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ABSTRACT

Synergistic confluence of pervasive sensing, computing, and networking is generating heterogeneous 
data at unprecedented scale and complexity. Cloud computing has emerged in the last two decades as 
a unique storage and computing resource to support a diverse assortment of applications. Numerous 
organizations are migrating to the cloud to store and process their information. When the cloud 
infrastructures and resources are insufficient to satisfy end-users requests, scheduling mechanisms 
are required. Task scheduling, especially in a distributed and heterogeneous system, is an NP-hard 
problem since various task parameters must be considered for an appropriate scheduling. In this 
paper, the authors propose a hybrid PSO and extremal optimization-based approach to resolve 
task scheduling in the cloud. The algorithm optimizes makespan which is an important criterion 
to schedule a number of tasks on different virtual machines. Experiments on synthetic and real-life 
workloads show the capability of the method to successfully schedule tasks and outperforms many 
state-of-the-art methods.

Keywords
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INTRODUCTION

The notion of cloud computing has evolved as an innovative computing platform, but a close 
examination of the paradigm, reveals it is a collection of off the shelf components loosely connected 
together. The notion of the cloud is really the integration of applications delivered as a service over 
existing cyber infrastructure such as the Internet. These infrastructure networks have joined food, 
water, transportation, and energy as critical resources for the functioning of the global economy. As 
an on demand digital ecosystem that provides massive storage and computing resources, allowing 
customers to consume resources utilizing flexible pricing or pay-as-you-go model.

https://orcid.org/0000-0002-8196-5474


International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

2

Cloud computing has revolutionized the way software and hardware resources are acquired and 
used in every sector. Every company in every sector now looks to the cloud as the means for storing 
and processing their data and as the means for running their applications. Cloud providers stand up 
data centers running state-of-the-art processors (e.g., GPUs and FPGAs), storage, and networking, 
and state-of-the-art services (e.g., machine learning algorithms and models). These resources benefit 
customers of cloud providers. As more and more companies make their internal processes and external 
businesses increasingly data-driven, the demand for cloud capability will continue to grow.

Currently the three most common cloud computing service models which each satisfy a unique set 
of requirements. These three models are known as Software as a Service (SaaS), Platform as a Service 
(PaaS), and Infrastructure as a Service (IaaS). These models are generally deployed in the following 
manner, public, private, community and hybrid. Each model has its own benefits and detriments.

First, IaaS is a type of cloud that provides access to an infrastructure. This means leasing servers 
(virtual or not) and the underlying infrastructure such as storage. Second, SaaS cloud is a distribution 
model in which a provider hosts the applications and makes them available to his customers via remote 
access. Services such as Gmail that allows remote access to an e-mail management application and 
a SurveyMonkey that allows access to a distribution application and analysis of polls directly on the 
internet are considered as SaaS clouds. Finally, PaaS allows the user to have access to frameworks 
and tools to develop and deploy applications quickly and efficiently. Microsoft Windows Azure and 
RedHat OpenShift are examples of PaaS. The Cloud computing environment is needed to meet the 
computational demands of diverse end-user tasks. When server’s resources are insufficient to satisfy 
user requests, scheduling mechanisms become a major challenge for the cloud. In general, task 
scheduling is the process of assigning tasks to available resources based on task characteristics and 
constraints. In cloud environment, an additional complexity arises from the fact that cloud servers 
are heterogeneous multiprocessing systems. Scheduling can be done at three levels i.e. service level, 
task level and virtual machine level (Singh & Chana, 2016). Tasks and their target resources in a 
cloud environment can be chosen using various strategies and algorithms. Given a collection of tasks, 
a collection of resources upon which these tasks are to execute, scheduling algorithms and resource 
selection find out whether these tasks can be mapped onto the available resources. Resource allocation 
strategy can be random, round Robin, or greedy (in resource processing capacity and waiting time) 
or their hybridization. Task scheduling can be based on FCFS (First Come First served), SJF (Short 
Job First), priority, or by task grouping. Each algorithm/strategy has its pros and cons. Hybrid 
approaches can be used to come up with a better solution that tries to minimize the disadvantages of 
the basic algorithms. Scheduling result is a deployment plan that is an allocation of end-user tasks 
among the various provider’s resources. The user expects his tasks to be performed within a minimum 
execution time with better quality of services (QoS). However, the provider wants that his available 
resources should be optimally utilized to have better cost benefits. The problem of task scheduling 
is a combinatorial optimization problem, where it is not possible to find an optimal global solution 
by using simple algorithms or rules. It is well known as a NP-complete problem (Ullman, 1975). 
As a result, an exhaustive enumeration to find the optimal solution is mostly impossible. Heuristic 
algorithms are good candidates to solve this problem. Among these algorithms, we can cite taboo 
search, particle swarm optimization, simulated annealing and genetic algorithms, etc. In this paper, 
a heuristic scheduler is developed based on the hybridization of particle swarm optimization and 
extremal optimization to reduce makespan and improve load balancing. The major contributions of 
this paper are:

•	 Hybridization of the PSO and EO algorithms to minimize task execution time and to improve 
resource utilization in the cloud. The heterogeneity of the cloud resources is modeled by assuming 
different computing times for the same task on different processors and different physical 
characteristics of cloud hosts and virtual machines.
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•	 Investigation of the performance of the PSO and EO parallel combination on a multi-core 
processors using a Fork/join interconnection framework taking the communication cost between 
tasks into account to improve both computing and solution quality.

•	 Verification of the effectiveness of the proposed approach against many existing scheduling 
algorithms in the literature using both synthetic and real world-application to show its role in 
solutions diversity, quality, convergence and stability.

•	 Utilization of Cloudsim, a set of framework models, to simulate our theoretical cloud computing 
model and to validate the obtained schedules and results.

The rest of this paper is organized as follows: section 1 contains an introduction to cloud 
computing paradigm. Section 2 provides a brief state of the art of the scheduling problem in cloud 
computing context. Section 3 reviews the main notions related to cloud computing environment. 
Section 4 defines the scheduling problem, its different levels and their models. Section 5 defines 
the PSO and EO meta-heuristics, and section 6 presents their utilization in resolving the scheduling 
problem. In section 7, a comparison is made between our approach with different algorithms with 
different QOS considered parameters. Section 8 and 9 provide a synthesis and a conclusion with 
future work respectively.

