
DOI: 10.4018/IJAMC.292499

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Multi-Objective Big Data View
Materialization Using MOGA
Akshay Kumar, Jawaharlal Nehru University, India

T. V. Vijay Kumar, Jawaharlal Nehru University, India*

ABSTRACT

The COVID-19 pandemic has resulted in large scale of generation of big data. This big data is
heterogeneous and includes the data of people infected with corona virus, the people who were in
contact with an infected person, demographics of infected persons, data on corona testing, a huge
amount of GPS data of people location, and a large amount of unstructured data about prevention
and treatment of COVID-19. Thus, the pandemic has resulted in producing several Zettabytes of
structured, semi-structured, and unstructured data. The challenge is to process this big data, which
has the characteristics of very large volume, brisk rate of generation and modification, and large
data redundancy in a time-bound manner to take timely predictions and decisions. Materialization
of views for Big data is one of the ways to enhance the efficiency of processing of the data. In this
paper, Big data view selection problem is addressed as a bi-objective optimization problem using
multi-objective genetic algorithm.

Keywords
Big Data, Multi-Objective Genetic Algorithm, Multi-Objective Optimization, View Materialization

1. INTRODUCTION

Information is one of the important criterion for the survival of Businesses in the present world.
Big data applications are required to process large amounts of data, which is cleaned, integrated,
and presented in different forms, for making optimal business decisions. Big data has four basic
characteristics defined as the 4 V’s of Big data - volume i.e. a large size, velocity, i.e. a high rate
of data generation, variety, i.e. heterogeneity in data, and veracity, i.e., the trustworthiness of data
(Jacobs, 2009; Zikopoulos et al., 2011; Gupta et al., 2012, Kumar et al., 2015). Big data is generated
from a variety of data sources, which generally produces inconsistent data at different rates, leading
to complex and challenging data cleaning and integration processes. In addition, Big data in its raw
form is not suitable for business decisions, rather it is processed to create useful information for the
benefit of an organization. This is also referred to as the value of Big data. Big data visualization,
validity, vulnerability and volatility are other important considerations of Big data processing (Khan
et al., 2014; Gandomi et al., 2015; Firican, 2017).

Big data applications process data in real time to enable timely decisions for helping the
organization or society, for whom the application has been designed. (Luo et al., 2016) suggested the
development of Big data applications for health care systems, where large amounts of clinical and
hospital data could be used to forecast the spread of infectious diseases. One such recent Big data
application is concerned with the spread of the COVID 19 pandemic (Chenghu et al., 2020). This

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

2

application models the spread and future healthcare infrastructure requirements for COVID 19 patients.
The application uses the Big data related to corona virus positive cases that includes the data of people
who got infected with corona virus, people who came in contact with these infected people, the final
outcome of the infected cases including recoveries, the number of tests conducted, demography of
corona virus infected people, isolation data of corona virus infected people etc. This heterogeneous
data is increasing at a massive rate with the global spread of the pandemic. Thus, tracking the spread
of COVID 19 disease, and assessing future healthcare infrastructure, are required to process Zettabyte
of geographical, semi-structured and unstructured data. (Chenghu et al., 2020) identified the role of
Geographical Information Systems (GIS) and Big data for mapping, tracking, and modeling the spread
of corona infections using data visualization. Big data with its predictive power can play a major role
for various support processes that will help in the efforts to control of the pandemic. (Chenghu et
al., 2020) identified the major challenges in implementation of a GIS system for the development of
an application for monitoring COVID 19 spread. These challenges were concerned with integration
of the redundant data generated from different data sources, the dynamic mapping of the sources
of the epidemic and their contacts, analyzing the transmission of the disease to newer geographical
areas, and assessing the risk of non-availability of resources in various geographical areas to deal
with the pandemic. All these challenges required appropriate and efficient query processing on the
Big data related to the pandemic. (Shneiderman, 2020) lists the data visualization applications, which
model the spread of the pandemic and support policy decision making by the Government. One such
effort listed in (Shneiderman, 2020) is a COVID19 dashboard by Lauren Gardner with her team at
John Hopkins University. It highlights the importance of visualization for such worldwide disasters.
Thus, Big data applications, which impact social life, have to deal with very high volumes of data,
high speed of data generation, heterogeneity of data generating sources, and large data redundancy.
Big data application for COVID 19 requires extensive data cleaning, integration and processing to
generate accurate information, in different visual forms, having high information value. It should
create reliable, dynamic and actionable knowledge in a timely manner, which can save many precious
lives. View materialization is one of the techniques used for enhancing the speed of processing of
Big data, which can result in faster decision making. This paper addresses the bi-objective Big data
view materialization problem using the Multi-Objective Genetic Algorithm (MOGA).

This paper is organized as follows: Section 2 discusses view materialization followed by the
Big data view selection problem in the context of Big data view materialization in section 3. Big
data view selection using MOGA is discussed in section 4 and an example illustrating the use of the
proposed MOGA based Big data view selection algorithm to select Big Data views for materialization
is illustrated in section 5. Experimental results are given in section 6. Section 7 is the conclusion.

2. VIEW MATERIALIZATION

A database system can have a large number of views, which can be generated as a result of queries
over a database schema. A sub-set of these views can be materialized to enhance the efficiency of
processing of frequent queries. However, view materialization results in an increase in the maintenance
cost of the database, as both, the database and the views need to be maintained. In addition, view
materialization increases the overall size of the database system, as materialized views are also stored
with the database. Therefore, the objective of view materialization is to minimize both the query
response times and the maintenance cost, keeping in the constraint on the maximum cumulative
size of the views. (Chirkova et al., 2001) formally defined the problem of selection of views for
materialization in the context of relational database management and data warehouse as given below:

Given the relational schema (R), a set of queries (Q) on R and an available size of database
storage (S), the view selection problem identifies a set of views for materialization that minimizes
the estimated cost of query processing over R, with the constraint on the overall stored size of the
database (S) and materialized views.

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

3

The materialization of views, however, results in materialized view maintenance cost, as updates
on the database are also propagated to the data of the related views. (Kenneth et al., 1996) represented
views using directed acyclic graphs, with the aim of identifying the common sub-graphs or sub-
expressions of these graphs. These query sub-graphs can also be materialized to reduce the view
maintenance cost, as these sub-views could be a part of several materialized views. (Mistry et al.,
2001) presented a greedy algorithm for the selection of views for materialization having an optimal
maintenance plan. (Gupta & Mumick, 1995) defined four aspects of the view maintenance problem
viz. identification of integrity constraints and access rights on view data; expected data manipulations
on the view data; the relational operators used to create the views; and the possibility of incremental
updates on the view data. Thus, the problem of view materialization requires to select a set of views
for materialization, which minimizes the cost of query processing for the given set of queries (Q)
and the cost of maintenance of the materialized views, for a given size of the database (S) (Mami &
Bellahsene, 2012).

Rapid growth in operational data of organizations resulted in the development of data warehouses.
A data warehouse is an integration of operational data of an organization for answering analytical
queries, results of which are used for making business decisions. A data warehouse is organized as
multi-dimensional data cubes, with each cell of the cube representing a measured value. These data
cubes of the data warehouse are represented using the dimensional tables and fact tables, where the
dimension tables are used for grouping of the values stored in the fact tables. (Harinarayan et al.,
1996) represented the data warehouse queries using a lattice structure consisting of a set of nodes of
queries, with two nodes having a dependence relation if a query can be answered using the result of
another query. Each of the node in the lattice is a candidate view for materialization.

The problem selection of view for materialization was extensively studied for data warehouses
(Harinarayan, 1996; Gupta, 1996; Roussopoulos, 1998; Chirkova et al. 2001; Mami et al., 2012). The
selection of views for materialization is an NP-Hard problem for data warehouse (Harinarayan et al.,
1996), therefore, the problem cannot be solved by standard algorithms. The view selection problem
has been addressed using the empirical approach (Agrawal et al. 2000) or heuristic approaches
(Harinarayan, 1996; Gupta, 1996) or meta-heuristic approaches (Arun & Vijay Kumar, 2015a, 2015b,
2017a, 2017b; Vijay Kumar & Arun, 2016, 2017, Vijay Kumar & Kumar, 2014, 2015; Kumar &
Vijay Kumar, 2018). This problem was also formulated as a bi-objective view selection problem
and solved using multi-objective evolutionary algorithms VEGA (Prakash & Vijay Kumar, 2019a),
MOGA (Prakash & Vijay Kumar, 2020a), SPEA-2 (Prakash & Vijay Kumar, 2019b) and NSGA-II
(Prakash & Vijay Kumar, 2020b).

