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ABSTRACT

In this paper, the authors consider an extension of the dynamic vehicle routing problem with backhauls 
integrated with two-dimensional loading problem called DVRPB with 2D loading constraints 
(2L-DVRPB). In the VRPB, a vehicle can deliver (linehaul) then collect goods from customers 
(backhaul) and bring back to the depot. Once customer demand is formed by a set of two-dimensional 
items, the problem will be treated as a 2L-VRPB. The 2L-VRPB has been studied on the static case. 
However, in most real-life applications, new customer requests can happen over time of backhaul and 
thus perturb the optimal routing schedule that was originally invented. This problem has not been 
analysed so far in the literature. The 2L-DVRPB is an NP-Hard problem, so the authors propose to 
use a genetic algorithm for routing and packing problems. They applied their approach in a real case 
study of the regional post office of the city of Jendouba in the North of Tunisia. Results indicate that 
the AGA approach is considered as the best approach in terms of solution quality for a real-world 
routing system.

Keywords
2L-DVRP, Backhaul, Dynamic Vehicle Routing Problem, Genetic Algorithm, Packing, Post Office

1. INTRODUCTION

Vehicle Routing Problem (VRP) is a key component of distribution and logistics management. It 
consists in finding an optimal set of trips for a fleet of vehicles which must serve a predefined set 
of customers. The most studied variant in transportation logistics is capacitated VRP (CVRP) (Sbai 
et al. (2020)). 

The CVRP can be extended to the VRP with time windows (VRPTW) by adding time windows in 
which deliveries need to take place. Another variant is the VRP with pickups and deliveries (VRPPD) 
in which orders may be picked up and delivered. More recently, a VRP with backhauls (VRPB) or the 
linehaul-backhaul problem has been studied, when VRP involving both delivery (linehaul) and pickup 
(backhaul) points. In contrast to the classical VRP, a practical important variant of this problem is the 
dynamic VRP (DVRP) where new customer demands change during operation reference.
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In real life, companies are faced with a large number of additional constraints which increase 
the com- plexity of the problem. For example, the capacitated vehicle routing problem with two-
dimensional loading constraints (2L-CVRP) includes the routing and loading aspects simultaneously.

The 2L-CVRP is defined as giving a central depot of a homogenous fleet of vehicles driving 
between two customers, or from the depot to a customer, to deliver requested product. Products to 
be de- livered are thought to be rectangular shaped items. The objective of the 2L-CVRP is to find 
the routes of the vehicles of the fleet, minimizing the delivery costs, and determining, for a given 
route, the feasible two-dimensional orthogonal loading arrangement of the transported items into 
the vehicle loading surface.

Planning the distribution and pick-up of goods as a VRP with Backhauls (VRPB) in an efficient 
manner is an appropriate way to reduce logistic cost and improve the quality of service. Therefore, 
we consider the 2L-CVRP with backhaul, in which a set of customers can be divided in two distinct 
sets: the set of linehaul (deliver) and the set of backhaul (pickup) customers. For each route two 
packing plans have to be provided that stow all boxes of all visited linehaul and backhaul customers, 
respectively, taking into account the additional packing constraints.

All the existing research has been studied the 2L-VRPB as a static case in which all information 
and problem parameters are assumed to be known in advance, and the related decisions are made 
prior to the start of plan execution. However, in real-life applications, a new arrived order such as a 
courier, money-transfer and repair-maintenance services can be happen over time and thus trouble 
the optimal routing schedule that was originally invented.

Therefore, we address a Dynamic Vehicle Routing Problem with Backhaul and 2-dimensional 
loading constraints (2L-DVRPB) in which new customer orders with two-dimension and order 
cancellations continually happen over time of backhaul. 

This problem is a combination of two most important NP-hard optimization problems in 
distribution logistics, the Dynamic Vehicle Routing Problem with Backhaul constraint (DVRPB) 
and the Two-dimensional Bin Packing Problem (2BPP). 

To solve the 2L-DVRPB, we propose an Adaptive Genetic Algorithm (AGA) and a new packing 
heuristic named Min lost area heuristic (MILAH). 

Moreover, the 2L-DVRPB has many industrial applications in different fields of real life, such 
as shipping and transportation industry. So, we applied our approach in a real case study of the dis- 
tribution of two dimension parcels in Regional Post Office of the region of Jendouba in the North 
of Tunisia.

The remainder of this paper is structured as follows. The related literature review is provided 
in Sec- tion 2. Section 3 and 4 present a brief description and a Mathematical formulation of the 
2L-DVRPB problem. Section 5 describes the proposed Genetic Algorithm for solving the 2L-DVRPB. 
In Section 6, a set of heuristics for the loading subproblem are given. In section 7 and 8, the efficiency 
of the proposed approach is investigated with experimental results and a real case study. In Section 
7, we end with some concluding remarks and future works.

2. LITERATURE REVIEW

Several works have been developed to address numerous variants of the CVRP while considering 
additional features such as dynamic aspect, backhaul and loading (packing) aspects. The dynamic 
vehicle routing problem is well-known as an NP-Hard combinatorial optimization problem that 
at- tract significant attention over the past few years (Abdallah et al. (2017) and Chen et al. (2018)). 
Backhauling has been proven to be an efficient way to achieving significant savings. In the Vehicle 
Routing Problem with Backhauls (VRPB), the set of customers is divided into delivery locations 
(linehaul) or pickup points (backhaul), a recent survey paper with interesting conclusions and research 
perspectives on the VRP with backhaul, including models, exact and heuristic algorithms, variants, 
industrial applications and case studies, are identified in Koc and Laporte (2018). Since new requests 
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appear during the routing service, the problem will be considered as dynamic. To solve the DVRPB, 
Ninikas and Minis (2014) employed the heuristic Branch-and-Price algorithm. Also, Wang and Cao 
(1997) used a local search (LS) algorithm. Ninikas et Minis (2018) solved a variant of DVRP with 
Multi Backhauls that allows orders to be transferred between vehicles during plan implementation 
using Branch-and-Price algorithm.

Regarding a brief outline of the literature on the 2BPP which is the term of defining a loading 
problem which choose to use the problem in 2D only. To solve the 2BPP, exact algorithms and lower 
bounds was used by Pisinger and Sigurd (2007) and Fekete and Schepers (2006). Also, metaheuristic 
methods have also been proposed to solve this problem, Lodi et al. (2017) presented a heuristic 
algorithm based on partial enumeration to solve the 2BPP with guillotine constraints. Then, Dahmani 
et al. (2015) proposed a variable neighborhood descent (VND) algorithm. In the same way, Khebbache 
et al. (2008) used the Iterated LS. Whereas, Polyakovskiy and M’Hallah (2018) proposed both exact 
and approximate approaches to solve the 2BPP with due dates.

