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ABSTRACT

In this article, a genetic algorithm (GA) is used for optimizing a metamodel of surface roughness (Ra ) 
in drilling glass-fibre reinforced plastic (GFRP) composites. A response surface methodology (RSM)-
based three levels (-1, 0, 1) design of experiments is used for developing the metamodel. Analysis 
of variance (ANOVA) is undertaken to determine the importance of each process parameter in the 
developed metamodel. Subsequently, after detailed metamodel adequacy checks, the insignificant 
terms are dropped to make the established metamodel more rigorous and make accurate predictions. 
A sensitivity analysis of the independent variables on the output response helps in determining the 
most influential parameters. It is observed that f is the most crucial parameter, followed by the t and 
D. The optimization results depict that the Ra increases as the f increases and a minor value of drill 
diameter is the most appropriate to attain minimum surface roughness. Finally, a robustness test of 
the predicted GA solution is carried out.
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1. INTRODUCTION

During the last two decades, the growth in the use of laminated composites has been unprecedented. 
In developed countries, composite industry has thrived tremendously. For example, in US a 6.3% 
growth in 2014 was seen which translated as $8.2billion in value and 5.5 billion pounds as annual 
shipment (Mallick, 2007). Due to properties like high strength to weight ratio and lighter in weight, 
composites have been the ideal choice for replacement of conventional materials available in market 
where weight is an influential factor (Kalita, Ramachandran, Raichurkar, Mokal, & Haldar, 2016). 
Critical structures like aircraft like Boeing and Airbus are predominantly made up of composites. 
Composite have shown its own contribution in engineering applications as it come a long way (Stewart, 
2009). Composites have now become an essential part of everyday life like bicycle, tennis racket, 
car bumpers etc. In making some of the components drilling is often used to serve some functional 
requirements. One of the problem associated with drilling of composite is delamination (Behera, 
Ghadai, Kalita, & Banerjee, 2016) (Tibadia, et al., 2018). The surface roughness of the drilled hole 
becomes another concern where minuscule tolerance is required.
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El-Sonbaty et al. (El-Sonbaty, Khashaba, & Machaly, 2004) reported that surface roughness could 
be minimized by using high fiber volume fraction and a higher cutting speed while drilling GFR epoxy 
composite. However, their research was limited to traditional high-speed twist drills. To determine and 
estimate the thrust force and the surface roughness in penetrating CFRP laminates, Tsao and Hocheng 
(Tsao & Hocheng, 2008) made use of Taguchi method and ANN. Palanikumar et al. (Palanikumar, 
Srinivasan, Rajagopal, & Latha, 2016) used RSM design of experiments to develop a numerical model 
for thrust force. They sought to reduce the thrust force to reduce delamination. Hansda and Banerjee 
(Hansda & Banerjee, 2014) to study the consequences of some process parameters on delamination 
aspect and surface roughness executed a Grey Relational analysis on glass fiber-reinforced polyester 
composite. They concluded feed rate to be the most significant parameter in drilling composites. 
To simultaneously forecast the delamination and the roughness of the surface in GFRP composites, 
Behera et al. (Behera, Ghadai, Kalita, & Banerjee, 2016) used an artificial neural network. Azmi 
and co-workers (Tan, Azmi, & Muhammad, 2016) (Nasir, Azmi, & Khalil, 2015) has made some 
valuable contribution to the understanding of the process parameters involved in drilling composite 
laminates. Tan et al. (Tan, Azmi, & Muhammad, 2016) reported feed rate to be the most dominant 
of parameters influencing the surface roughness of a drilled composite. Srinivasan et al. (Srinivasan, 
Palanikumar, Rajagopal, & Latha, 2017) too indicated that feed rate is the most influential parameter 
in delamination of composites. Jani et al. (Jani, Kumar, Khan, & Kumar, 2016) suggested that use of 
natural fibers can help in reducing delamination damages. Debnath et al. (Debnath, Sisodia, Kumar, 
& Singh, 2016) developed a new drill bit design to reduce such damages. Ramprasath and Jayabal 
(Ramprasath & Jayabal, 2016) investigated the impact behavior of bio filler-based composites. 