With an increase in the complexity of data and their interrelationships, object oriented database
management systems (OODBMS) were developed. View materialization in case of OODBMS requires
dynamic classification of objects into view classes (Kuno et al., 1995). A materialized view class in
OODBMS maintains links to the objects of that view class. The modification of data of the object may
require re-classification of the object into another materialized view class. This change will require
adjusting the object links of the materialized view classes (Kuno et al., 1995).

With the evolution of Web 2.0 and NoSQL databases, semi-structured database systems became
popular. (Abiteboul et al., 1997) proposed that a view on semi-structured data should be created as a
result of a query on semi-structured data and it should be treated as an independent entity. (Tang et
al., 2009) modeled the views on the semi-structured XML data using a directed acyclic graph, with the
nodes representing the views and the arcs represent the subset relationships between the views. The
paper extends the model of view materialization for relational databases to XML database, and also
presents a greedy algorithm to select views for materialization on the semi-structured data. (Abiteboul,
1999; El-Sayed M. et al., 2006) proposed an incremental model for maintenance of XML views using
query sub-graphs. However, the view materialization for semi-structured data alone cannot be used
to model view materialization for Big data, which is presented in subsequent sections.

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

4

With the popularity of social media and e-commerce applications, a large amount of unstructured
data in the form of video, audio and large texts is being generated. Such data contains useful
information, which needs to be extracted. Such data is drawn from many heterogeneous sources having
variable data rates, referred to as variability of data (Gandomi & Haider, 2015). Unstructured data
requires pre-processing and integration with structured and semi-structured data. (Gandomi & Haider,
2015) presents several methods that can be applied on unstructured data to extract useful information.
(Yafooz et al., 2013) suggested three models of representing unstructured data, viz. linking relational
entities and unstructured data; creating a separate model for unstructured data using an identifying
relation; using queries to process unstructured data, which can be stored with the structured data or
integrated with inverted indexes. Thus, in general, meaningful information is extracted from data
repositories for making informed decisions. Materialization of selected views enhances the efficiency
of this process. The view materialization for Big data is discussed in the next section.

3. BIG DATA VIEW MATERIALIZATION

Big data architectures process large volumes of heterogeneous data using distributed file system (DFS)
and map-reduce frameworks (Hadoop 2008; Hadoop 2012; Dezyre 2015). Therefore, Big data view
materialization should be defined in the context of the Big data store, which uses (DFS) and the Map-
Reduce framework. (Kumar &Vijay Kumar, 2021a) defined the Big data view materialization problem
involving Big data characteristics viz. large volume, heterogeneous data, high data generation rate
and low veracity. It also presented a model for cost computation and presented a greedy algorithm for
the selection of Big data views for materialization. Query attributes (QA), which are the attributes of
structured or semi-structured or unstructured data, are derived from the most frequent queries posed
on Big data. QA and their inter-relationships form the basis of selection of candidate views for Big
data view materialization (Kumar & Vijay Kumar, 2021a). A Big data application can be designed
using an extended semantic model, which includes Big data entities and their relationships. A Big
data entity can consist of structured, semi-structured and unstructured data. This semantic model and
the workload queries on a Big data application can be used to identify QA and their interrelationships.
Fig.1 illustrates the semantic model of an application for tracking a COVID 19 infected person and
the people who came in their contact. The data, which may be stored for this application, includes
the patient details, their past history of diseases, their location, and the details of people who came
in contact of such patients. Fig. 1 shows the semantic model of this data. It consists of the Big data
entities Patient, Location and Contact History and a relationship Tested. The Big data entity Patient
can be modeled as a two structured relation name Patient(Id, Name, DOB) and DiseaseHistory(Id,
Disease, dateofillness); or a semi-structured document named Patient having the attribute Id and
XML tags (Name, DOB, DiseaseHistory(Disease, dateofillness)). The Location entity can also be
modeled in a similar way. In addition, the Location entity includes the data dimensions Country and
City, which have a dependence relationship Country → City. The Contact History is a Big data entity
having a large amount of semi-structured and unstructured data. This entity has been represented as
a big rectangle in Fig. 1. It stores large amounts of unstructured and semi-structured data of those
people who came in contact with an infected person. The details of level 1 contacts (Fig. 1) is semi-
structured data whereas Level 2 contacts, and the various activities performed by these contacts, is
unstructured data (Fig. 1). The relationship named Tested can be modeled as a <date: result> pair,
which can store a sequence of test results of a patient as semi-structured data. It may be noted that
the relationship between the Location and the Patient is many-to-many as a patient can travel to many
different locations. However, no cardinality has been shown for Contact History as it is primarily
unstructured data, which needs to be processed and related with the QAs.

Fig. 1 can also be used for the identification of QA and their interrelationships from the model,
which can then be used to create a view structure as shown in Fig 2. Such directed view structure
graph can be used to identify candidate views and the dependence between the views, and thus it can
be used to create alternative query evaluation plans using materialized views.

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

5

Fig.2 shows the structure of Big data views and their relationships. A node in Fig.2 represents
Big data views related to specific query attributes. For example, node 2 represents the structured,
semi-structured and unstructured data of COVID 19 patients and their contacts selected/organized
using the QA Country and Age. The estimated size of each type of data is also represented in the node.
It may be noted that the size is represented as the number of stored blocks of Big data. Any possible
combination of structured, semi-structured and unstructured data of a node can be considered to
represent a Big data view.

A view can be identified as one of the candidate views for materialization, if the related QAs are
part of any one of the frequent queries. For example, a query which finds the city wise list of persons
who came in contact of an infected person, involves QA City. This query can be answered using a view
that can be generated using semi-structured data of node 6 (QA City) of Fig. 2. On the other hand a
query that seeks the city wise details of activities performed by people who are quarantined can be
answered using view created using unstructured data of node 6 (QA City) of Fig. 2. In addition, it can
be observed from Fig.2, that a query which can be answered by a view created from node 6, can also
be answered by views created from node 2 or node 3 or node 4, provided they are on similar type of
data. Thus, a large number of candidate views of the order of 2|QA| can be generated for Big data view
materialization, as suggested in (Kumar & Vijay Kumar, 2021a; Kumar & Vijay Kumar, 2021b). It
may be noted that the root node can be used to create three views, viz. one each for structured, semi-
structured and unstructured data respectively, which are assumed to be materialized.

The selection of Big data views for materialization has been defined as a multi-objective problem
in the context of the Big data warehousing tool - Hive (Goswami et al., 2017). This paper proposed
three objectives for Big data view materialization. These objectives were - to minimize the query
processing cost using a set of materialized views; to minimize the materialized view maintenance cost;
and to minimize the number of materialized views, while maximizing the storage space (Goswami
et al., 2017). The paper also suggested to use two multi-objective evolutionary algorithms, viz. the
multi-objective differential evolution algorithm (MOEA) and the non-dominated sorting evolutionary
algorithm (NSGA-II), to solve the multi-objective view materialization problem. However, their
proposed Big data view materialization did not incorporate the Big data characteristics as suggested
in (Kumar & Vijay Kumar, 2021a). Also, (Goswami et al., 2017) used map-reduce time in seconds
over a single node to estimate the cost of query processing and materialized view maintenance. These

Figure 1. An extended semantic model

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

6

cost estimates are dependent on the state as well as the number of map-reduce nodes. In addition, the
paper did not suggest any mechanism for the identification of candidate views.

However, (Kumar & Vijay Kumar, 2021a) proposed Big data view materialization that incorporated
Big data characteristics like volume, heterogeneity, veracity and the rate of data generation. In
addition, query frequency was used as one of the parameters for Big data view materialization. The
paper also derived a model for computation of total query evaluation cost, which was the sum of
the query evaluation cost of the queries and the update processing cost of the materialized views.
The paper suggested to use the stored size of the Big data blocks, which is a more robust measure,
for computing the query evaluation cost and materialized view update cost. The paper proposed a
greedy algorithm, which minimizes the total cost of query evaluation, to select the Big data views
for materialization. This single objective Big data view materialization problem, was designed as a
bi-objective Big data view materialization problem (Kumar & Vijay Kumar, 2021b). This bi-objective
problem, which was solved using the vector enabled genetic algorithm (VEGA) in (Kumar & Vijay
Kumar, 2021b), is discussed next.