BACKGROUND

Task scheduling is a relatively an old problem; it is the process that allows distribution of system 
resources to many different tasks. With the advent of the internet, distributed, parallel platforms 
and cloud computing, tasks scheduling, resource allocation and load balancing are attracting 
more researchers. Scheduling in the cloud consists in allocating user application requests to 
physical machines deployed in cloud provider data centers. Task scheduling in the cloud differs 
from classical in the sense that it must take into consideration all parameters resulting from the 
customer, the provider and the links between them. The scheduling process consists of all or some 
of the following steps: task prioritizing, resource provisioning and resource sequencing. Many 
works focusing on task scheduling have been proposed. These works have dealt with many aspects 
of task scheduling in distributed systems depending on the available information to the scheduler 
(complete, incomplete, etc.), the objective of scheduling (makespan, energy, price, etc.) and the 
resolution approach: exact, heuristic or meta-heuristic. Among heuristic algorithms proposed to 
solve task scheduling in cloud we cite First Come First Serve (FCFS), Round Robin (RR), Short 
Job First (SJF), Minimum Completion Time (MCT), First Minimum Execution Time (MET), 
Maximum-Minimum Completion Time (MCT), Minimum, Minimum-Minimum Completion 
Time, Equally Spread Current Execution (ESCE) and Suffrage. In (Tsai & Rodrigues, 2014), 
the authors discuss the application of meta-heuristic in traditional and scheduling in cloud and 
show that meta-heuristics generally provide better results than deterministic algorithms (DAs) 
in terms of the solution quality and also they generally find approximate solutions faster than 
traditional exhaustive algorithms (EAs) in terms of the computation time (Kalra & Singh, 2015). 
Particle Swarm Optimization (PSO) algorithm is one of the most popular algorithms that are 
used to solve different optimization problems.

Recent literature review shows that the PSO meta-heuristics have been successfully applied 
for tackling different kinds of task scheduling and all its related problems in cloud computing 
environments.

•	 MPSO: Task scheduling using modified PSO algorithm in cloud computing environment (Abdi, 
Motamedi, & Sharifian, 2014).
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The main objective of this approach is the combination of particle swarm optimization and 
shorter job to faster processor heuristic (SJFP). The SJSP procedure is used in particular to generate 
initial solution. The MPSO is then compared to genetic and standard PSO. Experiments show that 
this approach outperforms both GA and PSO in terms of makespan.

•	 HPSO: Task scheduling algorithm based on Hybrid Particle Swarm Optimization in cloud 
computing environment (Babu & Krishnasamy, 2013).

In this paper, the problem of task scheduling in the cloud is described as a minimization problem 
and then authors proposed a Hybrid Particle Swarm Optimization (HPSO) meta-heuristic to solve it. 
This algorithm is the result of the marriage of basic PSO and vector differential operator in Differential 
Evolution (DE) algorithm. The entire load is balanced across the system while users task sets makespan 
is minimized. Finally, experimentation results show that hybrid PSO is more effective as compared 
to using existing simple PSO algorithm.

•	 DAPSO: Task Scheduling Using PSO Algorithm in Cloud Computing Environments (Al-maamari 
& Omara, 2015).

To enhance the performance of the basic PSO algorithm, authors in this paper, propose a bi-
objective approach. It consists on a Dynamic Adaptive Particle Swarm Optimization algorithm 
(DAPSO) to minimize the makespan of a particular independent task set over the Cloud Computing 
and in the same time, maximizing resource utilization. The DAPPSO itself is combined with Cuckoo 
search (CS) algorithm thus giving birth to a new algorithm called MDAPSO. According to the 
experimental results, authors show that MDAPSO and DAPSO algorithms outperform the original 
PSO algorithm.

•	 MREE-PSO: Energy Efficient Multiresource Allocation of Virtual Machine Based on PSO in 
Cloud Data Center (Meng, Xiong, & Xu, 2014).

In this paper authors propose a PSO algorithm to efficiently allocate virtual machine in cloud 
data center environment. This allocation is essentially energy aware. This energy efficient multi-
resource allocation model uses a fitness function based on the total Euclidean distance to determine 
the optimal point between resource utilization and energy consumption. The approach is compared 
to modified best fit heuristic algorithm (MBFH) (Srikantaiah, Kansal, & Zhao, 2008) and Modified 
Best Fit Decreasing (MBFD) algorithm (Beloglazov & Buyya, 2010) and (Beloglazov, Abawajy, & 
Buyya, Energy-Aware Resource Allocation Heuristics for Efficient Management of Data Centers for 
Cloud Computing, 2012) proposed to achieve energy efficient virtual machines (VMs) allocation. 
Experiments show that MREE-PSO contribute significantly in energy savings in cloud data center 
and also offers a reasonable utilization of system resources.

•	 PSO-SA: Multiprocessor Scheduling Using Hybrid Particle Swarm Optimization with 
Dynamically Varying Inertia (Sivanandam, Visalakshi, & Bhuvana, 2007).

In this paper Sivanandam et al proposed a hybrid heuristic model that involves Particle Swarm 
Optimization (PSO) Algorithm and Simulated Annealing (SA) algorithm. This combination of PSO 
and SA aims to study task assignment in heterogeneous computing systems. The idea is to schedule 
independent tasks with a dynamically varying inertia to provide a balance between the global and local 
explorations. Experiments show that the algorithm requires less iteration than PSO on the average to 
find a sufficiently optimal solution.
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•	 PSO–GELS: An efficient meta-heuristic algorithm for grid computing (Pooranian, Shojafar, 
Abawajy, & Abraham, 2015).

In this paper, Pooranian et al, have proposed a task scheduling technique for grid computing 
based on a hybridization of PSO with the gravitational emulation local search (GELS) algorithm 
to form a new method called PSO–GELS. The aim of PSO–GELS is minimizes makespan and the 
number of tasks that fail to meet their deadlines. A comparison of the performance of PSO–GELS 
with existing methods through a simulation experiment shows that PSO–GELS perform better than 
the other algorithms such as SA, GA, GA-SA, GA-GELS, PSO and PSO-SA.

•	 CPSO: A Multi-objective Optimal Task Scheduling in Cloud Environment Using Cuckoo Particle 
Swarm Optimization (Jacob & Pradeep, 2019).