In recent years, new research studies combining the CVRP and 2BPP have appeared. The 
2L-CVRP was studied first by Iori et al. (2007) using an exact algorithm based on branch-and-cut 
technique, they tested their approach with only small scale instances (60 instances). To tackle large 
size problem, the first meta-heuristic approach for the is the Tabu Search (TS) proposed by Gendreau 
et al. (2008) for the routing and the packing problems. Then, Zachariadis et al. (2009) proposed a 
Guided TS which is a combination between a TS and a Guided LS. Fuellerer et al. (2009) presented 
an Ant Colony Optimization (ACO). After that, an Extended Guided TS algorithm (EGTS+LBFH) is 
developed by Leung et al. (2011). Duhamel et al. (2011) combined the Greedy Randomized Adaptive 
Search (GRASP) Procedure with Evolutionary LS algorithm to obtain a RCPSP-CVRP solution 
(GRASP-ELS) and to transform it into 2L-CVRP solution. In addition, Leung et al. (2013) developed 
a Simulated Annealing (SA) with heuristic LS. In the same way, Zachariadis et al. (2013) proposed 
a Promise Routing-Memory Packing (PRMP). Wei et al. (2015) proposed a Variable Neighborhood 
Search(VNS) approach. For the same problem, Sbai et al. (2017) presented an adaptive GA for 
solving the 2L-CVRP with time windows, results showed that the proposed GA is competitive in 
terms of the quality of the solutions founded. In the same way, Sbai et al. (2020) used an effective 
GA for solving the 2L-CVRP, the algorithm is tested with 150 benchmark instances, experimental 
results show the effectiveness of the proposed algorithm. In addition, Wei et al. (2018) proposed A 
SA algorithm with a mechanism of repeatedly cooling and rising the temperature to solve the four 
ver- sions of this problem, with or without the LIFO constraint, and allowing rotation of goods or not. 
More recently, Guimarans et al. (2018) proposed a hybrid simheuristic algorithm to solve a version 
of the 2L-CVRP with stochastic travel times.

The combination of VRP whith backhauls and loading constraints is a recent studied problem, 
Bort- feldt et al. (2015) proposed a LNS and a VNS (LNS-VNS) for solving the three dimension VRP 
with backhaul and a Tree Search heuristic (TSH) is proposed for packing boxes. Reil et al. (2018) 
extended the last approach for the VRPBTW with 3D loading constraints by considering various types 
of backhauls. Pinto et al. (2015) studied the VRP with mixed Backhaul using an insert heuristic and 
a Bottom-Left heuristic (BLH) for packing aspect. Also, Dominguez et al. (2016) proposed a hybrid 
algorithm that integrates biased-randomised versions of vehicle routing and packing heuristics within a 
LNS metaheuristic framework. Moreover, Zachariadis (2017) described a LS approach for solving the 
2L-VRPSDP and the 2L-VRPCB. Pinto et al. (2017) proposed a VNS algorithm. Likewise, the VRP

with pickup and delivery (PD) and 2D or 3D loading constraints is only addressed in four works. 
The first one is proposed by Malapert et al. (2008) for solving the 2L-VRPPD. The second one is 
presented by Bartok and Imreh (2011) for solving the 3L-VRPPD using a simple LS method. The third 
one is described by Mannel and Bortfeldt, they discussed several 3L-VRPPD variants and a hybrid 
approaches based on LNS and tree search heuristics are proposed for packing boxes. The last one is 
introduced by Zachariadis et al. (2016) the VRP with Simultaneous (2L-SPD) with LIFO constraints 
using a Local Search algorithm. The previous papers studied the 2L-VRPB in the static case, while, 
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in this work, we choose to use a new combination of two combinatorial optimisation problems: 
the Two- dimensional Vehicle Routing Problem (2L-VRP) and the Vehicle Routing Problem with 
Backhauls (VRPB) and dynamic request(DVRPB). Table 1 presents a comparative State-of-the art 
study of the existing VRP with Backhaul and loading constraints.

3. PROBLEM DEFINITION

In this paper, we consider a realistic variant of the CVRP that combines vehicle routing and loading 
(packing) aspects as well as backhauls:

•	 Routing : A route R is a sequence (0,c1,. . . ,cn,0) that starts and ends with the depot and includes 
n ≥ 1 pairwise different customers (ci > 0). A route is feasible if it includes at least one linehaul 
customer (1 ≤ ci ≤ l) and all linehaul customers precede the first backhaul customer (l+1 ≤ ci ≤ 
l+b) if any. A solution is called feasible if the following conditions are satisfied:

•	 Each route should choose the central depot as the starting and the ending point;
•	 All customers should be visited once and only once;
•	 Each customer appears exactly in one route;
•	 The number of routes does not exceed the given number of vehicles
•	 Loading : each route consists of two legs. Along the first leg, linehaul orders are served. This im- 

plies that the vehicle leaves the depot fully loaded and delivers items to the customer locations. 
When the last linehaul of the route has been served, the vehicle space is empty and the vehicle 
proceeds to the second route leg along which backhaul customers are visited. This means that 
the loading constraints must be checked for the two depot-adjacent arcs: for the depot leaving 
arc, a feasible loading pattern must be identified for all delivery items assigned to the vehicle, 
while for the depot returning arc, a feasible loading pattern must be identified for all pick-up 
items shipped to the depot.

•	 Backhaul : a customer may require either delivery or pick-up service. Thus, the customer set N 
is composed by two customer types: the linehaul customers l which require only delivery service 
and the backhaul customers b which require only pick-up service.

Table 1. Comparative study of the existing VRP with Backhaul and loading constraints in the literature

Reference Problem TW Environ-  
Ment

Packing 
algorithm 

Routing 
algorithm 

Bench-
mark 

Case 
 study

VRP
With 

Backhaul

Bortfeldt et al.(2015) [3] 3L-VRPB - Static TSH LNS/VNS ✓ 

Reil et al (2018) [38] 3L-VRPB ✓ Static TS TS ✓

Pinto et al.(2015) [33] 2L-VRPMB - Static BLH Insert-heu ✓

Zachariadis et al.(2017) [49] 2L-VRPB - Static LS LS ✓

Pinto et al. (2017) [35] 2L-VRPB - Static VNS VNS ✓

This Paper 2L-DVRPB - Dynamic GA GA ✓ ✓

Pickup
And

Delivery 
Problem

Bartok and Imreh (2011)[2] Pickup 
3L-VRPPD 

✓ Static LS LS ✓ 

Mannel and Bortfeldt(2016)
[26]

3L-VRPD - Static TSH LNS ✓

Zachariadis et al (2016) [48] 2L-SPD - Static LS LS ✓

Malapert et al.(2008)[25] 2L-VRPPD - Static based-model 
heuristics

Bottom-Left 
scheduling

✓
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The 2L-VRPB is aimed at identifying the minimum cost set of routes such that:
The total number of routes does not exceed Q (at most one route per vehicle).

•	 Within any route, linehaul customers are visited before backhaul ones (precedence constraint).
•	 There exists a feasible loading pattern for both the delivery and pickup items assigned to a route.

In this paper, we investigate a 2L-DVRPB model similar to the DVRP that was first introduced by 
Kilby et al. (1998) and then refined by Montemanni et al. (2003) with respecting the packing and the 
backhaul constraints. A general description of the static 2L-VRPB is first given in order to introduce 
our 2L-DVRPB model. In the static 2L-VRPB all the routing information is known in advance before 
the optimization has begun. Hence, no new information relevant to routing is obtained during the 
optimization. On the other hand, in the dynamic 2L-DVRPB, some information may exist to the 
planner in the backhaul case before the optimization begins but, generally, information can change 
or new information can be added during optimization.

3.1 Static 2L-VRPB
The 2L-VRPB is defined on a complete graph G = (V, E), where V = D∪ L  ∪ B is the vertex set of 
1 + l + b vertices composed of the disjoint subsets D = {0}, L = {1, . . . , l} and B={l+1,. . . ,l+b}, 
that represent the depot, the linehaul customers and the backhaul customers, respectively. E = {(i, 
j)|i, j ∈V, i ≠  j} is the set of edges that connect the customers with each other and with ttthe depot. 
A nonnegative cost, cij, is associated with each edge {i,j} ∈  E and represents the travel cost spent to 
go from customer i to customer j.