3.1 Big Data View Selection Problem
Big data views are selected in order to optimize the processing of frequent Big data queries. This view
selection problem has two basic objectives (Kumar & Vijay Kumar, 2021b), viz. the minimization of
query evaluation cost of the most frequent queries and the minimization of the update processing cost
of the views. This minimization is subject to the constraint on the cumulative size of the materialized
views (Kumar & Vijay Kumar, 2021b). These two objectives as proposed in (Kumar & Vijay Kumar,
2021b) are given below:

Figure 2. Structure of Big Data Views for query attributes Country, City and Age of a patient with dependency Country→City
(S-Structured, SS-Semi-structured, U-Unstructured, D-Data)

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

7

3.1.1 Minimization of Query Evaluation Cost (QECBDV)
The QECBDV is the cost of evaluating the workload queries, for a given set of materialized views.
QECBDV is computed using equation (2) from the value of minimum cost of evaluating a query (MCQi)
and the frequency of that query (fi). MCQi of ith query is computed using equation (1) for all possible
j query evaluation plans, where each of these plans may involve k views. The computation of MCQi
involves - update factors of the materialized views (ufvk), which represent the ratio of increase in size
of the view during a window of time, to the initial size of view; update factors of non-materialized
view (ufk), in case a view is not materialized, which is defined as the ratio of the increase in the size
of the data that is required to compute a view during a specific window of time, to the initial size of
data that is required to compute the view; the cost of materialized views (CMV); which is the cost of
processing of the materialized view, in terms of stored blocks of Big data, to answer a query on the
view; cost of data (CV), which is the cost of processing of the data, in terms of stored blocks of Big
data, that is required to be processed to answer a query on the view, if the view is not materialized.
The variable mk in equation (1) is a binary variable, which represents the materialization status of
a view. Thus, mk=1, if the kth view is materialized, else mk=0. The equation (1) as given in (Kumar
&Vijay Kumar, 2021b), to computes MCQi is given below:

MCQ Min m CMV ufv m
i j k k k k
= × × + ×






















+ −(1

1

2
1))× × + ×







































∑ CV uf
k kk

1
1

2
	 (1)

After computing the MCQi for every query, the QECBDV is arrived at by computing the product
of MCQi with the frequency of the queries (fi) using equation (2) as given in (Kumar & Vijay Kumar,
2021b), which is given below:

QEC MCQ f
BDV i i

i

n

= ×()
=
∑

1

	 (2)

In equation (2) n represents the number of workload queries.

3.1.2 Minimization of update cost (UPCBDV)
In most Big data applications, inserting new data is more frequent than modifying old data. In addition,
rather than correcting such old semi-structured or unstructured data in a data store, additional data is
added to a Big data store with the corrected information. Thus, the semi-structured and unstructured
data, which has low data integrity, results in generation of additional Big data. This additional data
is referred to as UMV, and is processed to update materialized views. Integrity factor of view data
(Im) is the measure of integrity of Big data, which is also used to compute the update processing cost
of Big data views (UPCBDV) (Kumar & Vijay Kumar, 2021b). The UPCBDV, as given in equation (3)
(Kumar & Vijay Kumar, 2021b), is given below:

UPC m UMV I
BDV i i mi i
= × ÷()∑ 	 (3)

(Kumar & Vijay Kumar, 2021b) have shown that the two objectives conflict with each other, as
the larger Big data views can process a larger number of queries, which can result in the minimization
of QECBDV, however, it results in a higher UPCBDV. These two objectives are subject to a constraint
on the cumulative size of the Big data views. Thus, the problem of selection of Big data views for
materialization is a bi-objective optimization problem and can be solved using the multi-objective

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

8

variant of the genetic algorithm. The costs, viz. QEC and UPC, are computed in terms of the number
of stored blocks of Big data (Kumar & Vijay Kumar, 2021b). In this paper, a Multi-objective Genetic
Algorithm (MOGA) has been used to solve the bi-objective Big data view selection problem discussed
above. Big data view selection using MOGA is discussed next.

4. BIG DATA VIEW SELECTION USING MOGA

Multi-Objective Genetic Algorithm (MOGA) is used for the simultaneous optimization of conflicting
objectives. MOGA produces a number of non-dominated solutions for an optimization problem. In
MOGA, a random population of solutions, represented by a chromosome, are created. In this paper,
the permutation encoding of the chromosome is used. Next, the rank of every solution in the initial
population, is computed by identifying the solutions that dominate it. A solution vector SVi dominates
a vector SVj if one of the following holds:

(1) 	 SVi dominates SVj for all objectives; or
(2) 	 SVi is equivalent to SVj for n-m objectives and SVi dominates SVj in the remaining m objectives

(where, m can be any value from 1 to n-1)

The dominated count of a solution is the count of the solutions that dominate it. After the
dominated count for each solution is computed, it is assigned a rank, which is computed by adding 1
in the dominated count, i.e., if n is the number of solutions which dominate the given solution vector,
then its rank will be n+1. Thus, the solution vectors which are not dominated by any other solution
vector are assigned the highest rank. Rank forms the basis for assigning a raw fitness to a solution
vector by using the linear mapping function. However, the raw fitness of the solution vectors that
have the same rank is not the same, therefore, the raw fitness is averaged on the number of solution
vectors, which have the same rank. The average fitness, in general, for the same rank solutions are
the same and the highest rank (rank 1) solution vectors have the highest average fitness. The same
rank solutions are, then compared for diversity using the Niche count. The diverse solutions are
extracted using the shared fitness and the scaled shared fitness. The scaled shared fitness is used as
the basis for the proportionate selection operator (Goldberg, 1989). The proportionate selection, in
general, favors the elitist solutions. Thus, the solution, which has the higher shared scaled fitness,
has a higher probability of selection to the mating pool. The basic principle here is to find diverse
solutions, while maintaining the elitist bias. Next, the crossover and mutation are performed on the
solutions in the mating pool to generate the population for the next generation. In this paper, a single
point modified crossover operator (Davis, 1985) with a probability of crossover (pc); and a random
mutation operator (Goldberg, 1989) with a probability of mutation (pm) are used. MOGA is run for
predetermined number of generations, thus, creating a set of diverse, higher ranked solutions.

A MOGA based Big data view selection algorithm (BDVSAMOGA) that selects Big data views for
materialization is proposed in this paper and is discussed next.

4.1 BDVSAMOGA

BDVSAMOGA is an evolutionary algorithm designed to solve the bi-objective view materialization
problem. The inputs to the algorithm are - the list of frequent queries (Q), the query frequency
vector (f) over a specific period of time (Ⱦ), the candidate views for materialization (CVDB), the query
evaluation plans for each query (QtVs) in the context of CVBD, the cost of using a candidate view in
CVBD, if it is materialized (CMVi); or the cost, if the candidate view is not materialized (CVi), the
update factors (uf), the cost of updating a view (UMVi), the integrity factor (Im) for each view and the
number of Big data views to materialize (k).