In this paper scheduling in the cloud environment are done by hybrid algorithm is called CPSO 
(Cuckoo Search and particle swarm optimization). The approach is multi-objective where the 
algorithm aims to reduce the makespan, cost and deadline violation rate. The algorithm is tested 
under the CloudSim environment and experiments show that it outperforms many approaches such 
as PBACO, (Geete & R., 2017), ACO (Zuo, Shu, Dong, Zhu, & Hara, 2015), MIN–MIN, and FCFS.

•	 PSO-COGENT: Cost and Energy Efficient scheduling in Cloud environment with deadline 
constraint (KUMAR & Sharma, 2018).

In this paper, Kumar al proposed a multi-objective resource allocation algorithm. This algorithm 
is called PSO-COGENT and it optimize the execution cost time, reduces the energy consumption 
of cloud data centers and consider also deadline constraint. PSO-COGENT algorithm has been 
implemented and tested under the Cloudsim platform. Results show that PSO-COGENT reduces the 
execution time, execution cost, task rejection ratio, energy consumption and increase the throughput 
in comparison to PSO, honey bee and min-min algorithm.

The scheduling problem is also approached by using sub-optimal techniques, such as heuristics 
and meta-heuristics, as well as combinatorial optimization methods and approximation algorithms. 
There are two types of meta-heuristic algorithms namely; single solution-based meta-heuristics, and 
population-based meta-heuristics.

In the following, we describe the main and the best proposed scheduling works using population-
based meta-heuristic algorithms with a complete information knowledge (task characteristics and 
arrival times) and considering the makespan as the main objective. Results of these works are used 
as baseline to assess the obtained results of our approach. Intensive comparisons between baseline 
and final measurement are done in experiments section.

•	 HSIS: A Synthetic Heuristic Algorithm for Independent Task Scheduling in Cloud (Delavar & 
Aryan, 2011).

In this paper authors proposed genetic approach for scheduling. The algorithm used a two-stage 
method (test and computing fitness stages) to improve the initial solution set of GA. These initial 
solutions are created based on some heuristic scheduling algorithms such as Round Robin and min-
min. Best solutions in terms of completion times of tasks and communication costs between resources 
are selected as the initial solutions.

•	 AAGCP: Ant algorithm for grid scheduling problem (Fidanova & Durchova, 2005).
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In this paper, the authors proposed an ant colony algorithm for scheduling in grid. The problem 
is modelled as a complete graph and its solution consists in finding a sub-graph that minimizes 
the cost function. The algorithm uses a pheromone table to select the next node. Each row in the 
pheromone table represents the routing preference for each destination, and each column represents 
the probability of choosing a neighbor as the next hop.

•	 BBO: Biogeography-based Optimization for Optimal Job Scheduling in Cloud Computing (Kim, 
Byeon, Yu, & Liu, 2014).

In this paper, the authors proposed a scheduling algorithm using biogeography-based optimization 
(BBO) to optimize the job scheduling in cloud computing. The problem is modeled as an integer 
programming using a two dimensional discrete representation with discrete decision variables. To 
improve the convergence, new habitats are generated using the habitats of precedents population. 
Simulations were done using seven different job-scheduling problems defined in (Liu, Abraham, 
& Snàsel, 2012). Experimental results show that the proposed algorithm is better than the standard 
BBO, genetic algorithm, simulated annealing, particle swarm optimization and ABC meta-heuristics 
for the large sizes of problems.

•	 WOA: W-Scheduler: whale optimization for task scheduling in cloud computing (Sreenu & 
Sreelatha, 2019).

The paper proposes a multi-objective approach to schedule tasks to the virtual machines in cloud 
environment. The aim is to minimize the makespan and the cost. The whale optimization algorithm 
(WOA) was used to resolve the problem. The budget cost function calculation is based on the CPU 
and memory cost. Experimentations show that the proposed WOA algorithm for task scheduling can 
optimally schedule the tasks to the virtual machines while maintaining the minimum makespan and 
cost compared to other heuristics such as PBACO, SLPSO-SA, and SPSO-SA.

•	 MSDE: Task scheduling in cloud computing based on hybrid moth search algorithm and 
differential evolution (Aziz, Xiong, Jayasena, & Li, 2019).

In this paper, the authors proposed a hybrid algorithm based on Moth Search Algorithm (MSA) 
and Differential Evolution (DE). The aim is to minimize makespan that is required to schedule a 
number of tasks on different Virtual Machines (VMs). The results of experiments using both synthetic 
and real workloads show that this algorithm outperformed many other heuristic (RR, FCFS, SJF) 
and meta-heuristic algorithms (WOA, PSO, MSA) according to makespan and degree of imbalance 
performance measures.

CLOUD COMPUTING PARADIGM

Cloud computing has become an influential architecture to perform large-scale and complex 
computing. The essence of cloud computing is to support the requirements of different applications 
to evolve across multiple, geographically distributed data centers belonging to one or more service 
providers. A huge number of users submit their computing tasks to the cloud system. These Cloud 
users request resources that can be hardware, software, operating systems or applications that are 
coordinated as virtual machines (VM). The cloud providers provide resources according to both 
user and VM requirements. Hence, task scheduling mechanism plays a vital role in cloud computing 
environments. The main components of cloud computing architecture are:
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1. 	 Data Center: The complete physical hardware that encompasses physical machines called also 
host. It represents the basic infrastructure level services offered by the provider. Datacenter 
encapsulates a complete set of hosts that can be homogeneous or heterogeneous with different 
configurations (memory, cores, storage, etc.). It also implements a set of strategies for allocating 
bandwidth, memory, and virtual machine.

2. 	 Task: A software entity that represents a user application submitted to the cloud. Tasks are 
pooled together in task pool and scheduled to be processed on the virtualized resources.

3. 	 Virtual Machine: A software emulation of a physical dedicated computer created by the 
hypervisor (called also virtual machine manager) to support the resulting queries from user 
applications. From the end user point of view, the interaction with a virtual machine is the same 
as with a dedicated hardware.

4. 	 Broker: A cloud broker is a third-party entity that acts as an intermediary between the client 
of a cloud computing service and the provider of that service. Its negotiations are driven by QS 
requirements (functional requirements, specific regulatory and budgetary constraints, etc.) to 
determine the most suitable offers.