Parameter optimization is used as a tool to monitor and distinguished the different parameters 
or factors involved in any processes. However, to validate the results experimentation is needed and 
the results produces should statistically significant. RSM is perhaps the most preferred ones for 
metamodels because it does not require more trails and can compare to a full factorial design. However, 
developing a statistically significant metamodel is a much easier task as compared to searching a 3-or-
more factor domain for maximizing or minimizing an output response. It is practically impossible to 
perform experiments for all possible combinations to determine an optimum parameter setting. GA, 
which is computer-based search algorithm suitable for optimizing a variety of functions. Kalita and 
co-workers have used GA for optimization of laser marking process (Kalita, Shivakoti, & Ghadai, 
Optimizing process parameters for laser beam micro-marking using genetic algorithm and particle 
swarm optimization, 2017), EDM process optimization (Ragavendran, Ghadai, Bhoi, Ramachandran, 
& Kalita, 2018), PECVD optimization (Ghadai & Kalita, 2020), hole quality optimization of composite 
(K.Kalita, Mallick, Bhoi, & Ghadai, 2018), composite laminate ply-angle optimization (Kalita, Dey, 
Haldar, & Gao, Optimizing frequencies of skew composite laminates with metaheuristic algorithms, 
2020) etc. Acherjee et al. used a cuckoo search and chicken swarm optimization algorithm to carry 
out ultrasonic machining process optimization (Acherjee, Maity, & Kuar, Ultrasonic Machining 
Process Optimization by Cuckoo Search and Chicken Swarm Optimization Algorithms, 2020) and 
a flower pollination algorithm for optimization of electrochemical machining process (Acherjee, 
Maity, & Kuar, Optimization of Corelated and Conflicting Responses of ECM Process Using Flower 
Pollination Algorithm, 2020). 

It is worth noting that there is still some lacuna which presents an excellent scope for future 
investigations in drilling FRP composites, despite the existence of exemplary contributions in the 
field. Drilling of chopped GFRP laminates is one of the essential areas where little work has been 
done. Hence in the present study, an attempt is made for drilling of polyester composite reinforced 
to and find the optimal parametric combination. 
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2. MATeRIALS AND MeTHODS 

2.1 experimental Details
Composite polyester strengthened with sliced fiberglass is taken as the work material in the present 
investigation. Hand layup technique is used for the preparation of the composite laminates. For 
hardening methyl ethyl ketone peroxide is used in the polyester matrix, reinforced by an E-glass, 
chopped strand mat. Dimension of 150 mm × 150 mm are used in the experiment. The laminates had 
a fiberglass which had a volume of 0.33, Barcol hardness of 40.6 and tensile strength 700 kg/cm2. 
Taper shank twist drills (High-speed steel) of Addison & Co. Ltd., India. The diameter of the twist 
drill were 10 mm, 12 mm and 14 mm of M2 Grade are used. A Taylor Hobson Precision Surtronic 
3+ Roughness checker is primarily used to establish the extent of the roughness of the surface on the 
penetrated surfaces. The surface roughness average R

a( )  is considered as the surface roughness 
parameter. The work material surface finish is quantified with a 0.8 mm length cut-off. The R

a
 for 

every test are obtained from the Taly-profile software integrated with the machine. The average of 
three readings is taken as the process response. 

2.2 Metamodeling
Response surface methodology (RSM) develops a metamodel of lowing form.
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In the present study, the RSM design by Box-Behnken method (BBD) is used (Pal, 2012) (Vikas 
Kumar Singh, 2017). Moreover, the number of design points needed for a BBD design is far less 
than 3k factorial designs, thereby significantly reducing experimental cost and time. In this particular 
case concerning four input parameters, only 29 design points are necessary. To find the effect of 
surface roughness four parameters were cahanged. These parameters were material thickness (t), drill 
diameter (D), spindle speed (N) and feed rate (f). The parameters is coded with different levels (-1, 
0 and 1). Table 1 and shows the input parameters and their levels considered. Box-Behnken RSM is 
designed for 29 experimental trials as shown in Table 2. Further, randomising the 29 experimental 
trials (design points), allow each trial to become an equal participant in the study (Kalita, Dey, & 
Haldar, Search for accurate RSM metamodels for structural engineering, 2019). 