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

9

This algorithm selects a set of Big data views for materialization from a large set of candidate
views. Therefore, permutation encoding has been used to define the chromosome or view vector for
the algorithm. Each candidate view is identified by a unique view identifier (Vid). The view vector
(VVk) represents a set of the materialized views of size k. The objective of BDVSAMOGA is to find the
good view vectors, which optimize the query processing and query update processing costs. The
algorithm is run for a specific size of view vector (k) and collects the non-dominated view vectors
as the output. Fig. 3 represents a view vector of size 4 (VV4). The view vector VV4 consists of four
distinct Big data views (Vid).
BDVSA

MOGA

 Find a list of good view vectors (of materialized views) for
a given Query Workload over a time window (Ⱦ).
Input Vectors:
 List of frequent queries (Q) for a specific window of time
(Ⱦ),
 Query Frequency vector (f) for a specific window of time (Ⱦ)
 Candidate Big data views for materialization (CV

BD
)

 Query evaluation plans using candidate views (QtVs)
 Cost matrix of candidate Big data views (CV

DB
) (in terms of

stored blocks of Big data)
 Stored blocks of view data, if Big data view is
materialized (CMV), and
 Stored blocks of data required for computing the view,
if view is not materialized(CV)
 Update factor of Big data for ith View(uf

i
)

 Cost of updating a view (UMV
i
)

 View Integrity Factor (I
mi
)

 Number of Big data views to materialize (k)
Output
 Good view vectors VVk of size k
Procedure:
Initialize:
 Population Size (N); Number of Generations (n

g
);

 Probability of crossover (p
c
); Probability of mutation (p

m
);

MOGA:
Step 1: Generate Initial Population:
 Create random population (PP) of size N of view vectors (VVk)
s of size k
 Initialize generations= 1
Perform the following Steps WHILE generations<= n

g

 Step 2: Compute Objective functions
 For each view vector VVk

t
 in population, VVk

t
∈PP

 Compute the MCQ
i
 for every Query Q

i
∈Q

Figure 3. Structure of View Vector of size 4 (VV4)

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

10

 Compute MCQ
i
 over every alternative evaluation plan j

consisting of v views for every v in jth
plan
 If v in VVK

t
 then m

v
=1 else m

v
 = 0

 Compute MCQ
i
 using the equation (1) given below:

MCQ Min m CMV ufv m
i j v v v v
= × × + ×






















+ −(1

1

2
1))× × + ×







































∑ CV uf
k vv

1
1

2
	

 Compute QEC using equation (2) given below:

QEC MCQ f
BDV i i

i

n

= ×()
=
∑

1

// First Objective function 	

 Compute UPC using equation (3) given below:

UPC m UMV I
BDV i i mi i
= × ÷()∑ // Second Objective function	

 // Compute the objective functions for every view vector
 Step 3: Compute Non-dominated count for each view vector VVk
 initialize, dominated count, DCVi

= 0 for each VVk
i
∈ PP

 For each VVk
i
 ∈ PP and for VVk

j
∈ PP (j ≠ i)

 if VVk
i
 is dominated by VVk

j

 increment DCV
i
 by 1;

 Step 4: Compute Rank
 For each VVk

i
∈ PP

 RV DCV
i i
� � �= + 1 //equation to compute rank

(4)
 Step 5: Sort rank vector and assign raw fitness
 For each VVk

i
∈ PP

 μ(RV
i
)=μ(RV

i
) + 1 ; // count the view vectors

with same rank
 Sort RV into sRV ; sort the rank view
vector
 for j = 1 to N
 assign raw fitness (rFV) using linear function:
 rFV (sRV)= N+1-j;
 // All the VVk have been assigned raw fitness
 Step 6: Compute average fitness (aFV) for each VVk

i
 ∈ PP

 Compute aFVi for each VVk
i
∈ PP use equation (5) (Fonseca et

al. 1993; Deb 2014):

aFV N j RV
i j

RV

i
i� � � ()= − ()()− × ()−()












=
−∑ 1

1 1

2
1¼ ¼� �

� � 
	 (5)

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

11

 Step 7: Compute Normalized distance, shared distance and
Niche Count
 Assume minimum sharing distance (σVsh) = 0.5; and α =
1;
 Repeat for each Rank
 For each pair of view vectors VVk

i
 and VVk

j
 having the

same rank (RVi= RVj)
 Compute distance dVVk

ij
 using the equation (6) (Fonseca

et al. 1993; Deb 2014):

dVVk
QEC QEC

QEC QECij

i j

max min

� �
� �

� �
=

−()
−()















2

++
−()
−()
























UPC UPC

UPC UPC

i j

max min

� �

� �

2 








	 (6)

 Compute Shared distance using equation (7) (Fonseca et al.
1993; Deb 2014):

sh ifdVVk

dVVk

Vsh
dVVk Vsh

ij

ij

ij() = −











<=1

σ
σ

±

;

== 0 ; otherwise

(7)
 //Compute shared distance for each VVk
 For each VVk

i
∈ PP

 Compute Niche count using equation (8) (Fonseca et al.
1993; Deb 2014)

NCV dVVk j VVk RV RV
i ij j i j
= () ∈ { } =∑� sh ����where� set�of� � �

j

() ; { | } 	 (8)

 Step 8: Compute Shared fitness and Scaled shared fitness
 For each VVki∈ PP
 Compute shared fitness equation (9) (Fonseca et al.
1993; Deb 2014)

sFV
aFV

NCVi
i

i

 = 	 (9)

 For each VVki
∈ PP

 Compute scaled shared fitness using equation (10)
(Fonseca et al. 1993; Deb 2014)

ssFV
aFV RV sFV

sFV
j VVk R

i

i i i

j

j
=

× () ×
()

∈ { }�
�

�where� set�of�
j

¼

Σ
; { | VV RV

i j
= } 	 (10)

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

12

 Step 9: Create mating pool and perform Crossover and
Mutation
Create mating pool by applying proportionate selection
(Goldberg,1989) using scaled shared fitness ssFV
Perform crossover with a probability (p

c
) using single point

modified crossover operation (Davis, 1985) ensuring no duplicate
view Vid in a crossed over view vector VVk
Perform mutation with a probability (p

m
) using random mutation

operation (Goldberg, 1989) ensuring no duplicate view Vid in a
mutated view vector VVk
Crossover and mutation result in a offspring population (OP) of
view vectorsVVk
 Increment generations
WHILE generations <= n

g
 repeat Step 2 to Step 9 using OP

 Perform non-dominated count on the final offspring population
(OP)
 Collect the view vectors (VVk) with non-dominated count zero
into OutVVk
Output OutVVk;
END of Algorithm

BDVSAMOGA is a bi-objective optimization algorithm to solve the Big data view materialization
problem. This algorithm has 9 steps. Step 1 generates the initial random population (PP) of size N
of the view vectors (VVk) of size k. At Step 2, the objective function values are computed for every
view vector of the population using equations (1), (2) and (3). At Step 3, the dominated count of each
view vector (DCVi) is computed.

4.1.1 Raw and Average Fitness Computation
To compute the fitness for each VVki in the population (VVki ∈PP), first the rank (RVi) of each VVki
is computed using DCVi at Step 4 using the equation (4) (Fonseca et al. 1993; Deb 2014):

RV DCV
i i
� � �= + 1 	 (4)

At Step 5, the μ(RVi), which represents the number of view vectors VVks having the same rank, is
computed for each rank assignment. In addition, the population (PP) is sorted in the ascending order of
the rank vector (RV), and a linear mapping function is applied to assign the raw fitness (rFV) starting
from N to the highest rank VVk down to 1 to the least rank VVk (Fonseca et al. 1993; Deb 2014).

At Step 6, the average fitness values (aFV) are computed for each VVki ∈ PP using the equation
(5) (Fonseca et al. 1993; Deb 2014):

aFV N j RV
i j

RV

i
i� � � ()= − ()()− × ()−()











=
−∑ 1

1 1

2
1¼ ¼�

� �

� �
� � 


	 (5)

4.1.2 Niche Count Computation
The niche count NCVi for a view vector VVki computes the number of view vectors VVk in the
population (PP), which are inside the distance specified by σVsh (Goldberg et al., 1987). (Goldberg
et al., 1987) defined σVsh as the maximum distance between two view vectors so that they can be in
the same niche. The purpose of σVsh is to obtain diverse view vectors in the multi-objective space.

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

13

The value of σVsh is chosen to be 0.5 in this implementation. To compute the Niche count of VVki∈
PP, the following steps are performed:

At Step 7 of the algorithm, a normalized distance between a pair of view vectors VVk with the
same rank, is computed using the objective function values. Equation (6) (Fonseca et al. 1993; Deb
2014) is used to compute this distance:

dVVk
QEC QEC

QEC QECij

i j

max min

� �
� �

� �
=

−()
−()















2

++
−()
−()
























UPC UPC

UPC UPC

i j

max min

� �

� �

2 








	 (6)

In the equation (6), QECmax and QECmin represent the maximum and minimum QEC values
respectively in the population; likewise, UPCmax and UPCmin represent the maximum and minimum
UPC values respectively in the population.