SCHEDULING PROBLEM MODELING

Cloud Model
The cloud Model is based on infrastructure containing different data centers, including servers, 
storage and networking hardware, as well as virtual machines, cloud services and end-users. The 
whole environment can be viewed as a set of user tasks applications, which are to be processed on 
the virtual cloud resources. The cloud information service (CIS) is composed of scheduler and VM 
allocator, the scheduler component is enhanced to take into account load balancing. As shown in 
Figure 1, the scheduler dispatches the tasks to the virtual resources and VM allocator allocates the 
VMs to the physical hosts.

Figure 1. The System Model
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Virtual Machine Task Model

It consists in allocating n tasks T T T
n1 2

, , ,…( )  to m virtual machines V V V
m1 2

, , ,…( )  running on p 

physical hosts H H H
p1 2

, , ,…( )  having q processors or processing entities P P P
q1 2

, , ,…( )  in such a 
way that the maximum completion time or makespan of these n Tasks will be minimized taking into 
account the load balancing constraints on the different machines. The problem is modelled as complete 
bipartite graph G T V E= ∪( ),  with T is the set of tasks and V is the set of virtual machines and a 
set of edges E T V= ×  representing all possible allocations of machines to tasks. Each node t T∈  
is connected to every node v in V. The solution to the task allocation problem is a set M E⊆  called 
partial matching where each node t T∈  is incident with exactly one edge in M. A semi-matching 
gives an assignment of each task to an exactly one machine. An edge t v G,( ) ∈  is labelled by the 
execution cost of the task t on the virtual machine v. An expect time to compute matrix (ETC) of size 
t v×  is used to represent the expected time to run a task on a given resource (virtual machine):
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where t and v denote respectively the numbers of tasks and virtual machines. Each element ETC
ij

 
denotes the expected time to complete the Task i on resource j and is calculated as follows:

ETC
W

CCi j
i

j
,
= 	 (2)

where, W
i
 represent the task i workload and CC

j
 is the computing capacity of the VM

j
.

The objective is to minimize the execution time of all tasks which is equal to the finishing time 
of the last scheduled task. Hence, the fitness value can be defined as:

fit Min max= { }( )ETC
lk
∀ ∈ 


l l N
t

, 	

mapped to the:

Kth VM , k N
v

= …1 2 3, , , 	 (3)

where N
t
 is the number of tasks and N

v
 is the number of virtual machines.

PARTICLE SWARM AND EXTREMAL OPTIMIZATION

Three active directions of research in the field of meta-heuristics are being explored, namely: the 
proposal of new more precise objective functions (depending on the problem to solve), operator 
modification and hybridization of meta-heuristics. The present work is carried out as part of this 
latter direction.



International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

9

In this section, we present the generic versions of the two used algorithms: Particle Swarm 
Optimization (PSO) and Extremal Optimization (EO) that will be adapted later to solve the problem 
of task scheduling in the cloud.

Motivation
Unlike PSO which is a population based algorithm, EO is a local search approach which starts from 
a single solution already supposed to be bad and tries to apply internal modifications on its worst 
components to improve its global quality. The goal of our PSOEO is to find an optimal task scheduling 
among an enormous number of schedules choices. These latter are first found using PSO principles 
by taking advantage of it good ability to do global research. Then, EO is used to improve bad solution 
and evolve it towards optimal solution by performing essentially mutation operation as in (Chen, Li, 
Zhang, & Lu, 2010). Hence, a high local search exploration is done by mutating a solution worst 
components and its successive neighbor without getting stuck in local optima. Our choice of the EO 
algorithm as a local search technique is motivated by the fact that the concept of solution component 
is very natural and compatible with the scheduling problem. A couple t r,( )  which represents the 
assignment of task t  to resource r  is a solution component. The neighborhood of a solution begins 
with an initial configuration, and then performs an iterative process which consists in assigning a 
task to a new resource. The replacement of the current configuration by one of its neighbors is done 
taking into account the local objective function which is nothing other than the mutation cost.

Particle Swarm Optimization
Particle Swarm Optimization (PSO) is a population-based algorithm that draws on collective 
intelligence. PSO is originally developed by (Eberhart & Kennedy, 1995) who were intrigued by 
the aesthetic choreography of moving birds and the basic rules making them to congregate, change 
direction suddenly, disperse and then gather again in a synchronized manner. PSO is one of the wide 
ranges of Swarm intelligence (SI) methods based on collective behavior of self-organized systems 
and is used in solving global optimization problems.

PSO explores the research space through successive particles positions. Thus, the location of each 
particle in the search space represents a potential solution to the considered optimization problem. 
Each particle position is evaluated using an objective function (particle fitness) depending on the 
problem to solve. This algorithm has become very popular in recent times, mainly because it is very 
simple and requires a small number of parameters. Each particle in the swarm is characterized by:

•	 Position and velocity (speed).
•	 Fitness value for its current or previously acquired position P

best
.

•	 Knowledge about its neighbours.
•	 Overall best value, and its corresponding position obtained so far by any particle in the swarm 

called G
best

.

At each iteration, the particle makes a compromise between three possible choices: to follow 
its own path, to return to its best position or to go to the best position in his neighborhood. The 
decision requires the collection of information from the particles of its neighborhood and allows 
modifying the speed and the move according to the particle having the best solution. More 
formally, suppose that the dimension of search space is D , and the swarm size is N . Each 
particle i N∈ { }1 2, ,..  in the swarm is determined by its position X

d
i  and its velocity V

d
i  for each 

of the dimensions d D∈ { }1 2, ,.. . At each iteration, new velocities and particle positions are 
determined using the formulas:
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V t V t C P X t C G X t
d
i

d
i

best
i

d
i

best d
i+( ) = ( )+ − ( )( )+ − ( )( )1

1 1 2 2
ω ϕ ϕ 	 (4)

X t X t V t
d
i

d
i

d
i+( ) = ( )+ ( )1 	 (5)

where 0
1 2

< <ϕ ϕ ϕ,
max

 are random values in 0 1,

 ; C C

1 2
,  are constant acceleration drawn from

0 1,

 ; ω  is inertia coefficient and P

best
i  and G

best
 represent respectively the best solution found by 

the particle and the global best solution. The P
best
i  fitness of the particle and the global swarm fitness 

G
best

 are measured according to a predefined objective function associated with the problem. After 
the determination of these two measures, each particle updates its position and its velocity according 
to Equation (4) and (5). This process is repeated until the stopping criterion is reached. The PSO 
procedure can be described by the following algorithm:

Create a population with random values positions/velocities  
    While Termination condition not reached do 
       For Each particle i do
         Update the velocity of the particle using Equation  
         Update the position of the particle using Equation 6 
         Evaluate the fitness f p

i( )
          if f p f pbest

i i( ) < ( )  then
           pbest p

i i
←

          End if 
          if f p f gbest

i( ) < ( ) then
           gbest p

i
←

          End if 
       End for 
    End while.