Table 1. Process parameters and levels considered

Factors Levels

Symbol Unit -1 0 1

Material thickness (t) mm 8 12 16

Drill diameter (D) mm 10 12 14

Spindle speed (N) rpm 400 800 1100

Feed rate (f) mm/rev 0.1 0.175 0.275
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2.3 Genetic Algorithm
The metamodel generated by using the Box-Behnken method is then optimised using a genetic 
algorithm (GA). GA are efficient for optimal combinations of parameters and predicting outcomes. 
This will provide good and robust solutions which are highly rated according to certain fitness criteria. 
So, it pursues global fitness and avoids local optima. It works on Darwin’s principle of natural selection 
(Goldberg, 2006). GA is different from traditional search optimisation in three distinct ways. First, 
they search and explore parallel from a population of points and in that case, it is not confined in 
local optima. Second, rather than directly optimising the parameters, GA works on chromosomes 

Table 2. Design matrix and experimental values

Trial 
No.

Material 
Thickness, t (mm)

Drill diameter, D 
(mm)

Spindle Speed, 
N (rpm)

Feed rate, f 
(mm/rev)

Av. surface roughness, 
Ra (µm)

1 8 10 800 0.175 3.947

2 16 10 800 0.175 4.227

3 8 14 800 0.175 4.253

4 16 14 800 0.175 5.173

5 12 12 400 0.100 3.567

6 12 12 1100 0.100 3.98

7 12 12 400 0.275 4.353

8 12 12 1100 0.275 4.563

9 8 12 800 0.100 3.703

10 16 12 800 0.100 3.553

11 8 12 800 0.275 4.297

12 16 12 800 0.275 4.817

13 12 10 400 0.175 3.907

14 12 14 400 0.175 4.513

15 12 10 1100 0.175 3.753

16 12 14 1100 0.175 5.023

17 8 12 400 0.175 3.653

18 16 12 400 0.175 4.561

19 8 12 1100 0.175 4.083

20 16 12 1100 0.175 4.457

21 12 10 800 0.100 3.437

22 12 14 800 0.100 3.673

23 12 10 800 0.275 4.280

24 12 14 800 0.275 4.204

25 12 12 800 0.175 4.171

26 12 12 800 0.175 4.171

27 12 12 800 0.175 4.171

28 12 12 800 0.175 4.171

29 12 12 800 0.175 4.171
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which are an encrypted version of potential solution parameters. Thirdly GA makes use of the fitness 
score which is acquired from objective functions without any artificial over-engineered black box 
mathematics (Kalita, Dey, & Haldar, Robust genetically optimized skew laminates, 2019). The GA 
is implemented as per the following flowchart presented in figure 1.

Figure 1. Flowchart of the genetic algorithm 
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3. ReSULTS & DISCUSSION 

3.1 Analysis of the Metamodel
The experiments performed is based on the RSM design, which are used for fitting a metamodel. 
This will describe the average surface roughness in GFRP composites approximately. A standard 
statistical software package DESIGN-EXPERTTM is used for performing the regression analysis. 
Table 3 presents the Analysis of Variance (ANOVA) results for reduced second-order BBD 
metamodel for average surface roughness (for sake of brevity, the full ANOVA is not presented in 
the manuscript). The full second-order metamodel contained a number of insignificant terms and 
these are removed as per the p-value criteria. The values of “Prob > F” smaller than 0.0500 show 
that the terms of the metamodel are substantial. All terms having “Prob > F” greater than 0.1 
indicate that they may not be significant and thus are removed to form the reduced second-order 
metamodel. The metamodel F-value of 10.44 infers the metamodel is noteworthy. This shows that 
there is only 0.01% opportunity that an F-value this great could happen due to noise. Thus, the 
following reduced second-order metamodel used, 
R t D N f
a
= − − + + +� . . � . � . � . �2 399699 0 174426 0 103000 0 001538 13 402897 00 020000 0 000103 0 416459 37 382682 2. � . � . � . �tD tN tf f− + −

(2)

3.2 Metamodel Adequacy Check 
Fig. 2 shows a normal probability plot for R

a
. The studentized residuals are obtained by dividing 

the residual using an estimate of its standard deviation. It was observed that all the residual points 
are almost linear and follow straight line which means that the errors and distributed normally. 
However, there is no sign of clusters of residuals at one place this implies that the data does not 
consist of any ties which shows measuring resolution is adequate. It was also observed that there is 
no significant outliers as seen in the plot. Fig. 2 (b) shows the variation of predicted response versus 
the externally studentized residuals for average surface roughness. The data points of random scatter 