In addition, at Step 7, a sharing function is computed, which identifies the sharing effect between
each pair of view vectors with the same rank. Sharing distance is computed using equation (7)
(Fonseca et al. 1993; Deb 2014).

sh ifdVVk
dVVk

Vsh
dVVk Vs

ij

ij

ij() = −











<=1

σ
σ

±

; hh

otherwise= 0 ;

	 (7)

The value σVsh specifies the minimum distance to which the sharing effect is to be considered
and α denotes the scaling of the computation. In this implementation, α is considered to be 1.

Finally, at step 7, Niche count (NCVi) for ith view vector VVki is computed by summing the sharing
effect of all the view vectors having the same rank using equation (8) (Fonseca et al. 1993; Deb 2014).

NCV dVVk j VVk RV RV
i ij j i j
= () ∈ { } =∑� sh ����where� set�of� � �

j

() ; { | }��	 (8)

The Niche count for the ith view vector is obtained by summing the sharing effect of the ith view
vector to all those jth view vectors which have the same rank as the ith view vector.

4.1.3 Computation of Shared Fitness and Scaled Shared Fitness
At Step 8, the shared fitness of ith view vector (sFVi) is computed from the average fitness and niche
counts using equation (9) (Fonseca et al. 1993; Deb 2014):

sFV
aFV

NCVi
i

i

 = 	 (9)

However, the shared fitness is scaled to preserve the average fitness of the view vectors. The
shared fitness is computed using equation (10) (Fonseca et al. 1993; Deb 2014):

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

14

ssFV
aFV RV sFV

sFV
j VVk

i

i i i

j

j
=

× () ×
()

∈ {
∑

�
� �

���where� set�of�

j

¼
; { }} =� �| }�RV RV

i j
	 (10)

4.1.4 Crossover and Mutation (Step 9)
Using the ssFVi for all the view vectors, proportionate selection (Goldberg, 1989) is performed to create
a mating pool. A single point modified crossover (Davis, 1985), with the probability of crossover (pc),
is then performed on the mating pool. Finally, a random mutation (Goldberg, 1989) with the probability
of mutation (pm) is performed on the view vectors of the mating pool. The population, so produced,
is called the offspring population (OP), and is considered as the population for the next generation.

Steps 2 to 9 are repeated for the specified number of generations for the view vectors of size k.
After completing the above steps, a non-dominated count is performed on the final offspring population
and the view vectors with non-dominated count zero are produced as the output of the algorithm.

An example illustrating the use of BDVSAMOGA to select Big data views is discussed next.

5. AN EXAMPLE

The BDVSAMOGA was run on a data set of 100 Big data Blocks (assuming each Big data Block = 128
MB). The data set assumes an initial size of 10 Big data blocks for structured data, 40 Big data blocks
for semi-structured data and 50 Big data blocks for unstructured data. This data is shown as the Views
V9, V10 and V11 respectively in Figure 4, which are assumed to be materialized. Figure 4 also shows
the structure of the eight views which are at different levels in the view structure of Fig.2. For example,
the Big data view V1(2), as shown in Figure 4, means that view V1 relates to node 2(Country, Age) in
the view structure of Fig. 2. The S+SS in the next row of Figure 4, indicates that this view involves
only structured and semi-structured data. The view cost data has been computed using the sizes of
different types of data, as shown in Fig.2. The view integrity factors are assumed to be lowest for
unstructured data. Size increase factor also have chosen on the basis of data characteristics. View
update data is approximated using the size of the data required to compute the view and size increase
factor. Directed arcs of Fig. 2 have been considered while identifying the query evaluation plans for
the five random queries in Figure 5, which also shows the random query frequencies.

The BDVSAMOGA steps are demonstrated below using the view vector of size 4 (k=4) and a single
generation of MOGA:

Step 1: Generate Initial population

Assuming a population size 10 and view vector size as four (Top-4 view vector), a random
population of size 10 was generated. The initial population is shown in Figure 6.

Step 2: Compute Objective functions

The objective function values are computed using the equations (1), (2) and (3). First the value
of MCQi is computed using equation (1):

MCQ Min m CMV ufv m
i j k k k k
= × × + ×






















+ −(1

1

2
1))× × + ×







































∑ CV uf
k kk

1
1

2
	 (1)

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

15

For example, consider the MCQi computation of view vector VV41 (5, 8, 6, 3) for Q2 which has
three alternative paths using views (V9, V10) or (V1) or (V3). Out of all these views V9 and V10
are assumed to be materialized, and V3 is part of the view vector VV41 and, therefore, is considered
for materialization. Thus, MCQi for Q2 will be computed using the materialized view sizes (CMV)
for views V9, V10 and V3 and the size of the data to compute the view (CV) for V1, which is not
materialized. Also, the values of m9, m10, m11 and m3 is 1, as the related views are materialized, and
m1=0, as the view V1 is not materialized.
	 MCQ

2
 = Minimum of[{(1×CMV

9
× (1+ 0.5×ufv

9
) + (1×CMV

10
 × (1+

0.5×ufv
10
) };

			 {(1-0)×CV
1
× (1+ 0.5×ufv

1
) } ;

			 {(1×CMV
3
× (1+ 0.5×ufv

3
) }]

	 MCQ
2
 = Minimum of[{(1×10× (1+ 0.5×0.8) + (1×40 × (1+ 0.5×0.8)

};
			 {(1)×50× (1+ 0.5×0.8) } ;
			 {(1×10× (1+ 0.5×0.7) }]
	 MCQ

2
 = Minimum of [70; 70; 13.5] = 13.5

The values of MCQi for VV41 (5, 8, 6, 3) are shown in the Figure 7:

Figure 4. Big Data Views Information (S-Structured, SS-Semi-structured, U-Unstructured, D-Data)

Figure 5. Query evaluation plans and assumed query frequency

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

16

Next, the value of QECBDV is computed using equation (2):

QEC MCQ f
BDV i i

i

n

= ×()
=
∑

1

	 (2)

// the values of fiare given in Figure 4)	

	 (QECBDV
)
VV41

 = (4.2× 20 + 13.5 × 30 + 5.8 × 20 + 29.7 ×20 + 72.5
× 10)
		 = 1924

The second objective function value will be computed using equation (3):

UPC m UMV I
BDV i i mi i
= × ÷()∑ 	 (3)

For VV41 (5, 8, 6, 3), UPCBDV will be computed using the values of UMVi and Imi for the views
of VV41 viz. V5, V8, V6, V3 and already materialized views V9, V10, V11.

Figure 6. Initial Population of Top-4 View Vectors

Figure 7. MCQi’s for VV41 (5, 8, 6, 3)

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

17

	 (UPC
BDV
)
VV41

 = (1×UMV
5
/I

m5
+1×UMV

8
/I

m8
+1×UMV

6
/I

m6
+1×UMV

3
/I

m3
+

		 1×UMV
9
/I

m9
+1×UMV

10
/I

m10
 +1× UMV

11
/I

m11
)

	 (UPC
BDV
)
VV41

 =(8/0.99+54/0.9+63/0.8+35/0.9+8/0.99+32/0.9+50/0.8)
		 = 299.36

Similarly, the objective function values for each of view vectors VV4 in the population will be
computed. These values are shown in Figure 8.

Step 3: Compute Non-dominated count for each VVk

In this step, the ith view vector is compared to all other view vectors to determine the count of
view vectors, which dominate this ith view vector. For example, view vector VV44 is dominated by view
vector VV410 , which has better QEC and UPC values (QECVV44> QECVV410 and UPCVV44> UPCVV410).
It may be noted that no other view vector in the population dominates VV44. Thus, the count of view
vectors dominating view vector VV44, DCV4 is one. Similarly, non-dominated count DCV is computed
for all view vectors. Figure 8 shows the computed values of DCV.

Step 4: Compute Rank

In this step, the rank of each view vector is computed using equation (14) (Fonseca et al. 1993;
Deb 2014):

RV DCV
i i
� � �= + 1 	 (4)

For example, rank of VV41 is computed as:
		 RV

1
= DCV

1
+ 1= 0+1 = 1

Figure 8. QEC, UPC, DCV, RV of Top-4 view vectors

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

18

Similarly, the rank of all the view vectors VV4 is computed. These ranks are shown in Figure 8.