Extremal Optimization
Extremal optimization is a local-search heuristic technique simulating nature-inspired 
optimization. It was suggested by Boettcher (Boettcher & Percus, 1999) as general-purpose 
algorithm for finding the most qualified solution for hard problems. The fundamental principle 
of the method is to iteratively loop through an already found sub optimal solution, identify 
the less efficient components and replace or exchange them with other components. To do 
this, the costs of the solution components are imputed based on their contribution to the overall 
cost of the solution in the problem’s search space. Once the components are evaluated, they 
can be categorized and the weaker components replaced or switched by randomly selected 
components. Unlike genetic algorithm (GA), which manipulates a population of solutions, EO 
improves one solution by performing mutation of individual genes called species. The degree 
of adaptability of a specie to the actual solution is measured with a local fitness denoted λ  
representing the gain or loss to value of the global fitness function if the specie is mutated. 
Species are ranked according to their local fitness values λ

i
 . The probability of mutation of 

the ith  species is given by Equation (6):
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p k
i
∞ τ− , 1≤ ≤k n 	 (6)

where k is a position of an individual in a rank and τ  is a positive parameter. If τ → 0  the algorithm 
search a solution randomly, while τ →∞  the algorithm provides deterministic searching.

Proposed Approach
In this section, we present our hybridization methodology of PSO and EO for solving the problem of 
task scheduling in cloud. We light up mainly the particle representation and the local fitness function 
used in EO algorithm to assess the quality of each component of a given solution.

Particle Swarm Optimization Step
An appropriate particle representation must be defined for a PSO to work. A binary encoding is 
naturally suitable for our scheduling problem since it is a discrete problem. Thus, a particle is encoded 
as a P T V= ×  matrix, with each element P t v

i
,( )  is a binary value representing the affection of 

the task t to the virtual machine v. A particle (solution) is valid if and only if each of its columns 
contains exactly one “1”. For example, as shown Table 1, 8 tasks and 3 VMs particle is considered. 
This particle is valid and hence represent a feasible solution of the scheduling problem.

Initial Population Generation
As mentioned before, PSO handles a population of possible solutions. Each one is called a particle 
and owns a position and a velocity. The creation of an initial population is an important step in the 
whole PSO process. In this paper, we use random key encoding to generate the initial population. As 
an example, for a 5 virtual machines problem and for a given task t, each virtual machine is assigned 
a random number from 0 1,( ) . To generate a binary string for task T

i
, we sort the generated random 

numbers in ascending order the high value is assigned 1 and other values 0. In the example of table 
2, the task T

i
 is assigned to the virtual machine 4.

PSO Iteration
Unlike the basic PSO algorithm, our PSO algorithm handles discrete positions. This particularity 
necessitate modifications to the PSO algorithm. In binary PSO (Kennedy & Eberhart, 1997), the next 

Table 1. Particle coding

Particle T1 T2 T3 T4 T5 T6 T7 T8

VM1 0 0 1 0 0 0 0 1

VM2 1 1 0 1 0 0 1 0

VM3 0 0 0 0 1 1 0 0

Table 2. Initial population generation

Virtual Machines VM1 VM2 VM3 VM4 VM5

Random values 0.32 0.08 0.46 0.93 0.57

Sorted values 0.08 0.32 0.46 0.57 0.93

Task encoding 0 0 0 1 0
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move of a particle (new position) does not depend on the current position but rather it only depends 
on the velocity. However, to ensure a good exploration of the search space, the new positions of the 
particles in our approach must depend on the previous positions as well as on the velocities like the 
continuous PSO. Hence, in order to update the continuous velocities and positions of each particle, 
Equations (4) and (5) remain unchanged. To decode a binary position of a particle, the sigmoid 
function is introduced as follows:

bX
if h X t r

otherwised
i d

i

t+( ) = +( )( ) ≤






1
0 1

1

� �

�
	 (7)

h X t
X t

d
i

d
i

+( )( ) =
+ − +( )( )

1
1

1 1exp
	 (8)

where i  is the index of a particle in the swarm i n= …( )1, , , d  is the index of the position in the 
particle d D= …( )1, , , each d  is a vector representing the affection of a task to virtual machine and 
t  represents the iteration number.

The inertia weight value is a determining factor in final solution quality (optimality). The particle 
moves in the solution space are controlled via the inertia in the sense that the particles are moving 
towards better positions and they are prevented from moving back to the current position. The velocity 
is controlled by inertia weight ω  in equation (5). As the value increases, it will be difficult to return 
to the current position. To regulate the tradeoff between the global and the local exploration abilities 
of the swarm, we adopt the proposed approach in (Falco, Della, & Tarantino, 2007). The inertia 
weight is updated as in equation (9):

ω ω ω ωt
t

tmax max min
max

( ) = − −( )










	 (9)

where ω
max

 is the maximum weight (taken as 0.4), ω
min

 is the minimum weight (taken as 1.5), t  
and T

max
 are the current iteration and maximum number of iterations. The PSO steps are as follows:

•	 Initialisation: Initialise parameters and swarm with random positions and velocities.
•	 Inertia Calculation: Calculate inertia value for the current iteration.
•	 Evaluation: Calculate the fitness value (makespan) for each particle.
•	 Determination of particle best position ( pbest ): If the fitness value of particle p

i
 is better 

than its best fitness value ( p
best

) in history, then set current fitness value as the new p
best

 to 
particle p

i
.

•	 Determination of the global best gbest  of the swarm: If any p
best

 is updated and it is better 
than the current g

best
, then set g

best
 to the current value.