In the depot, there are m identical vehicles, each vehicle has the same weight capacity Q and a 
rectangular loading surface that is accessible from a single side for loading and unloading operations, 
whose width and length are W and H, respectively. We also denote by A = W × H the total area of 
the loading surface. It is also assumed that m ≥ max(mL, mB), where mL and mB are the minimum 
numbers of vehicles needed to separately serve all linehaul and backhaul customers, respectively.

Each vehicle starts its tour from the depot, deliver (Linehaul) its designated customers, then 
collect goods from customers (backhaul) and turns back to the depot.

An amount of demands qi with a total weight equal to di is associated with every customer i ∈  
L  ∪   B that represents the amount requested from or delivered to the depot, depending on whether 
the customer is linehaul (i ∈L) or backhaul (i ∈B). Each demand has a specific width wilt and length 
hilt, lt= { 1, . . . , |qi|}.

Each item lt will be denoted by a pair of indices (i, lt). We denote by  a w h
i it it

t

qi

= ×
=
∑

1

 the total 

area of the items of each customer i, depending on whether the customer is linehaul (i ∈L) or backhaul 
(i ∈B).

The demand must be placed on the loading surfaces without being rotated: their l- and w-edges 
must be parallel to the L- and W -edges of the vehicle surfaces, respectively. This constraint models 
the practical cases of automated, fixed orientation palette loading. Considering the convenience of 
unloading of items, in our case of backhaul we consider the sequential version of loading (also referred 
as last in first out (LIFO)) for both loading and unloading operators, which is a more practical con- 
straint: when a customer i is visited, all items of customer i must be unloaded by employing straight 
movements, parallel to the length of the vehicle, without moving items of other customers.

In addition, to take into account the packing feasibility in every route, we start by defining the 
loading surface of a vehicle as a W*H matrix with indexes x ϵ {1,2,…W} and y ϵ {1,2,…,H}. Hence, 
the position of the bottom-left corner of item lt from customer i, loaded on vehicle k, is denoted by 
coordinates (Xilt

k , yilt
k). We also define a route R as a subset of customers forming a route or partial 
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route (R ⊆ V ). Finally, we define the variable Ωilt to indicate if item lt of customer i has been rotated 
(Ωilt = 1) or not (Ωilt = 0).

The decision variables of the problem are,x
ij
k

defined as:

1 if the vehicle k travels from customers i to j	
x
ij
k = 0 otherwise	

	
Ωilt= 1 if item lt of customer i has been rotated	
0 otherwise	

In our case, the static 2L-VRPB aims to minimize the overall cost of each solution that uses m 
vehicles under the following constraints:

(a) 	 All orders related to a customer should be loaded on the same vehicle;
(b) 	 Each route should choose the central depot as the starting and the ending point;
(c) 	 All customers should be visited once and only once;
(d) 	 The total weight of all items in a route should not exceed the capacity Q of the vehicle;
(e) 	 All items of each customer should be completely loaded on the surface of the vehicle; (f) No 

two items can overlap in the same route;
(g) 	 The transportation requests of customers are exhaustively satisfied;
(h) 	 Within any route, linehaul customers are visited before backhaul ones (precedence constraint). 

As shown, Figure 1 presents the static case (at t=0) where customer orders are known in advance

and two initial routes schedules (linked with solid line) are generated to service these static 
customers (presented with white nodes). At route 1, the sequence of linehaul customer visited is 
[0,1,2,3], while the sequence of backhaul customer visited is [3*,2*,1*,0]. For each route (linehaul and 
backhaul) two feasible loading vehicles are associated. The first one involves all items to be delivered 
to linehaul customers where customer 1 requires two items (1-1 and 1-2), customer 2 requires one 
item (2-1) and customer 3 requires three items (3-1, 3-2 and 3-3).

The second loading vehicle is associated with items to be picked-up from backhaul customers and 
sent to the depot customer 3* sends one item (3*,1), customer 2* sends one item (2*,1) and customer 
1* sends two items (1*,1 and 1*,2).

At route 2, the sequence of linehaul customers visited is [0,4,5] while the sequence of backhaul 
cus- tomers visits is [5*,4*,0]. Two loading vehicles are associated for linehaul and backhaul customers. 
For the case of linehaul order, customer 4 requires one item (4-1) and customer 5 requires two items 
(5-1 and 5-2), while for the backhaul order, customer 4* sends one item (4*-1) and customer 5* sends 
one item (5*-1) to the depot.

3.2 Dynamic 2L-VRPB
In contrast to a static 2L-VRPB (Dominguez et al. (2016)), the performance of the dynamic counterpart 
is assumed to be dependent not only on the number of customers and their spatial distribution, but also 
the number of dynamic events and the time (t) when these events actually take place with respecting 
the packing and the backhaul constraints.

Therefore, to measure the dynamism problem (Lund (1996)), the degree of dynamism is defined 
as follows:



International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

7

δ δ
η

η
=











d

tot

	

.While, δ the ratio between the number of dynamic requests nd and the total number of requests ntot.

if (δ=1) all requests are known in advance ( the problem is completely static)	
if (δ=0) No requests are known in advance ( the problem is completely dynamic)	

As proposed by Montemanni et al. (2003), we decompose the 2L-DVRPB into a sequence of 
static 2L-VRPBs.

Therefore, to solve the 2L-DVRPB, the working day, T, is divided into t.
If any new customers order qi(t) arrives during a time t the solutions are re-adapted.
Once the calculations allotted for a given time t are completed the best-fitted chromosome is 

selected, decoded and the vehicle routes it represents are examined. In the DVRP, the solution(s) 
obtained from the previous time t can be reused as an initial population for the next time t. Figure 
2presents an example of a 2L-DVRPB solution.

Figure 2 presents the dynamic case, where new backhaul customers ( presented with black node) 
are considered. Therefore, new route segments ( presented with dashed line) are created. For route 
1, a new backhaul customer 6* arrived. So, the sequence of backhaul customer visited is updated to 
[6*, 3*, 2*, 1*, 0]. The new customer 6* sends two items (6*-1 and 6*-2) within the loading backhaul 
vehicle to the depot. Regarding route 2, a new customer 7* arrived and the sequence of backhaul 
customer visited is updated to [5*,7*,4*,0]. The new customer 7* sends one item (7*,1) within the 
loading backhaul pattern to the depot. Figure 2 presents a framework of the suggested solution.

Figure 1. An example of a static 2L-VRPB solution (at t=0)
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4. MATHEMATICAL FORMULATION OF THE 2L-DVRPB PROBLEM

In this section, we present the mathematical formulation of the 2L-DVRPB:

	 (1)

j
n

j
k

i
n

i
kx t x t k m= =( ) = ( ) = ∈ { }∑∑ 1 0 1 0

1 1, , ,… 	 (2)

j j i
n

k
m

ij
kx t i n= ≠ =∑∑ ( ) = ∈ { }0 1

1 1
,

, , ,… 	 (3)

i b j l ij
kx t k m∈ ∈∑ ( ) = ∈

;
,0 	 (4)

	 (5)

Figure 2. An example of a Dynamic 2L-VRPB solution (at t>0)
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i
n

j j i
n

ij
k

i
x t q t Q k m= = ≠∑∑ ( ) ( ) ≤ ∈ { }1 0

1
,

, , ,… 	 (6)

	 (7)

0≤xilt(t)≤(W-wilt)(1-Ωilt)+(W-hilt Ωilt)	 (8)