Step 5: Sort rank vector and assign raw fitness

The algorithm computes the count of same ranked VVk. These values for the example are: μ(1)=5;
μ(2)=2; μ(3)=1; μ(4)=0; μ(5)=1; μ(6)=1; and μ(7)=μ(8)=μ(9)=μ(10)=0.

Next, a sorted sequence of view vectors (sRV) is created using the rank (RV):
	 {1, 2, 5, 8, 10}, {4, 7}, {9}, {}, {3}, {6}

Accordingly, the view vectors are assigned the raw fitness value (rFV) using the linear function,
as shown in Figure 9. It may be noted that view vector VV41 is assigned a raw fitness 10, VV42 is
assigned a raw fitness 9 and VV45 is assigned a raw fitness 8, and so on.

Step 6: Compute average fitness (aFV) for each view vector VVk

Compute the value of average fitness using equation (5) (Fonseca et al. 1993; Deb 2014):

aFV N j RV
i j

RV

i
i� � � ()= − ()()− × ()−()











=
−∑ 1

1 1

2
1¼ ¼�

� �

� �
� � 


	

aFV N j RV
j

RV

1 1

1

1
1

1

2
1� � � ()= − ()()− × ()−()











=
−∑ ¼ ¼�

� �

� �
� � 


	

aFV N j RV
j1 1

1 1

1

1

2
1� � �= − ()()− × ()−()












=

−()∑ ¼ ¼�
� �

� �
� �


	

aFV
1

10 0
1

2
5 1 8= −()− × −()












=

� �

� �
	 (5)

Similarly, the average fitness of all the view vectors is computed and is shown in Figure 9.

Step 7: Compute Normalized distance, shared distance and Niche Count

In this step the normal distance for the same ranked VVks are computed using the values of the
objective function using equation (6):

dVVk
QEC QEC

QEC QEC
max min

12

1 2

2

� �
� �

� �
=

−()
−()














++

−()
−()

























UPC UPC

UPC UPC
max min

1 2

2
� �

� �






	

dVVk
12

2
1924 3707

4771 1731

299 36
� �

.
=

−()
−()














+

�−−()
−()
































�

� �

263 11

351 28 263 11

2
.

. . 
= 0.71626	

Similarly, the normalized distance for other pairs having rank 1:

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

19

	 dVVk
15
= 0.61522, dVVk

18
=0.59227, dVVk

110
= 0.37159

	 dVVk
25
= 0.14031, dVVk

28
=1.1927, dVVk

210
= 0.34556

	 dVVk
58
= 1.0601, dVVk

510
= 0.24816

	 dVVk
11
=dVVk

22
 = dVVk

55
= dVVk

88
= dVVk

1010
=0

Assuming minimum sharing distance (σVsh) = 0.5 and α = 1; and using equation (7), the following
values of shared distance is computed:

sh if

o

dVVk
dVVk

Vsh
dVVk Vsh

ij25
251

0

() = −










<=

=
σ

σ
±

;

; ttherwise

	 (7)

sh dVVk
25

1

1
0 14031

0 5
() = −











.

.
= 0.71939	

All the shared distances will be computed accordingly. Computation of shared distance for VV41
is given below:

sh(dVVk11) = 1; sh(dVVk12)=0 sh(dVVk15)= 0, sh(dVVk18)=0,and sh(dVVk110)=0.25681	

Next Niche count is computed using equation (8):

NCV dVVk j VVk VVk VVk VVk VVk
j1 1 1 2 5 8 1

= () ∈∑� sh ����where�
j

() ; ,� , , ,
00{ } 	

Figure 9. RV, rFV, aFV, NCV, sFV, ssFV of Top-4 view vectors

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

20

NCV dVVk dVVk dVVk dVVk dVVk
1 11 12 15 18
= ()+ ()+ ()+ ()+�sh sh �sh �sh sh

1110() 	

NCV
1

1 0 0 0 0 25681= + + + +� . = 1.25681	

Similarly, the Niche count for all the view vectors are computed and are shown in Figure 9.

Step 8: Compute Shared fitness and Scaled shared fitness

The shared fitness is computed using equation (9) as follows:

sFV
aFV

NCV1
1

1

� �
��

��= 	

sFV
1

8

1 2568
� �

�� . �
= = 6.3653	

Similarly, shared fitness for all the view vectors is computed and are shown in Figure 9.
The shared fitness values are scaled to preserve the original ranks by using equation (10).

ssFV
aFV RV sFV

sFV
j VVk VVk VVk VV

j

1

1 1 1

1 2 5
=

× ()×
()

∈
∑

¼

j

where
)

; , , , kk VVk
8 10
,{ } 	

ssFV
aFV RV sFV

sFV sFV sFV sFV sFV1

1 1 1

1 2 5 8 10

=
× () ×

+ + + +()
�

� �¼

� � �
	

ssFV
1

8 5 6 3653

6 3653 3 9442 3 5986 8 3 8659
9 8786=

× ×

+ + + +()
=�

.

. � . � . � .
. =9.8786 	

Similarly, all the shared fitness values are scaled and are shown in Figure 9.

Step 9: Create mating pool and perform Crossover and Mutation

The mating pool is created using proportionate selection (Goldberg, 1989) on the scaled shared
fitness values (ssFV) in Figure 9. Figure 10 shows the mating pool. The crossover is performed with
the probability of crossover (pc). The value of pc is taken as 0.8. The crossover is performed on the
mating pool using a modified single point crossover (Davis, 1985). The modified crossover ensures
that no view is duplicated in a view vector. Next, a random mutation, as suggested in (Goldberg
1989; Kazarlis et al. 1996), is performed with mutation probability (pm) as 0.1. Figure 10 illustrates
the result of crossover and mutation.

Crossover and mutation result in an offspring population (OP) of VVk, which is shown in Figure
10. The steps 2 to 9 are repeated for the predefined number of generations with OP as the population
for the next generation. A non-dominated count is performed on the OP of the final generation
to produce the non-dominated view vectors as output view vectors of the algorithm. Next, the
experimental results are discussed.

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

21

6. EXPERIMENTAL RESULTS

The BDVSAMOGA is implemented using GNU Octave 4.4.1 on an Intel dual core I5, 2.5 GHz, 64 bit
processor, with 6 GB RAM. The data set of BDVSAMOGA has a set of 14 queries with 4 query attributes
and 16 views, same as was in (Kumar & Vijay Kumar, 2021b). The query statistics has been kept
identical to (Kumar & Vijay Kumar, 2021b) so as to validate the results, as there are no existing
benchmarks in case of Big data view materialization. The algorithm was run for a population (N)
=100; Number of generations (ng) = 25; Probability of crossover (pc) = 0.8; Probability of mutation
(pm) = 0.1; and for different sizes of the view vectors.

Figure 11 shows the non-dominated view vectors that are generated for different sized view
vectors VV3 (with k=3) to VV10 (with k = 10). These view vectors show different characteristics of
the non-dominated view vectors, e.g., for a materialized view vector of size 3, the view update cost is
low but they have high query evaluation cost, whereas for a materialized view vector of size 10, the
view update cost is high while having low query evaluation cost. In addition, there is an overlapping
of view vectors of different sizes, indicating that an overall dominated count may be used to obtain
the best view vectors, which may be of different sizes. The overlap between the view vectors of
different sizes is also evident in Figure 5, which is a three-dimensional representation of Figure 4.

Figure 13 lists the number of non-dominated view vectors that were obtained using the
BDVSAMOGA. These non-dominated solutions have a range of QEC and UPC values, which are also
shown in the Figure 13. It was observed in the data that there were several non-dominated view vectors
having the same value of both QEC and UPC, though they had a different set of materialized views
(refer to Figure 14, which shows a pair of such view vectors). This is due to a specific data set used
for the experimental results, which has several smaller views of similar size and usage frequency.
However, for a large Big data set, such possibilities would be fewer.

Thus, a large number non-dominated view vectors are obtained for each value of (k). It can be
observed from Figure 11 and Figure 12 that some of these view vectors of different sizes may have
overlapping QEC and UPC values. Therefore, a set of non-dominated view vectors were extracted from
these view vectors of different sizes. QEC and UPC values of these non-dominated view vectors are
shown in Figure 15. Figure 16 shows the QEC and UPC values of these non-dominated view vectors
for different values of k. It can be observed from Figure 15 and Figure 16 that the non-dominated
view vectors are of sizes k=3 to k=9. Thus, the view vectors of size 10, for the given set of data, are
being dominated by the view vectors of other sizes.