•	 Position update: Update velocity for each particle by applying Equation (4), (5), (7) and (8).
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Extremal Optimization Step
Neighborhood Structure
In our EO scheduling approach, the optimization variables represent tasks. Each task is a population 
of specie which it itself encoded with a string of bits whose size is equal to the number of virtual 
machines. As in the Bak-Sneppen model (Bak & Sneppen, 1994), the probability of mutation of each 
bit depends of its local fitness. This latter indicates the level of adaptability of each bit of the population 
string, which is nothing else than the gain or loss in the fitness value if the bit is mutated. To introduce 
the neighborhood structure, we use an allocation plan matrix P  to express admissible configurations. 
This matrix can be presented as:

P

P P

P P

n

m m n

=













1 1 1

1

, ,

, ,

�

� � �

�

	 (10)

The allocation plan matrix consists of binary variables denoting if the task t
j

 is assigned to 
virtual machine vm

i
 or not. It can be formulated as follows:

P
if vm is assigned to t

otherwisei j
i j

,

,

,
=







1

0

     
	 (11)

Our neighborhood method starts with an initial configuration, and then performs an iterative 
process which consists of replacing the current configuration by one of its neighbors, taking into 
account the cost function. We denote by S  the set of configurations of an instance of the problem 
which contains all the possible scheduling.

Let s s,
'

 be two configurations in S  associated respectively the allocation plan matrices P  and 

P
´

, the neighborhood N S S: → 2  is an application such that ∀ ∈ ∈ ( )s S s N s,
'

 if and only if:

•	 ∃ = …( )� � �i i i m
1 2 1

1, , ,  and i m
2

1= …( ), ,  such that ∀ = …( ) ≠j j n P P
i j

1
1

1
, ,

´

i j  ∧  P P
i j i j
2

2
≠

´

.

•	 ∀ = …( ) ≠ ∧i i m i i1
1

, ,  i i j j n P P
i j i j

≠ ∀ = …( ) =
2

1, , ,
, ,

'

.

Less formally, using the allocation plan matrix, a neighbor of s  can be obtained by simply 
changing the current value of any variable in s from 1 to 0 and flipping another variable on the same 
column from 0 to 1.

EO Based Task Scheduling Algorithm
In order to solve task-scheduling problem with Extremal optimization algorithm, a local fitness 
should be defined for each job. Since, in task scheduling problems, affecting long tasks with more 
processing time to more powerful virtual machines, increases the possibility of decreasing makespan, 
the idea is to mutate the long tasks that are actually executed by lower virtual machine. To do so, 
each column of the particle is considered as a specie. The movement in the solution space to build 
the envisaged neighborhood of a solution is the selection of a new virtual machine for a specific 

task. To move from a solution S  to a neighboring solution S
'

, the bit equal to 1 in the considered 
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specie is flipped to 0 and another one is set to 1. Each bit is forced to mutate with a probability 
proportional to its local fitness. The local fitness is a value assigned to each specie of the current 
particle that indicates how it influence the global fitness of the solution. In this work, the local 
fitness is the necessary time to execute a task on a given virtual machine. The local fitness function 
is presented in the Equation (12):

λ
i

i i

task length

MIPS Ncores
=

 

*
	 (12)

where MIPS
i
 and Ncores

i
 denote respectively the raw speed of a virtual machine executing the 

task and its number of cores. Using this function, an execution time is calculated for each task on its 
corresponding machine. The new solution species are first assigned ranks K k n,1≤ ≤ , where n  
is the number of the species, according to their local fitness values descending order. A specie of 
rank k  is selected for mutation with probability k−τ , for a given value of the parameter τ . Neighbor 
solutions are evaluated and ranked using the global fitness function. The best solutions are selected 
based on the exponential distribution with the selection probability λ αλe− , where α  is the neighbor 
solution rank. We developed our EO based algorithm to solve the proposed task scheduling problem 
modeled by the Equation (3) and (12). The EO algorithm steps are described as follows:

Step 1: Initialize parameters and obtain the initial solution S  from PSO algorithm.
Step 2: Set the best solution and its fitness S S

best
=  and fit fist

best s
= .

Step 3: For current scheduling solution S , sequentially evaluate the localized fitness λ
i
 for each 

specie and rank them according to their fitness values.
Step 4: Set S S

best
=  and fit fit

best s
= .

Step 5: Evaluate fit
s

 for each neighbor S S S
v j
∈ ( ),  obtained by changing S

j
 in the current 

solution S .
Step 6: Rank neighbor solution S S S

v j
∈ ( ),  according to the global fitness function.

Step 7: Choose the best S S S
j

'

,∈ ( )  and accept S S←
'

 unconditionally.

Step 8: If fit fit
S best
<  then S S

best
= .

Step 9: Repeat steps 3 to 8 until a given stopping criteria is reached.
Step 10: Return S

best
 and fit

best
.

EXPERIMENTS AND RESULTS

In order to test the performance of our proposal, we have carried out several experiments similar to 
those which obtained the best results among the works mentioned in the state of the art. The PSOEO 
algorithm has been launched 10 times, and we provide the mean value for each test.

Settings of Various Parameters
Experimentation Environment
To illustrate the effectiveness and performance of the proposed approach described in this paper, 
we implemented the algorithms and investigated their relative strengths and weaknesses by 
experimentation on both synthetic and real workloads using the CloudSim framework (Calheiros, 
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Ranjan, Beloglazov, De Rose, & Buyya, 2011). The experiment conducted was carried out based on 
the following computer specifications:

•	 Processor: Intel(R) Core(TM) i7-2760QM200U CPU@2.40 GHz 2.40GHz
•	 System type: Window 7 64-bit (x64- based processor)
•	 Memory: 8GB Ddr3L RAM
•	 Hard Disk: 500 GB SATA-3G HDD
•	 Utility software: Eclipse-java-luna-SR2-win32-x86-64
•	 Simulation tool: CloudSim 4.0

Evaluation Metrics
The main goal PSOEO is to achieve the highest quality of solution. Hence, the main evaluation metric 
of PSOEO scheduling capability is measured in terms of the average makespan. Also, in order to 
assess the load balancing capability of our approach in cloud systems, we have considered the degree 
of imbalance (DI) between VMs, which can be calculated by Equations (13) and (14):

T
Taskl

Cpu number Mipsj
i

k

i

j j

= =∑ 1

_ *
	 (13)

DI
T T

T
max min

avg

=
−

	 (14)

where T
j
 represents the j th  virtual machine execution time, Taskl

i
 is the length of ith  task submitted 

to the VM
j
, Tmax Tmin,  and Tavg  are the maximum, minimum and average T

j
respectively among 

all VMs .
Also, we calculate the Performance Improvement Rate (PIR) percentage. This rate is always 

related to a performance metric. Given the makespan performance of various algorithm, PIR defines 
the percentage of makespan improvement for our PSOEO compared against the other state-of-the-art 
approaches in the literature. It can be calculated using the following Equation (15):

PIR
M M

M
ba PSOEO

ba

%( ) = −
	 (15)

where M
PSOEO

 and M
ba

 denote respectively the makespan of PSOEO and the benchmark algorithm.