0≤yilt(t)≤(H-hilt)(1-Ωilt)+(H-wilt Ωilt)	
⩝ i ϵR, ⩝ lt ϵ {1,2,…mi}	

xilt(t)+ wilt(1- Ωilt)+ hilt Ωilt≤xjl’t	 (9)

xjl’t(t)+ wjl’t(1- Ωjl’t)+ hjl’t Ωil’t≤xilt	
yilt(t)+ hilt(1- Ωilt)+ wilt Ωilt≤yjl’t	
yjl’t(t)+ hjl’t(1- Ωjl’t)+ wjl’t Ωjl’t≤yilt	
⩝ i,j ϵR, ⩝ltϵ{1,2,…,qi}, ⩝ l’tϵ{1,2…qj}, (i,lt) ≠(j,l’t)	

x t y t i n j n i j k m
ij
k

j
k( ) ( ) ∈ { } ∈ { } ∈ { } ≠ ∈ { }, , , , , , , , , , , ,0 1 1 0 1… … … 	 (10)

•	 The objective function (1) consists of minimizing the total cost of a fleet of vehicles at time t.
•	 Constraints (2) express that each travel should begin and end at the depot and routes are only 

allowed to start with a linehaul customer.
•	 Constraints (3) provide that a single vehicle leaves each customer at time t.
•	 Constraints (4) and (5) enforce that no linehaul customers are visited with vehicle k after servicing 

any backhaul customer.
•	 Constraints (6) guarantee that the vehicle weight is not exceeded.

◦◦ Constraints (7) guarantee that the vehicle surface is not exceeded.
◦◦ Constraints (8)ensures that items are loaded within the vehicle’s loading surface
◦◦ Constraints (9) permit to avoid any two items (lt and lt’) overlapping on the surface of the 

vehicle.
◦◦ Constraints (10) are the integrality conditions on the x-variables.

5. AN ADAPTIVE GENETIC ALGORITHM FOR THE 2L-DVRPB

The 2L-DVRPB is a combination of two NP-hard problems: the dynamic VRPB and the two- 
dimensional bin packing problem (2BPP). Genetic Algorithms (GAs) proved to be able to solve many 
NP-hard problems reaching near optimum solutions. In addition, GAs are good at solving dy- namic 
problems AbdAllah et al. (2017). An adaptive GA is developed to solve the proposed 2L-DVRPB. 
A flowchart illustrating the sequence of applying improvements to the AGA is given in Fig. 3. In our 
case, our AGA starts by generated an initial population using the insertion

heuristic, to determine whether a route-sequence of customers-is feasible in terms of the loading 
con- straints of the examined problem, we designed a bundle of six packing heuristics Heuri (i = 1, 2, 
. . . , 6). A set of parameters are initialised in this step which are ( maximum number of generations 
(Max- Gen), population size (PS), crossover rate (CR) and mutation rate (MR)). Then, a fitness function 
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using the objective function is used to evaluate each individual. Two solutions are selected randomly 
from the population using the tournament selection. After that, a two point crossover is used in order 
to maintain the feasibility of the random moves. Then, an inversion mutation operation is defined as 
a perturbation of the structure with a random element that may effect the next generation. At each 
generation, the fitness is then selected to enhance an improved population for the subsequent steps. 
Finally, the old population is replaced by the new population of offspring solutions. This process is 
repeated until a number of generations are reached (1000 generations). Algorithm 1 describes the 
main steps of our AGA. In the following subsections, we describe our proposed AGA in more details.

Figure 3. Flowchart of the proposed AGA

Algorithm 1. The Adaptive GA approach for the 2L-DVRPB
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5.1 Initial Population
First, a randomly initial population is generated.

An insertion heuristic is used to dispatch requests to vehicle routes. First we start with opening 
R empty routes. A starting region is chosen randomly from the depot. After that, iteratively insert 
one customer at a time. Since the definition of the VRPB requires that every vehicle visits at least 
one linehaul customer the heuristic insert a randomly selected linehaul customer at the beginning 
of each route as an initialization step. At each iteration, one customer is randomly selected and 
inserted in a randomly chosen route. If the selected customer is a linehaul customer, it is inserted 
at the beginning of the route. If it is a backhaul customer, it is inserted at the end of the route. The 
customers are inserted in the solution with considering the capacity and the packing constraints of 
the problem. Then, linehaul and static backhaul customers are sequentially inserted in increasing 
order of the angle formed by each region and their locations and Customers are inserted into the 
position service with minimum routing cost with respecting the packing and the following linehaul 
and backhaul customers constraints:

A linehaul customer can only be inserted between two linehauls or between the depot and the 
first linehaul or between the last linehaul and the first backhaul or if there is not a backhaul in the 
route, the insertion will be between the last linehaul and the depot. The same constraints are applied 
to the insertion of a backhaul customers.

Once the initial static routes are generated, the simulation of the operations day can start. A new 
customer request is inserted at minimum additional cost into one of the planned routes. The solution 
is updated.

The above process is repeated until a feasible 2L-DVRPB solution is obtained and will be updated 
automatically with the arrival of a new customers.

5.2 Solution Encoding
Each 2L-DVRPB solution encoding is based on indexed array to present the chromosomes. Each 
chromosome includes a set of linehauls customers and backhaul customers, to be visited by an assigned 
vehicle. The 2L-DVRPB solution is represented by a set of chromosomes, it can be considered as a 
valid solution if all constraints for the loading and routing problems are satisfied.

In our AGA representation, the solution is a set of n where n = L + B customers. Each 2L-DVRPB 
solution is a string entities of an artificial chromosome.

Algorithm 2. Insertion heuristic
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The solution is represented as an integer string. In our approach, a chromosome representation 
has the form of a vector of length (L+B+m+1), where L is the number of Linehaul customers, B is 
the number of backhaul customers and m is a set of identical vehicles. There are also the depot 0 in 
the vector representing the start and the end of each vehicle route. The sequence between two 0 is 
the sequence of nodes to be visited by a vehicle.

Each gene in the string or chromosome is the integer node number assigned to that customer 
originally. Figure 4 presents an example of a chromosome of 2 routes with 12 customers (5 linehaul 
customers and 6 backhaul customers) where the node 0 indicates the center Depot. The positive 
nodes represent the static customers and the negative ones represent the dynamic customers (when 
a new customer is newly added).

The two routes are presented as follows: Route 1: [0 1 3 -6 3* 2* 1* 0]

Route 2: [0 4 5 5* -7 4* 0]	

5.3 Fitness Function
Each individual is evaluated using the fitness value F (x). The fitness function of our 2L-DVRPB 
problem is to find the shortest routes. So, the fitness value is calculated as follows that is the total

distance travelled: F(x)= z(x)	

where,

•	 cij designates the cost of traveling from customers i, j

k designates the distance traveled by the vehicle k from customers i to j.	

5.4 Selection Operator
In this paper, we choose to use Tournament method as a selection operator that requires the following 
steps:

Step 1: Select randomly two individuals from the population. 
Step 2: Compares their fitness values.

Figure 4. A Chromosome representation
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Step 3: Select parents with the better fitness value as P1 and P2.

5.5 Crossover and Mutation Operators
In this paper, we use the two point crossover operator. The two point Crossover operator selects two 
parents for crossover and then randomly selects two crossover points. Two offspring are created by 
combining the parents at crossover point. it requires three steps:

Step 1: Select two parents used for crossover.
Step 2: Randomly select crossover linehaul point pi (i = 0 to l-1) and crossover backhaul point pi (i 

= 0 to b-1) called mapping section.
Step 3: Two offspring are created by combining the parents at crossover linehaul and backhaul point. 