Table 3. ANOVA results for reduced second-order response surface model

Source SS df MS F Value Prob > F

Model 4.1005 8 0.5126 10.4370 0.0000

Material thickness (t) 0.8013 1 0.8013 16.3160 0.0006

Drill diameter (D) 0.9009 1 0.9009 18.3448 0.0004

Spindle speed (N) 0.1343 1 0.1343 2.7340 0.1138

Feed rate (f) 1.7641 1 1.7641 35.9214 0.0000

tD 0.1024 1 0.1024 2.0851 0.1042

tN 0.0845 1 0.0845 1.7204 0.1045

tf 0.0861 1 0.0861 1.7540 0.1003

f2 0.5463 1 0.5463 11.1241 0.0033

Residual 0.9822 20 0.0491    

Lack of Fit 0.9822 16 0.0614    

Std. Dev. 0.2216        

Mean 4.1666     R2 80.68%

C.V. % 5.3186     Adj. R2 72.95%

PRESS 2.2368     Adeq. Precision 12.4812
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are shown in Fig. 2 (b) suggest that there is no violation of constant variance in the present metamodel 
which shows that the proposed metamodel is adequate. Fig. 3 shows the comparison of the predicted 
average surface roughness calculated using Eqn. 2 and the experimental output. The present metamodel 
predicts the R

a
 in the drilling of GFRP composites with very high accuracy. The variation in the 

predicted metamodel can be seen in trial no. 24 (11.5%). For other cases the metamodel is entirely 
accurate and overall average variation were found to be only 3.39%.

3.3 Sensitivity Analysis

To understand the effect of for independent parameters on measured output response  R
a

, general 
sensitivity analysis were carried out. First order derivative was used calculating the sensitivity of a 
particluar input parameter, followed by calculation of sensitivity coefficients by varying the input 
parameter of interest within its range while maintaing the other two input parameters were kept at 
their repective mean levels. 

dR

dt
D N fa =− + − +� . . . .0 174426 0 02 0 000103 0 416459  (3)

dR

dD
ta = − +� �0 103 0 02. .  (4)

dR

dN
ta = −� �0 001538 0 000103. .  (5)

Figure 2. Normal probability plot (b) Residuals vs. predicted response 
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dR

df
t fa = + −� � �13 402897 0 416459 74 765364. . .  (6)

Fig. 4 represents the sensitivity of material thickness (t) to the surface roughness of the workpiece. 
The sensitivity indexes in Fig. 3 are calculated by using Eqn. 4. In Fig. 4(a), material thickness is 
varied within its range while keeping other parameters— D, N and f at their mean value. Similarly, by 
keeping other parameters constant at mean value and varying drill diameter (D) Fig 4(b) is obtained 
and so on. It can be observed that sensitivity of material thickness (t) to the surface roughness is 
always positive. In fig. 4(b), the sensitivity of material thickness (t) to the surface roughness with use 
of larger diameter drills. Similarly, increasing the f causes the sensitivity of t to the surface roughness 
to increase, while increasing the N causes the t to monotonically become less sensitive. 

Fig. 5 illustrates the sensitivity of drill diameter (D) to the surface roughness of the workpiece 
calculated using Eqn. 5. Despite being positive in all the cases, the sensitivity of drill diameter (D) 
is unaffected by changes in D, N and f. However, progressively increasing the material thickness (t), 
positively enhances the sensitivity of D to R

a
.

Fig. 6 depicts the sensitivity of N to the R
a

 of the workpiece calculated using Eqn. 6. Like the 
earlier case, the increase or decrease in D, N and f does not affect the sensitivity of N to R

a
. But 

Figure 3. Comparison of the experimental and predicted results
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when the material thickness (t) is progressively increased, the sensitivity of N to the R
a

 gradually 
decreases from positive to negative. 

Fig. 7 illustrates the sensitivity of f to R
a

 of the workpiece calculated using Eqn. 7. The sensitivity 
of f to R

a
 seems to be unaffected by variations in D and N. Increasing t causes the sensitivity of f to 

R
a

 to increase. However, it gradually decreases from being positively sensitive to become increasingly 
negatively sensitive as the feed rate (f) is increased. 