Data and Algorithms Parameters
We perform various experiments on both synthetic and real the data using different baseline algorithms. 
For the choice of the virtual machines (VMs), host, and tasks characteristics used in the experiment, 
we adopted the same as those used in most research work such as (Aziz, Xiong, Jayasena, & Li, 2019). 
These characteristics of tasks, VMs, hosts and data centers are shown in Tables 3 and 4.

As mentioned before, to evaluate the proposed approach, we compared its performance against 
many population based optimization algorithms namely, PSO, Whale Optimization Algorithm (WOA) 
which is optimization algorithm mimicking the hunting mechanism of humpback whales in nature, 
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ACO algorithm which is based on ant colony, MSDE which is the result of hybridization of moth 
search and differential evolution. Other deterministic algorithms are used as baselines namely RR, 
FCFS and SF. We adjusted the population size and the maximum number of iterations to 30 and 1000 
respectively for all algorithms. The parameters of each algorithm are given in Table 5.

Results and Discussions
Tau Parameter Selection
Among the strengths of the EO approach is (1) it contains only two parameters (the tau parameter 
and specie rank) (2) it is possible to tune its behavior through these parameters namely changing the 
τ  parameter setting. Hence, the τ  parameter has an important impact on the selection of the worst 
and the replacement component (as the τ  amount increases the probability of selection of the worst 
species for change increases too). In Figure 2 we show the influence of this parameter on the makespan 
for both small and large tasks (100 and 1000). Intensive experiments show that for large task scheduling 
problems, the best makespan values are obtained for τ  values that are in the range of 1.5 to 2.5. For 
small task scheduling, the best value of τ  are between 1.1 and 1.5. We also found that with very 
large values for τ , the objective function stagnates after a certain number of iterations and for values 

Table 3. VM hosts and data centers configurations for simulations with synthetic workload

Entity name Parameter Value

VM

Number of VMs 10

RAM 512 MB

CPU processing power 1860, 2660 MIPS

storage capacity 1GB

bandwidth capacity 1000 Mbps

Task scheduling policy time-shared

VMM (Hypervisor) Xen

Operating System Linux

Number of CPUs 1

Host

RAM 2 GB

storage capacity 10 GB

bandwidth capacity 1 Gbps

Task scheduling policy space-shared

Data center
Number of data centers 5

Number of CPUs 5

Table 4. Tasks characteristics for simulations with synthetic workload

Parameter Value

Number of tasks 100-1000

Tasks length 400–1000 MI

Input file size 200–1000 MB

output file size 300 MB



International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

17

close to zero the objective function changes randomly. This can be explained by the fact that for τ  
values which are close to 0 species are selected in a random way, while for very high τ  values, the 
worst ranked specie is always chosen to mutate which increases the possibility of being trapped in a 
local optima.

Synthetic Workload
The objective of this experiment was to minimize the makespan and compare it to other heuristics 
(RR, FCFS, and JFS) and meta-heuristics (ACO and WOA). The obtained results are reported in 
Table 6 and Figure 3. It can be seen that, with the increase of the quantity task, the algorithm PSOEO 
finds lower makespan values compared to others tested algorithms. This indicates that the PSOEO 

Table 5. The parameters settings for all algorithms

Algorithm Parameter Value

PSO

Inertia weight w [0.4-1.5]

Velocity v [-1,1]

Cognitive coefficients: C1,C2 2

WOA

a [-2, 0]

b 1

l [-1, 1]

ACO

α 0.3

β 1

ρ 0.4

Q 100

Figure 2. Effect of the τ  parameter on the results for makespan
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algorithm is better than other algorithms in term of solution quality. More precisely, it can be seen 
that when the size of tasks is 100, the makespan enhancements of PSOEO over PSO, FCFS, RR, 
SJF, ACO and WOA are respectively 19%, 51.24%, 51.57%, 48.30, 34.70 and 37.98. Moreover, at 
size of tasks of 1000, the makespan enhancements are 3.8%, 28.83%, 27.72%, 28.25%, 9.37% and 
13.77%. In table 7 we show the Performance Improvement Rate (PIR) percentage for all synthetic 
workload task sizes.

The comparison results of degree imbalance (DI) between the proposed PSOEO algorithm and 
the meta-heuristic algorithms (PSO, WOA, ACO and MSDE) and heuristic algorithms (JFS, FCFS 
and RR) are given in Figure 4. It can be seen that our approach reduces the degree of imbalance by 
assigning the task to an adequate machine, which avoids having a bias in favor of given machine or task.

Table 6. Tasks characteristics for simulations with synthetic workload

Number of 
tasks

Algorithms

PSO FCFS RR SJF ACO PSOEO WOA

100 36999.82 61462.21 61884.32 57979.34 45900.31 29969.86 48323.40

200 76523.34 115165.36 116610.62 121697.91 96344.18 56627.27 90971.71

300 114338.68 173258.47 177906.52 171011.89 135384.41 106220.63 143833.36

400 159482.79 236151.19 231616.90 230566.94 182532.16 150870.71 193023.99

500 206998.46 293898.82 286986.61 292106.38 231250.89 194371.55 237852.47

600 245831.99 350436.76 351862.69 352074.21 278725.42 236490.37 284545.22

700 291887.76 399465.37 398410.38 392490.52 310721.66 273790.72 325674.06

800 330372.01 455781.86 461812.29 441087.27 349194.09 313853.41 372261.53

900 372309.84 508275.66 529435.51 509325.64 403216.13 355928.21 413481.80

1000 438441.31 592715.64 583606.92 587910.24 465428.94 421780.54 489181.07

Table 7. The Performance Improvement Rate (PIR) in terms of makespan for synthetic workload