Figure 10. Crossover and Mutation on Top-4 view vectors

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

22

Some of the typical view vectors obtained from BDVSAMOGA are compared with the view vectors
obtained from BDVSAVEGA (Kumar & Vijay Kumar, 2021b) after 25 generations. Figure 17 shows a
comparison of the vectors obtained by the two algorithms for view vectors of size 7.

Figure 17 shows only few such view vectors produced by BDVSAMOGA that dominate view vectors
produced by BDVSAVEGA. The objective of Big data view materialization is to minimize the QEC and
the UPC. The BDVSAMOGA has identified view vectors of size 7, which will result in lower query
evaluation costs and lower update processing costs in comparison to the view vectors obtained by

Figure 11. Query Evaluation Cost and Update Processing Cost for different number of Materialized views

Figure 12. Query Evaluating Cost Vs. Update Processing Cost Vs. Number of Materialized Views

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

23

BDVSAVEGA. In addition, it may be noted that BDVSAMOGA has produced more diverse view vectors
than BDVSAVEGA. Thus, BDVSAMOGA produce better quality view vectors in comparison of BDVSAVEGA.

7. CONCLUSION

Big data view materialization is a complex problem due to very large semi-structured and unstructured
data, which is generated at a fast rate and is low in integrity. An extended semantic model can be
used to represent the structure of Big data, which can help in identifying query attributes and their
interrelations for materialization. The view structure is a complex directed graph and can be used
to generate a list of candidate views for materialization. The view structure also guides the process
of creating query evaluation plans for a given query using Big data views. The Big data view
materialization being a bi-objective problem having objectives minimization of the query evaluation
cost and minimization of the view update costs, with constraints on the cumulative size of views, is
addressed using MOGA. Accordingly, an algorithm BDVSAMOGA is proposed to select Big data views.
Experimental based comparison of BDVSAMOGA with BDVSAVEGA shows that the former produces
diverse non-dominated Top-k view vectors that dominate Top-k view vectors produced by the latter.
Thus, BDVSAMOGA is capable of selecting better quality views, which when materialized would result
in efficient query processing.

Figure 13. The Non-dominated Top-k view vectors obtained using BDVSAMOGA

Figure 14. Top-3 view vectors having same QEC and UPC

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

24

Figure 15. Non-dominated Top-k view vectors

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

25

Figure 16. Non-dominated Top-k view vectors

Figure 17. BDVSAMOGA Vs. BDVSAVEGA: QEC and UPC of Top-7 view vectors

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

26

REFERENCES

Abiteboul, S. (1999, December). On Views and XML. SIGMOD Record, 28(4), 30–38. doi:10.1145/344816.344853

Abiteboul, S., Goldman, R., McHugh, J., Vassalos, V., & Zhuge, Y. (1997). Views for Semi-structured Data.
Technical Report. Stanford InfoLab, Workshop on Management of Semi-structured Data, Tucson, AZ.

Agrawal, S., Chaudhari, S., & Narasayya, V. (2000). Automated Selection of Materialized Views and Indexes
in SQL databases. 26th International Conference on Very Large Data Bases (VLDB 2000), 486-505.

Arun, B., & Vijay Kumar, T. V. (2015a). Materialized View Selection using Marriage in Honey Bees Optimization.
International Journal of Natural Computing Research, 5(3), 1–25. doi:10.4018/IJNCR.2015070101

Arun, B., & Vijay Kumar, T. V. (2015b). Materialized View Selection using Improvement Based Bee Colony
Optimization. International Journal of Software Science and Computational Intelligence, 7(4), 35–61.
doi:10.4018/IJSSCI.2015100103

Arun, B., & Vijay Kumar, T. V. (2017a). Materialized View Selection using Artificial Bee Colony Optimization.
International Journal of Intelligent Information Technologies, 13(1), 26–49. doi:10.4018/IJIIT.2017010102

Arun, B., & Vijay Kumar, T. V. (2017b). Materialized View Selection using Bumble Bee Mating Optimization.
International Journal of Decision Support System Technology, 9(3), 1–27. doi:10.4018/IJDSST.2017070101

Chirkova, R., Halevy, A. Y., & Suciu, D. (2001). A Formal Perspective on the View Selection Problem.
Proceedings of the 27th VLDB conference.

Davis, L. (1985). Applying adaptive algorithms to epistatic domains. Proceedings of the international joint
conference on artificial intelligence, 162–164.

Dean, J., & Ghemawat, S. (2012, January). MapReduce: A Flexible data processing tool. Communications of
the ACM, 53(1), 72–77. doi:10.1145/1629175.1629198

Deb, K. (2014). Multi-objective Optimization. In E. Burke & G. Kendall (Eds.), Search Methodologies. Springer.
doi:10.1007/978-1-4614-6940-7_15

Dezyre. (2015). Hadoop Ecosystem Components and Its Architecture. https://www.dezyre.com/article/hadoop-
ecosystem-components-and-its architecture/114

DocumentationH. (2008). http://hadoop.apache.org/docs/r0.17.0/mapred_tutorial.html

El-Sayed, M., Rundensteiner, E. A., & Mani, M. (2006). Incremental Maintenance of Materialized XQuery
Views. Proceedings of 22nd International Conference on Data Engineering (ICDE’06). doi:10.1109/
ICDE.2006.80

Fonseca, C. M., & Fleming, P. J. (1993). Genetic algorithms for multiobjective optimization: formulation,
discussion and generalization. Proceedings of the 5th international conference on genetic algorithms, 416–423.

Gandomi, A., & Haider, M. (2015). Beyondthe hype: Big data concepts, methods, and analytics. International
Journal of Information Management, 35(2), 137–144. doi:10.1016/j.ijinfomgt.2014.10.007

George, F. (2017). 10 Vs of Big data. https://tdwi.org/articles/2017/02/08/10-vs-of-big-data.aspx

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning (Vol. 1). Addison
Wesley. doi:10.1007/s10589-009-9261-6

Goldberg, D. E., & Richardson, J. (1987). Genetic algorithms with sharing for multimodal function optimization.
Proceedings of the 2nd international conference on genetic algorithms on genetic algorithms and their application,
41–49.

Goswami, R., Bhattacharyya, D. K., & Dutta, M. (2017, December). Materialized view selection using
evolutionary algorithm for speeding up big data query processing. Journal of Intelligent Information Systems,
49(3), 407–433. doi:10.1007/s10844-017-0455-6

Gupta, A., & Mumick, I. S. (1995). Maintenance of Materialized Views: Problems, Techniques, and
Applications. Data Eng. Bulletin, 18(2).

http://dx.doi.org/10.1145/344816.344853
http://dx.doi.org/10.4018/IJNCR.2015070101
http://dx.doi.org/10.4018/IJSSCI.2015100103
http://dx.doi.org/10.4018/IJIIT.2017010102
http://dx.doi.org/10.4018/IJDSST.2017070101
http://dx.doi.org/10.1145/1629175.1629198
http://dx.doi.org/10.1007/978-1-4614-6940-7_15
http://www.dezyre.com/article/hadoop-ecosystem-components-and-itsarchitecture/114
http://www.dezyre.com/article/hadoop-ecosystem-components-and-itsarchitecture/114
http://hadoop.apache.org/docs/r0.17.0/mapred_tutorial.html
http://dx.doi.org/10.1109/ICDE.2006.80
http://dx.doi.org/10.1109/ICDE.2006.80
http://dx.doi.org/10.1016/j.ijinfomgt.2014.10.007
https://tdwi.org/articles/2017/02/08/10-vs-of-big-data.aspx
http://dx.doi.org/10.1007/s10589-009-9261-6
http://dx.doi.org/10.1007/s10844-017-0455-6

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

27

Gupta, H. (1996). Selection of views to materialize in a data warehouse. In F. Afrati & P. Kolaitis (Eds.), Lecture
Notes in Computer Science: Vol. 1186. Database Theory — ICDT ’97. ICDT 1997. Springer.