3.4 Interaction effect of the Parameters
Making use of metamodel, the consequences of the procedure parameters on the average roughness 
of the surface is investigated. Fig. 8, 9 and 10 shows the interaction effect of the terms ‘tD’, ‘tN’ and 
‘tf’ on surface roughness. f is the utmost crucial parameter in the drilling process and then the material 
thickness (t) and drill diameter (D). Hansda and Banerjee (Hansda & Banerjee, 2014) has also reported 
f to be the most significant parameter involved in the drilling of composite laminates. The optimisation 
results depicted that the roughness of the surface parameters increased as f increased and a minor 
value of drill diameter is the most appropriate to attain minimum surface roughness. Tan el al. (Tan, 
Azmi, & Muhammad, 2016) in their work has also found the feed rate to be most important among 
the considered parameters. However, they had considered spindle speed and tool geometry as the 
other parameters as opposed to this work where t, N and D are considered. Further, the investigations 
show that with an increase in spindle speed the R

a
 intensifies. This is primarily because with increased 

Figure 4. Sensitivity of material thickness (t) on surface roughness
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spindle speed the generated forces also increase which in turn drills the laminate smoothly thereby 
reducing the surface roughness. 

3.5 Predicting the Optimal Process Parameters by GA

Empirical equation (Eqn. 2) for R
a

 in the drilling of GFRP composites formed is used as the objective 
function for optimization using a genetic algorithm. A FORTRAN code has been compiled for 
executing the GA. The variables—  t, f, N and D are coded in the binary string. String length of each 
of the four variables is taken as 4. Crossover rate of 90% and mutation rate of 2% is fixed. An initial 
population of 100 arbitrary individuals is generated, and the iterations are allowed to take place for 
100 generation. Multiple re-runs of the algorithm with independent seeds is carried out. The problem 
is formulated as an optimization problem where the goal is to minimize R

a
. 

i.e. minimize average surface roughness, with the limits, 
8 16� �≤ ≤t  
10 14� �≤ ≤D  
400 1100� �≤ ≤N  
0.1 ≤ ≤f 0 275. � 
Fig. 11 shows the performance of the GA across the generations. The optimal process parameters 

are found in generation 21 and are reported in Table 4 along with the predicted maximum average 
surface roughness.

Figure 5. Sensitivity of drill diameter (D) on surface roughness
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3.6 Robustness of the Optimal Solution
In this section, the robustness of the predicted optimal solution is critically analysed. Since there is 
an inherent uncertainty associated with traditional machining processes, it is important to analyse 
the robustness of the predicted optimal process parameters. This will provide an understanding of 
the effect of unwanted human or operational errors that may creep in during the machining process. 
The percentage variation of the response with respect to optimum at ±5% of the optimum process 
parameters is plotted in Fig. 12. It is seen that the variation in the predicted response is about ±3%. 
Further, it should be noted that while considering the ±5% uncertainty in parameters the bounds of 
the process parameters discussed in section 3.5 are not followed. This is why even better values than 
the predicted optimal solution obtained in section 3.5 is seen in Fig. 12. 

Figure 6. Sensitivity of spindle speed (N) on surface roughness
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Figure 7. Sensitivity of feed rate (f) on surface roughness

Figure 8. Interaction effect of thickness (t) and drill diameter (d) on average surface roughness
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Figure 9. Interaction effect of thickness (t) and Spindle speed (N) on average surface roughness 

Figure 10. Interaction effect of thickness (t) and feed rate (f) on average surface roughness seen.
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Figure 11. Performance of the GA across 100 generations

Table 4. Optimum parameters predicted by genetic algorithm

Material Thickness, 
t (mm)

Drill diameter, D 
(mm)

Spindle Speed, N 
(rpm)

Feed rate, f 
(mm/rev)

Average surface roughness, 
Ra (µm)

8 10 400 0.1 3.1596
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4. CONCLUSION

Based on the experimentation on GFRP composite laminates and the statistical analysis performed 
the following conclusion can be drawn-

•  The experimental data are in close proximity (overall variation less than 4%) with the RSM 
predictions, which indicate that the generated empirical equation is useful in predicting the 
response.

•  Feed rate (f) is the most vital parameter in the drilling process followed by the material thickness 
(t) and finally drill diameter (D).

•  The optimization results showed that the surface roughness parameters increased as the feed rate 
increased and a smaller value of drill diameter is vital for the minimum surface roughness.

•  The genetic algorithm suggests that low parameter settings are better equipped in reducing the 
surface roughness.

•  A comprehensive assessment of the robustness of the solution by considering ±5% variation in 
optimized process parameters shows that the predicted solution varies only ±3% with respect to 
the predicted optimal response. 

Thus, this approach can be used as a reliable predictive analysis and optimization tool, which 
would, in turn, lead to a significant increase in efficiency and productivity. 

Figure 12. Variation in the predicted solutions by considering ±5% uncertainty in the optimized process parameters.
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