In Figure 5 an example is given to illustrate the two point crossover operator. In each solution, the 
first segment presents the linehaul customers and the second one presents the backhaul customers. 
Apply the elitism operator, insert the new offspring into the initial population to always substitute 
the worst individual. For the mutation operator, we use the inversion which generates two cut-
points from the linehaul customers or from the backhaul customers of the chromosome, and then 
reverses a part of customers between these two cut-points. Figure 6 describes an example of the 
inversion mutation operator.

5.6 Stopping Criterion
This above process are repeated until a number of 1000 generation is reached.

Figure 5. An example of the two point crossover operator

Figure 6. Example of the inversion mutation operator
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6. HEURISTICS FOR THE LOADING SUBPROBLEM

In this section, we described whether a route-sequence of customers-is feasible in terms of the loading 
constraints of the examined problem.

In our case of sequential version, first, the rectangles are sorted by the reverse visiting order of 
customers. Then, the rectangles demanded by the same customer are sorted in decreasing order of 
the area of the rectangle.

Furthermore, the feasibility of loading an item into the vehicle loading space is checked using 
six packing heuristics. The first five heuristics Heuri (i = 1, 2, . . . , 6) are based on the work by 
Zachariadis et al. (2009).

Let Load pos denote a list of available loading positions for the items. So, the first available 
loading position lies in the front left corner (0,0) of the vehicle and the Load pos=0, 0. When an 
item is successfully inserted, four new positions are added onto the list and the Load pos is updated. 
Each heuristic loads an item in the most suitable position selected from the feasible ones according 
to the individual criterion as follows:
Algorithm 3 bundle of packing heuristics
Input: : 
HeurheurInd= Heur

1
, Heur

2
, Heur

3
, Heur

4
,Heur

5
,Heur

6

1: Begin 
2: int HeurheurInd=1 
3: Empty Vehicle, Load pos= 0, 0
4: for each Item it do
5:	Determine Position pos	 Load pos for it, according to 
HeurheurInd 
6:	IF (no feasible pos exists) 
7:	heurInd = heurInd + 1 
8:	If (heurInd = 6) 
9:	heurInd = 1 
10:	 ENDIF 
11:	 go to 
12:	 ENDIF 
13:	 Place it in pos 
14:	 Remove pos from posList, add new loading positions in Load 
pos
15: end for
Output: Produce feasible loading
16: End

6.1 Heur1: Bottom-Left ftll (W-axis)
The selected position is the one with the minimum W-axis coordinate, breaking ties by minimum 
Laxis coordinate.

6.2 Heur2: Bottom-Left ftll (L-axis)
The selected position is the one with the minimum L-axis coordinate, breaking ties by minimum 
Waxis coordinate.

6.3 Heur3: Max Touching Perimeter Heuristic
The selected position is the one with the maximum sum of the common edges between the inserted 
item, the loaded items in the vehicle, and the loading surface of the vehicle.
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6.4 Heur4: Max Touching Perimeter No Walls Heuristic.
The selected position is the one with the maximum sum of the common edges between the inserted 
item and the loaded items in the vehicle.

6.5 Heur5: Min Area Heuristic
The selected position is the one with the minimum rectangular surface. The rectangular surface 
corresponding to the position at the circle point is shown on the left in Figure.

More details of these five heuristics can be found in Zachariadis et al. (2009) and Leung et al. 
(2011). Heur6: Min lost area heuristic:(MILAH)

The selection position of loading an item in list of available loading positions Load pos is the 
one with the minimum lost area.

When the height of the region between the upper edge of the new item and the border of the 
bin or the edges of the already inserted items is less than the smallest edge-length of the remaining 
items and none of the remaining items can be fitted into this area. Such regions are called lost area. 
Figure 6 schematically describes the mechanism of an item insertion. Where Figure 7 (b) presents 
the first insertion position of the item E, the region between the items C, A and the new inserted 
item E (see dark region in figure 7 (b) is less than the smallest edge-length of the remaining items 
and none of the remaining items can be fitted into this area. Such regions are called lost area. Figure 
7 (c) presents the selected loading position of the new item E with the minimum surface of lost area. 
This heuristic aims at achieving a high degree of utilisation of the available surfaces. The position 
for the placement of an item is selected from the list of available positions pos List and must not lead 
to any loading constraint violation (overlapping or sequential constraint).

This bundle of heuristics are employed for the linehaul and the backhaul cases.

7. COMPUTATIONAL EXPERIMENTS

7.1 Parameters Setting
All the tests were performed with the same configuration of the AGA. The algorithm was run 10 
times on each instance. Table 2 reports the parameters of our AGA algorithm.

Figure 7. The process of inserting an item. (a) The list of available loading positions Load pos, (b) The first insertion position of 
item E, (c) The second position of item E with the minimum lost area.
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We take one problem version, depending on the loading constraint configuration under 
consideration: 2|SO|L version (sequence constraint, fixed orientation).

This section presents the computational results based on a set of benchmark instances used by 
Gendreau et al. (2008), but with a different types of 2L-VRP constraints (2L-VRP with backhaul and 
dynamic 2L-VRP with backhaul).

The proposed AGA approach is implemented using Java Language version 7. All experiments 
were performed on a PC equipped Intel (R) Core (TM) i3-4005U CPU with 4 GB(Gigabytes) of 
RAM under Microsoft Windows 7.

In order to demonstrate the performance of our proposed AGA, we design and solved it with the 
following steps: Computations are carried out in three phases:

1. 	 We start our experiments by solving a set of classical 2L-CVRP benchmark instances (introduced 
by Iori et al. (2007) and Gendreau et al. (2008)) without dynamic and without backhauls constraints 
and considered the sequential oriented loading (2|SO|L) in order to prove the efficiency of our 
approach. As a result, our results are compared with the best-known solution (BKS) found in 
the literature (among SA, EGTS + LBFH, ACO, GRASPELS, and PRMP). Our AGA generates 
new best solutions when compared to the BKS.

In addition, the obtained solutions of our algorithm is perfectly comparable to other state-of-
the- art approaches that deal with the 2L-CVRP for the 2|SO|L.

2. 	 Then, we generate a new set of instances for the static 2L-VRP whith backhaul from the classical 
2L-CVRP using the method described by Toth and Vigo (1997) to generate VRPB instances 
from classic Euclidean VRP ones.

Performance comparison between proposed algorithm and other algorithms in the literature that 
deal with the 2L-CVRPB is given as well.

3. 	 Once the efficiency of our AGA approach has been proved for the static 2L-VRPB case, we use 
the effective degree of dynamism to define a framework classifying 2L-DVRP among weakly, 
moderately and strongly dynamic problems proposed by Larsen et al. (2002, 2007). Accordingly, 
we generate a new set of instances for the dynamic 2L-VRPB. We have also inves- tigated the 
impact of the degree of dynamism (dod) on strategy effectiveness [29], [30]. To do so, for all 
backhaul instances we examined cases of low dod (25% Dynamic requests), moderate dod (50% 
Dynamic requests) and high dod (75% Dyamic requests).

Table 2. A Meta-tuning of the GA

Parameters Values

Population Size (N) 100

Selection The tournament selection

Crossover rate 0,65

Mutation rate 0,20

Replacement strategy The elitism operator

Maximum number of generation 1000
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In this work, we deal with pickup problems. The driver of the vehicle is not concerned with 
what he is transporting, but only the quantity that he will pick from the customer. We fix the above 
mentioned parameters that can affect the final travel distances as follows:

The optimization begins to plan routes with the known static customers at time t = 0. To the 
best of our knowledge, no test instances are available in the literature for the version of the dynamic 
2L-VRPB studied in this article. Therefore, we cannot compare them against other state-of-the- art 
approaches for the problem. However, to ensure the validity of our approach we calculate the value 
of information.