Gupta, R., Gupta, H., & Mohania, M. (2012). Cloud Computing and Big Data Analytics: What is new from
Database Perspective? In Proceedings of Big Data Analytics-First International Conference. Springer.
doi:10.1007/978-3-642-35542-4_5

Hadoop. (2012). http://hadoop.apache.org/

Harinarayan, V., Rajaraman, A., & Ullman, J. D. (1996). Implementing data cubes efficiently. In Proceedings
of the 1996 ACM SIGMOD international conference on Management of data (SIGMOD ’96). ACM.
doi:10.1145/233269.233333

Jacobs, A. (2009, August). The Pathologies of Big Data. Communications of the ACM, 52(8), 36–44.
doi:10.1145/1536616.1536632

Kazarlis, S. A., Bakirtzis, A. G., & Petridis, V. (1996). A genetic algorithm solution to the unit commentment
problem. IEEE Transactions on Power Systems, 11(1), 83–92. doi:10.1109/59.485989

Khan, M. A., Uddin, M. F., & Gupta, N. (2014). Seven V’s of Big Data understanding Big Data to extract
value. Proceedings of the 2014 Zone 1 Conference of the American Society for Engineering Education, 1-5.
doi:10.1109/ASEEZone1.2014.6820689

Kumar, A., & Vijay Kumar, T. V. (2015). Big data and analytics: Issues, challenges, and opportunities.
International Journal of Data Science, 1(2), 118-138. doi:10.1504/IJDS.2015.072412

Kumar, A., & Vijay Kumar, T.V. (2021a). View Materialization over Big Data. International Journal of Data
Analytics, 2(1), 61-85..

Kumar, A., & Vijay Kumar, T.V. (2021b). A Multi Objective Approach to Big Data View Materialization,
International Journal of Knowledge and Systems Science, 12(2), 17-37..

Kumar, S., & Vijay Kumar, T.V. (2018). A Novel Quantum Inspired Evolutionary View Selection Algorithm.
Journal Sadhana, 43(10).

Kuno, H. A., & Rundensteiner, E. A. (1995). Materialized Object-Oriented Views in MultiView. ACM Research
Issues Data Eng. Workshop, 78-85.

Luo, J., Wu, M., Gopukumar, D., & Zhao, Y. (2016). Big Data Application in Biomedical Research and Health
Care: A Literature Review. Biomedical Informatics Insights, 8. Advance online publication. doi:10.4137/BII.
S31559 PMID:26843812

Mami, I., & Bellahsene, Z. (2012). A Survey of View Selection Methods. SIGMOD Record, 41(1).

Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Hung Byers, A. (2011). Big data:
The next frontier for innovation, competition, and productivity. McKinsey Global Institute.

Mistry, H., Roy, P., Sudarshan, S., & Ramamritham, K. (2001). Materialized view selection and maintenance
using multi-query optimization. Proceedings of the ACM (SIGMOD) Conference on the Management of Data,
307-318. doi:10.1145/375663.375703

Prakash, J., & Vijay Kumar, T. V. (2019a). A Multi-objective Approach for Materialized View Selection.
International Journal of Operations Research and Information Systems, 10(2), 1–19. doi:10.4018/
IJORIS.2019040101

Prakash, J., & Vijay Kumar, T. V. (2019b). Multi-Objective Materialized View Selection using Improved Strength
Pareto Evolutionary Algorithm. International Journal of Artificial Intelligence and Machine Learning, 9(2),
1–21. doi:10.4018/IJAIML.2019070101

Prakash, J., & Vijay Kumar, T. V. (2020a). Multi-Objective Materialized View Selection using MOGA.
International Journal of Systems Assurance Engineering and Management, 11(2), 220–231. doi:10.1007/
s13198-020-00947-2

http://dx.doi.org/10.1007/978-3-642-35542-4_5
http://hadoop.apache.org/
http://dx.doi.org/10.1145/233269.233333
http://dx.doi.org/10.1145/1536616.1536632
http://dx.doi.org/10.1109/59.485989
http://dx.doi.org/10.1109/ASEEZone1.2014.6820689
http://dx.doi.org/10.1504/IJDS.2015.072412
http://dx.doi.org/10.4137/BII.S31559
http://dx.doi.org/10.4137/BII.S31559
http://www.ncbi.nlm.nih.gov/pubmed/26843812
http://dx.doi.org/10.1145/375663.375703
http://dx.doi.org/10.4018/IJORIS.2019040101
http://dx.doi.org/10.4018/IJORIS.2019040101
http://dx.doi.org/10.4018/IJAIML.2019070101
http://dx.doi.org/10.1007/s13198-020-00947-2
http://dx.doi.org/10.1007/s13198-020-00947-2

International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

28

Akshay Kumar completed his PhD at Jawharlal Nehru University, New Delhi. He did Master of Technology (M.Tech.)
in Computer Science from IIT Delhi in 1988. He is employed as a faculty member at School of Computer and
Information Science, IGNOU, New Delhi.

T. V. Vijay Kumar has completed his PhD in the area of databases from Jawaharlal Nehru University, New Delhi,
India, after completing his MPhil and MSc in Operational Research, and BSc (Hons) in mathematics, from the
University of Delhi, Delhi, India. His research interests are databases, data warehousing, data mining, machine
learning, nature inspired algorithms, disaster management, Big Data, and analytics.

Prakash, J., & Vijay Kumar, T. V. (2020b). Multi-Objective Materialized View Selection using NSGA-II.
International Journal of Systems Assurance Engineering and Management, 11(5), 972–984. doi:10.1007/
s13198-020-01030-6

Ross, K., Srivastava, D., & Sudarshan, S. (1996). Materialized view maintenance and integrity constraint
checking: Trading space for time. SIGMOD Intl. Conf. on Management of Data. doi:10.1145/233269.233361

Roussopoulos, N. (1998). Materialized Views and Data Warehouses. SIGMOD Record, 27(1), 21–26.
doi:10.1145/273244.273253

Shneiderman, B. (2020). Data Visualization’s Breakthrough Moment in the COVID-19 Crisis. Nightingale.
https://medium.com/nightingale/data-visualizations-breakthrough-moment-in-the-covid-19-crisis-ce46627c7db5

Tang, N., Xu Yu, J., & Tang, H. (2009). Materialized View Selection in XML Databases. Database Systems for
Advanced Applications, 5463.

Vijay Kumar, T. V., & Haider, M. (2010). Materialized Views Selection for Answering Queries. ICDEM 2010:
Data Engineering and Management, 44-51.

Vijay Kumar, T. V., & Arun, B. (2016). Materialized View Selection using BCO. International Journal of
Business Information Systems, 22(3), 280–301.

Vijay Kumar, T. V., & Arun, B. (2017). Materialized View Selection using HBMO. International Journal of
Systems Assurance Engineering and Management, 8(1), 379-392.

Vijay Kumar, T. V., & Kumar, S. (2014). Materialized View Selection using Differential Evolution. International
Journal of Innovative Computing and Applications, 6(2), 102–113. doi:10.1504/IJICA.2014.066499

Vijay Kumar, T. V., & Kumar, S. (2015). Materialized View Selection using Randomized Algorithms.
International Journal of Business Information Systems, 19(2), 224–240. doi:10.1504/IJBIS.2015.069432

Yafooz, Abidin, Zaleha, Omar, & Idrus. (2013). Managing unstructured data in relational databases. Proceedings
- 2013 IEEE Conference on Systems, Process and Control, ICSPC 2013, 198-203.

Zhou, C., Su, F., & Pei, T. (2020). COVID-19: Challenges to GIS with Big Data. Geography and Sustainability,
1(1), 77-87. https://www.sciencedirect.com/science/article/pii/S2666683920300092

Zikopoulos, P. C. E. (2011). Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming
Data (1st ed.). McGraw-Hill Osborne Media.

http://dx.doi.org/10.1007/s13198-020-01030-6
http://dx.doi.org/10.1007/s13198-020-01030-6
http://dx.doi.org/10.1145/233269.233361
http://dx.doi.org/10.1145/273244.273253
https://medium.com/nightingale/data-visualizations-breakthrough-moment-in-the-covid-19-crisis-ce46627c7db5
http://dx.doi.org/10.1504/IJICA.2014.066499
http://dx.doi.org/10.1504/IJBIS.2015.069432