Number of 
tasks

Algorithms

PSO FCFS RR SJF ACO WOA

100 19% 51.24% 51.57% 48.31% 34.71% 37.98%

200 26% 50.83% 51.44% 53.47% 41.22% 37.75%

300 7.1% 38.69% 40.29% 37.89% 21.54% 26.15%

400 5.4% 36.11% 34.86% 34.57% 17.35% 21.84%

500 6.1% 33.86% 32.27% 33.46% 15.95% 18.28%

600 3.8% 32.52% 32.79% 32.83% 15.15% 16.89%

700 6.2% 31.46% 31.28% 30.24% 11.89% 15.93%

800 5% 31.14% 32.04% 28.85% 10.12% 15.69%

900 4.4% 29.97% 32.77% 30.12% 11.73% 13.92%

1000 3.8% 28.84% 27.73% 28.26% 9.38% 13.78%
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Real Workload
For this experiment, we used two real data sets: NASA iPSC and HPC2N with large task sets 1000 
and 2000. Figure 5 and 6 illustrates the case where the NASA iPSC and HPC2N real traces are used 
with both small and large task (1000 and 2000). It can be seen that the PSOEO is performing better 
than all the considered algorithms by achieving an average improvement of 11.92% for the NASA 
iPSC and 8.40% compared to the MSDE approach. Recall that, the MSDE algorithm results are 
reported from (Aziz, Xiong, Jayasena, & Li, 2019). Tables 8 and 9 show respectively the makespan 
and its Performance Improvement Rate (PIR) for these real workloads.

Results Analysis
From the figures and data in tables, it is clear that the proposed PASOEO reached minimal response 
time for solving various scheduling problem instances in comparison with all other considered 

Figure 3. Comparative analysis using of makespan using synthetic workload

Figure 4. Comparative analysis of the average DI using synthetic workload
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Table 8. Simulation results with real workloads

Workload Task Size
Algorithm

PSOEO MSDE PSO WOA ACO

NASA iPSC
1000 772.88 950 915.44 965.89 1024.8

2000 1665.27 1818.33 1846.47 1976.94 1957.55

HPC2N
1000 7345.71 8250 8659.93 8417.32 8338.61

2000 13951.02 15000 15031.89 15190.21 15523.42

Figure 5. Comparative analysis using NASA iPSC real trace for large number of tasks (1000/2000)

Figure 6. Comparative analysis using HPC2N real trace for large number of tasks (1000/2000)
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algorithm. The makespan obtained by PSOEO is significantly less than that of the other algorithms 
using the same termination criteria and for: (1) a synthetic workload generated using a uniform 
distribution, which exhibits an equal amount of small, medium and large-sized jobs (2) real workloads 
namely NASA iPSC and HPC2N (High-Performance Computing Center North) which are two random 
logs widely used benchmarks for performance evaluation in distributed systems. The algorithm is 
tested with a fixed and moderate number of iterations namely 1000 iterations, some authors used up 
to 4096 (Falco, Olejnik, Scafuri, Tarantino, & Tudruj, 2016). The same behavior of our algorithm 
shows its high scalability with respect to the changes in the characteristics of the used benchmark. 
The outlined performance superiority of PSOEO over existing algorithms is attributed to several 
conceptual qualities namely (1) the star topology of the swarm which allow each particle to exchange 
information with every other particle (2) unlike the classical PSO, PSOEO use a dynamic inertia 
weight (the inertia weight ω  is updated at each run) as in Equation (9). This dynamic aspect makes 
it possible to maintain a good balance between the exploration and the exploitation of the research 
space (3) integration of VMs and tasks properties in the decision process in particular at the EO stage. 
This make it possible to allocate VMs with some appropriate abilities to serve a specific class of 
tasks, which offers an intelligent scheduling allowing makespan reduction and load balance 
improvement. (4) a probabilistic selection of the specie to mutate which allows the algorithm to 
escape falling into a local optima.

CONCLUSION

Cloud computing is the next generation in computing; people will probably be able to get everything 
they need on the cloud. The Cloud is a step in the evolution of on-demand services; it is an emerging 
technology that allows the deployment of many distributed applications, computing power and storage 
capacity. Task scheduling and resource allocation are very important and challenging aspects in 
the efficient operation of the Cloud because various task parameters must be considered for proper 
scheduling. Available resources should be used efficiently without affecting cloud service settings.

Because of the huge search space, task scheduling in the cloud is a hard optimization problem. 
Sophisticated algorithms are necessary to eliminate large portions of the search space and hence 
exhaustive enumeration can be avoided without any negative impact on the quality of the solutions. 
To solve task scheduling in the present work, a mathematical formulation and models are first 
given. Then a new meta-heuristic approach is proposed based on the hybridization of particle swarm 
optimization with extremal optimal algorithm to fully exploit the “global search ability” of particle 
swarm algorithm and “the local search ability” of extremal optimization.

The proposed algorithm is then used to solve several instances of the scheduling problem 
based on synthetic and real workloads of different scales. The simulation results obtained in this 
study are compared with the results obtained by other authors’ algorithms. The results demonstrate 
the performance of the proposed algorithm. Concretely, compared to the best meta-heuristic based 

Table 9. The Performance Improvement Rate (PIR) in terms of makespan for real workloads

Workload Task Size
PIR

MSDE PSO WOA ACO

NASA iPSC
1000 18.64 15.57 19.98 24.58

2000 8.42 9.81 15.77 14.93

HPC2N
1000 10.96 15.18 12.73 11.91

2000 6.99 7.19 8.16 10.13
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algorithms cited in the literature, the proposed approach has achieved an improvement which has 
reached almost 12% and more than 51% compared to traditional scheduling algorithms.

FUTURE WORK

The future work using our approach will be done (1) using more than one optimization criteria such 
as pricing, service availability, load balance, energy consumption and other service level agreement 
conditions using many objective functions (2) Exploit multicores and parallel optimization to improve 
the scheduling time and result quality since the PSO approach is parallel in nature (3) using dynamic 
workflow that allows more flexibility for the users to change the characteristics of the workflow tasks 
during the runtime (4) applying our approach in Mobile Cloud Computing (MCC) which is a new 
emerging technology that has revolutionized the way users can take advantage of mobile applications.
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