7.2 Computational Results for the 2L-VRP
In this section, in order to evaluate the quality of the solutions obtained with our algorithm, we tested 
its performance on several 2L-VRP benchmark sets introduced by [15] and [12]. These instances 
were derived from 36 CVRP instances, described by [31], by expressing the customer demand as a 
set of two-dimensional, weighted and rectangular items. To generate the aforementioned item sets, 
five classes of the item demand characteristics are used [15]. These instances can be downloaded at 
http://www.or.deis.unibo.it/research.html.

Five classes are created for each of the 36 CVRP problems. So, 180 instances are generated from 
the five classes. Some details of instances are reported as follows: The dimensions values of loading

Class 1: In class 1, each customer is associated a single item of width and length equal to nil. The 
problems of Class 1 are in fact pure CVRP instances, as every customer sequence is feasible in 
terms of the loading constraints of the problem examined. They are used to test the algorithmic 
effectiveness in terms of the routing aspects of the problem examined.

Classes 2-5: For classes 2 to 5, each customer i, a set of mi items is generated. mi is uniformly 
distributed within a given range. Each item is classified into one of the three shape categories, 
namely vertical, homogeneous and horizontal, with equal probability. The dimensions (width 
and length) of an item are uniformly distributed into the ranges determined by this items shape 
category. The mi and the dimension ranges are provided in Table 3. surface of each vehicle are 
L = 40 and W = 20 for all instances. Table 3 shows the characteristics of items in Classes 2-5 
instances.

7.2.1 Computational Environments for 2L-VRP
We executed our AGA ten times for each instance by setting the random seed from 1 to 10. We compare 
our AGA with some of the most efficient approaches for 2L-CVRP, including PRMP [48], VNS 
[45] and SA [46]. The computational environments for these approaches are summarized in Table 
4. All these approaches were also executed 10 times for each instance. In the following tables, the 
cost listed is the best cost achieved over 10 runs. We list the details of only the best-known solution 

Table 3. The item’s characteristics of classes 2 to 5 instances

Class M Ver tical Homogenous Horizontal

Length width Length width Length width

2 [1, 2] [0.4L, 0.9L] [0.1W, 0.2W ] [0.2L, 0.5L] [0.2W, 0.5W ] [0.1L, 0.2L] [0.4W, 0.9W ]

3 [1, 3] [0.3L, 0.8L] [0.1W, 0.2W ] [0.2L, 0.4L] [0.2W, 0.4W ] [0.1L, 0.2L] [0.3W, 0.8W ]

4 [1, 4] [0.2L, 0.7L] [0.1W, 0.2W ] [0.1L, 0.4L] [0.1W, 0.4W ] [0.1L, 0.2L] [0.2W, 0.7W ]

5 [1, 5] [0.1L, 0.6L] [0.1W, 0.2W ] [0.1L, 0.3L] [0.1W, 0.3W ] [0.1L, 0.2L] [0.1W, 0.6W ]
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(BKS) among all previous approaches and the two methods with excellent performance: PRMP, VNS 
and SA for the 2|SO|L versions.

Results for the sequential oriented variant of the 2L-VRP (2|SO|L) are summarised in Table 5 
for classes 1 to 5. The proposed method was applied ten times on each of the pure CVRP instances 
of Class 1. For the Class 1 instances, the first column of Table 4 compares the best cost of each test 
problem against BKS on the pure CVRP (Class 1) instances. Our AGA finds better solutions for 9 
instances (in bold) and matches the BKS for 21 instances. Moreover, the average cost of AGA is 
smaller than the BKS. Thus, the AGA is very effective in respect of the routing aspect.

Column 2 to 5 include the best solution found for each instance from class 2 to 5 by means of our 
AGA approach and its corresponding %gap to the best-known solution (BKS) found in the literature. 
In all cases, we present the best found solution over 10 executions of our algorithm per instance, 
allowing a maximum running time of 500 seconds. Among the 144 instances, the AGA finds better 
solutions for 64 instances (in bold) and reaches the best solutions for 71 instances. The improvement 
on the single instance reaches up to -2.364%. On average, the greatest improvement is obtained on 
the class 3 with -0.873%, and the least improvement is for the class 4 with -0.437%.

Table 14 (in Appendix) compare the best solution scores averaged over the four instances (Classes 
2-5) of each test problem (instances 1-36) against previous solution approaches proposed for the 2|SO|L 
version of 2L-CVRP. These approaches are the PRMP algorithm [47], the VNS metaheuristic [44] and 
SA [45]. We observe that the proposed method consistently improves or matches the best algorithmic 
scores for 26 out of the 36 problems. More specifically, for 26 instances (in bold), AGA improves the 
average solution scores obtained by PRMP, VNS and SA, whereas for 10 instances, it matches their 
solution values. The average improvement is equal to 0.24%. In terms of the computational effort, 
the CPU time required by AGA method is comparable.

BKS: Best known solution(among SA, EGTS + LBFH, ACO,GRASPELS, and PRMP).
The column Average (Avg) : gives the average cost of different versions for each class.

The %gap is the percentage difference between the best solution found by our method and the 
reference solution.

%gap = 100 ((BKS - CP V NS)/BKS)

Table 4. Computational environments of different methods

Methods CPU RAM

SA Intel 2.4 GHz Core Duo -

ACO Pentium IV 3.2 GHz 2

GRASP-ELS Opteroun 2.1 GHz -

EGTS+LBFH Intel Core 2 Duo 2.0 GHz 2

PRMP Intel Core 2 Duo E6600 2.4 GHz -

VNS IntelXeon E5430 with a 2.66 GHz (QuadCore) 8GB

SA IntelXeon E5430 with a 2.66 GHz (QuadCore) 8GB

AGA Intel(R) Core(TM) i3 CPU170 GHz 4GB
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7.3 Computational Results for the static 2L-VRP with backhaul
Notice that the 2L-VRPB can be seen as an extension of the 2L-VRP, i.e. every 2L-VRP instance 
may be considered as a especial case of 2L-VRPB.

In class 1, each customer is associated a single item of width and length equal to nil. For this 
reason, our algorithm does not need to be modified to solve 2L-VRP instances. We tested our GA 
approach contemplating sequential oriented loading (2|SO|L).

We generate a new set of instances for the static 2L-VRP whith backhaul from the classical 
2L-CVRP using the method described by Toth and Vigo [42] to generate VRPB instances from 
classic Euclidean VRP ones. The 2L-VRP instances have been extended to generate new instances 
for the 2L-VRPB. Thus, we have generated three new 2L-VRPB instances for each 2L-VRP one. 
These new instances contain 50%, 60%, and 80% linehaul customers. To obtain such linehaul-
backhaul distributions, we select a customer every two, three, or five customers, respectively, to 
be a backhaul location. These linehaul/backhaul configurations are represented in Table 6, 7, and 

Table 5. Results for the 2L-VRP from class 1 to 5

Ist Class 1 Class 2 Class 3 Class 4 Class 5

BKS GA %Gap BKS GA %Gap BKS GA %Gap BKS GA %Gap BKS GA %Gap

1 278.73 278.73 0.00 290.84 290.84 0.00 284.52 284.55 0.01 294.25 294.25 0.00 278.73 278.73 0.00

2 334.96 334.96 0.00 347.73 347.73 0.00 352.16 352.16 0.00 342.00 342.00 0.00 334.96 334.96 0.00

3 358.40 358.40 0.00 403.93 403.93 0.00 394.72 394.72 0.00 368.56 368.56 0.00 358.40 358.40 0.00

