an accuracy of 97.67%, followed by FFNN-PSO trainer with the PSO selected features achieving an
accuracy of 96.40%. Therefore, this research concludes that feature selection and training of FFNN
for time series classification problems like the EEG eye state problem can obtain better results when
features selection and training of the FFNN model are accomplished using GWO algorithm.

8. FUTURE WORK

As illustrated in this article, the findings from the application of neural networks to develop machine
learning approaches to EEG analysis and classification showed promising results. The research thereof
has the potential to diverge into many potential future directions, including real-time EEG eye state
classification and other EEG analysis tasks such as monitoring of mental and cognitive states, which
greatly contribute to avoiding hazardous and possibly dangerous conditions in everyday life. Another
possible future work is utilizing a popular field of machine learning called deep learning. Deep
learning makes use of neural networks that contain several layers. In fact, deep learning has immensely
revolutionized machine learning in many possible areas (e.g., computer vision, reinforcement learning,
speech recognition.) by providing imprecise and flexible predictive models that can directly work
with raw data and learn transformations. Deep learning models use vast amounts of data to learn
features directly and capture data structure in an efficient manner that can then be conveyed and/or
adapted to various tasks. This comprehensive learning ability lends itself well to the requirements
of EEG analysis, in which multiple interrelated processes are fundamental and, until recently, were
particularly intended for each distinct task.
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