4 430.88 430.86 -0.005 440.94 440.94 0.00 440.68 440.68 0.00 447.37 450.37 0.670 430.88 430.88 0.00

5 375.28 375.28 0.00 388.72 388.72 0.00 381.69 372.71 -2.35 383.87 383.87 0.00 375.28 375.28 0.00

6 495.85 495.85 0.00 499.08 499.08 0.00 504.68 504.68 0.00 498.32 495.30 -0.606 495.85 497.02 0.24

7 568.56 568.56 0.00 734.65 734.65 0.00 709.72 709.72 0.00 703.49 703.49 0.00 658.64 658.63 -0.002

8 568.56 568.56 0.00 725.91 725.91 0.00 741.12 741.08 -0.005 697.92 697.92 0.00 621.85 621.85 0.00

9 607.65 607.60 -0.008 611.49 611.49 0.00 613.90 613.90 0.00 625.10 625.10 0.00 607.65 607.65 0.00

10 535.74 535.74 0.00 700.20 700.10 -0.01 628.93 628.93 0.00 715.82 715.82 0.00 690.96 690.96 0.00

11 505.01 505.98 0.19 721.54 721.54 0.00 717.37 717.37 0.00 815.68 815.68 0.00 636.77 622.99 -2.16

12 610.00 610.05 0.008 619.63 619.63 0.00 610.00 610.00 0.00 618.23 618.23 0.00 610.23 608.95 -0.002

13 2006.34 2006.34 0.00 2669.39 2669.30 -0.003 2486.44 2438.41 -1.93 2609.36 2609.36 0.00 2421.88 2414.82 -0.29

14 837.67 837.67 0.00 1101.61 1089.16 -1.13 1085.42 1085.42 0.00 983.20 981.78 -0.14 924.27 924.27 0.00

15 837.67 837.58 -0.01 1041.75 1041.75 0.00 1181.68 1181.68 0.00 1246.49 1246.49 0.00 1230.40 1231.40 0.081

16 698.61 698.61 0.00 698.61 697.55 -0.15 698.61 698.61 0.003 708.20 708.22 0.002 698.61 698.61 0.00

17 861.79 861.81 0.002 870.86 870.86 0.00 861.79 861.79 0.00 861.79 861.79 0.00 861.79 842.77 -2.207

18 723.54 723.54 0.00 1053.09 1051.00 -0.2 1103.45 1100.96 -0.22 1134.11 1134.11 0.00 926.53 926.53 0.00

19 524.61 524.61 0.00 792.42 791.24 -0.15 801.13 801.13 0.00 801.21 801.17 -0.005 652.58 650.61 -0.30

20 241.97 241.97 0.00 547.82 544.28 -0.65 541.58 541.58 0.00 552.91 550.99 0.00 478.73 476.73 -0.417

21 687.60 687.62 0.002 1060.72 1060.69 -0.003 1150.85 1144.88 -0.52 1006.21 1000.19 -0.002 893.18 893.11 -0.017

22 740.66 740.66 0.00 1081.44 1081.44 0.00 1094.66 1094.66 0.00 1089.27 1089.27 0.00 948.60 948.71 0.012

23 835.26 835.22 -0.005 1093.27 1093.27 0.00 1117.54 1117.54 0.00 1095.08 1093.01 -0.19 950.25 932.72 -1.84

24 1024.69 1024.69 0.00 1222.40 1222.40 0.00 1118.44 1118.44 0.00 1141.97 1141.97 0.00 1048.69 1048.69 0.00

25 826.14 826.14 0.00 1458.83 1458.83 0.00 1436.57 1436.57 0.00 1435.18 1435.18 0.00 1183.63 1182.61 -0.086

26 819.56 817.56 -0.24 1327.47 1327.45 -0.002 1396.52 1391.57 -0.35 1447.03 1447.03 0.00 1252.65 1251.66 -0.08

27 1082.65 1082.65 0.00 1367.85 1367.85 0.00 1423.74 1412.47 0.00 1357.75 1348.57 -0.67 1270.34 1254.94 -1.21

28 1040.70 1040.68 -0.002 2699.21 2699.16 -0.002 2787.24 2688.71 -3.53 2700.66 2700.66 0.00 2399.25 2400.55 0.05

29 1162.96 1162.92 -0.003 2289.84 2289.84 0.00 2172.69 2148.99 -1.09 2312.37 2295.89 -0.71 2191.69 2175.96 -0.71

30 1028.42 1028.42 0.00 1875.38 1875.36 -0.001 1915.42 1911.44 -0.20 1910.54 1900.94 -0.50 1575.64 1562.46 -0.84

31 1299.56 1299.48 0.00 2369.07 2339.89 -1.23 2360.63 2352.33 -0.35 2469.40 2457.74 -0.47 2072.19 2051.32 -1.00

32 1294.91 1294.98 0.006 2384.29 2360.91 -0.98 2325.74 2318.77 -0.30 2357.57 2341.75 -0.67 2031.92 2013.99 -0.882

33 1298.02 1298.02 0.00 2376.58 2335.83 -1.71 2469.85 2445.58 -0.98 2470.76 2439.89 -1.25 2054.29 2034.92 -0.942

34 708.39 708.34 -0.007 1226.98 1216.99 -0.81 1253.88 1247.85 -0.48 1242.26 1240.62 -0.13 1062.18 1062.22 0.14

35 865.39 865.39 0.00 1447.30 1422.95 -1.68 1529.77 1509.79 -1.30 1558.69 1548.99 -0.62 1281.90 1275.99 -0.461

36 585.46 583.94 -0.26 1784.57 1784.57 0.00 1869.38 1829.35 -2.14 1740.64 1710.75 -1.71 1549.51 1540.99 -0.55

Av 769.505 769.428 -0.02 1175.70 1171.45 -0.51 1182.29 1173.58 -0.873 1187.312 1183.38 -0.437 1057.24 1052.13 -0.544
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8 respectively. Accordingly, we produced a total of 540 2L-VRPB instances derived from the 180 
2L-VRP instances introduced by [15] and [12]. Then, our results are compared to BR-LNS of [6], to 
the best of our knowledge, only this work have investigated the 2L-VRPB for the sequential oriented 
loading (2|SO|L). Table 6 presents our results for instances with a one linehaul every two backhaul 
configurations. In particular, the performance of our algorithm is improved by compared our results 
with the BR-LNS one presented by [6]. Therefore, on 180 instances with 50% Linehaul and %50 
backhaul of the Sequential 2L-VRPB, our AGA could find better value for 105 (in bold) instances 
(58%) and matches the same value for 50 (28%) instances from class 1 to 5. In addition, we noticed 
that our AGA matches the best AVG equal to (-0.17, -0.13, -0.13, -0.24 and -0.019) from class 1 
to 5 respectively. Moreover, Table 7 presents our results for instances with 60% linehaul and 40% 
backhaul configuration. In particular, the performance of our algorithm are improved by compared our 
results with the BR-LNS results presented by [6]. Therefore, at most 180 instances with 60% linehaul 
and %40 backhaul of the sequential 2L-VRPB, Our AGA could find better value for 123 (in bold) 
instances (68%) and matches the same value for 31 (17%) instances from class 1 to 5. In addition, we 
noticed that our AGA matches the best Avg equal to (-0.24, -0.33, -0.30, -0.26 and -0.18) from class 
1 to 5 respectively. In addition, Table 8 presents our results for instances with 80% linehaul and 20% 
backhaul configuration. In particular, the performance of our algorithm are improved by compared 
our results with the BR-LNS one presented by [6]. Therefore, on 180 instances with 60% Linehaul 
and %40 backhaul of the Sequential 2L-VRPB, Our AGA could find better value for 111 (in bold) 
instances (62%) and matches the same value for 28 (16%) instances from class 1 to 5. In addition, 
we noticed that our AGA matches the best Avg equal to (-0.56, -0.48, -0.19, -0.43 and -0.15) from 
class 1 to 5 respectively.

In summary, the proposed AGA performs quite well on large-scale instances, in which al most 
the BR-LNS for Classes 1 to 5 . Therefore, our proposed AGA is an effective algorithm for 2L-VRPB. 
In terms of computational time, it is difficult to compare the running times of different algorithms 
fairly because different algorithms were coded in different programming languages and tested on 
different machines.

The Value of Information
The Value of Information aims to measure the performance of a dynamic optimization problem. It 
was discussed in [27], [32] , and [29] .

In this study, we report the performance of the proposed AGA method based on the so-called 
value of information, which was originally introduced by Mitrovic-Minic et al. [27].

Consider the 2L-DVRPB instance R and the related static problem Rs, in which all dynamic 
requests are known prior to the dispatching of the vehicles (i.e., at time t = 0). Then the value of 
information metric V« corresponding to algorithm s while solving dynamic problem R is defined by 
the following expression:

V
Z Z

Z
s

ℑ
ℑ ℑ

ℑ

ℜ =
ℜ− ℜ

ℜ
*100 	 (7)

where Z«(R) and Z«(Rs) are the values of the objective function for dynamic problem R and for the 
related static problem Rs, both solved by algorithm s. Note that s is used at each reoptimization step 
for R , while s is used once to solve Rs. In our case, to define the value of information, in terms of 
the interaction of the re-optimization strategies with the value of degree of dynamism (dod) and the 
customer positions (for the case of 50% L, 50% B, the case of 60%L, 40% B and the case of 80% L 
and 20% B) Table 9 presents the performance of each class with respect to dod for 25%, 50% and 
75% respectively. Note that this is the average performance over all related instances. The value of 
information is always positive as it may be expected. In the case of routing costs, it is smaller for 
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larger instances, implying that less distance would be gained by knowing all requests in advance for 
the larger instances. The reverse relation is observed for the number of vehicles.

8 TUNISIAN CASE STUDY

In order to evaluate the performance of the proposed approach, we choose to apply our approach in a 
real case study provided by a Regional Post Office of the city of Jendouba (RPOJ) in the North West 
of Tunisia. The latter ensures the distribution of parcels and letters in different countries’ offices and 
postal cells that cover the governorate of Jendouba.

There are 41 post offices located in different districts in the Jendouba including the distribution 
center JDB, as shown in Figure 8. Their names are listed in Table 10.

Table 6. Results for the 2L-VRPB from class 1 to 5 with 50% linehaul customers and 50% backhaul customers

Ist Class 1 Class 2 Class 3 Class 4 Class 5

BR- 
LNS

Our 
AGA

%gap BR- 
LNS

Our 
AGA

%gap BR- 
LNS

Our 
AGA

%gap BR- 
LNS

Our 
AGA

%gap BR- 
LNS

Our 
AGA

%gap

1 301.99 300.74 -0.41 308.76 308.75 -0.003 308.76 301.33 -2.40 312.12 310.20 -0.61 307.63 307.63 0.00

2 308.76 308.76 0 308.76 308.76 0 308.76 305.66 -1.004 308.76 308.76 0 308.76 308.76 0.00

3 335.54 335.47 -0.02 336.40 334.37 -0.6 345.66 344.33 -0.39 335.54 335.54 0.00 335.54 336.31 0.22

4 375.12 373.10 -0.54 375.12 373.10 -0.53 375.12 373.44 -0.45 375.12 374.25 -0.23 375.12 375.12 0.00

5 372.12 368.98 -0.84 376.84 375.72 -0.3 373.71 373.27 -0.12 372.12 370.63 -0.4 372.12 373.78 0.47

6 432.30 430.61 -0.40 428.88 429.97 0.25 432.30 429.89 -0.55 432.30 427.31 -1.15 432.30 429.30 0.69

7 689.32 686.44 -0.42 692.26 690.25 -0.69 691.85 695.85 0.57 699.27 698.99 -0.04 689.32 687.83 -1.52

8 689.32 688.75 -0.08 698.87 697.89 -0.14 718.89 717.79 -0.15 692.26 691.96 -0.04 677.52 676.91 -0.21

9 494.03 494.11 -0.01 501.48 499.98 -0.29 494.03 493.69 -0.07 500.57 499.97 -0.12 494.03 494.01 -0.004

10 502.77 501.86 -0.18 610.45 609.54 -0.15 536.29 535.92 -0.069 589.43 588.34 -0.18 571.68 568.98 -0.472

11 502.77 502.77 0.00 603.37 602.85 -0.08 581.42 581.37 -0.008 644.27 644.21 -0.01 573.31 573.57 0.04

12 471.46 471.46 0.00 482.63 482.63 0.00 471.46 471.46 0.00 475.76 475.46 -0.06 471.46 471.46 0.00

13 2276.57 2276.57 0.00 2399.98 2399.98 0.00 2384.40 2384.40 0.00 2354.57 2354.57 0.00 2326.80 2356.80 1.28

14 751.69 751.69 0 870.04 870.04 0.00 878.23 878.23 0.00 777.60 777.60 0.00 771.31 771.31 0.00

15 751.69 750.78 -0.12 850.73 848.99 -0.20 853.62 853.62 0.00 909.02 909.23 0.21 907.13 906.55 -0.63

16 543.09 542.98 -0.20 549.86 549.86 0 544.24 544.21 -0.005 543.39 543.21 -0.03 542.60 542.46 -0.025

17 638.14 637.95 -0.03 635.94 634.89 -0.16 635.94 634.96 -0.15 638.14 638.14 0 635.94 635.98 0.006

18 834.86 834.82 -0.005 937.03 936.92 -0.11 919.65 919.56 -0.01 918.57 918.57 0 845.35 845.38 0.003

19 562.83 562.83 0.00 655.44 655.44 0.00 655.97 655.97 0.00 637.33 637.33 0.00 617.50 617.50 0.00

20 319.72 319.27 -0.14 419.92 419.29 -0.15 397.05 396.83 -0.05 398.26 398.26 0.00 375.20 375.23 0.008

21 721.78 720.87 -0.13 876.37 876.33 -0.004 892.75 892.68 -0.08 844.89 844.81 -0.01 783.33 783.15 -0.03

22 721.68 721.35 -0.045 872.10 872.06 -0.004 862.65 862.67 0.002 899.02 899.08 0.006 805.17 805.17 0.00

23 746.90 746.55 -0.05 880.09 879.99 -0.01 860.55 860.05 -0.06 862.22 862.25 0.003 802.86 802.86 0.00

24 838.96 838.69 -0.03 920.51 919.98 -0.06 890.40 890.28 -0.013 896.58 896.24 -0.037 844.15 844.15 0

25 889.59 889.59 0 1144.05 1144.07 0.002 1102.54 1102.54 0 1091.96 1091.96 0 984.61 984.61 0.00

26 779.21 778.99 -0.09 1031.22 1031.08 -0.01 1039.09 1039.09 0.00 1096.63 1096.63 0.00 903.86 903.88 0.002

27 964.88 962.89 -0.20 1073.48 1073.48 0 1089.58 1085.85 -0.34 1058.67 1057.76 -0.09 1012.70 1011.70 -0.09

28 1022.91 1022.90 -0.09 1780.33 1779.33 -0.05 1801.48 1800.84 -0.03 1813.13 1813.17 0.002 1616.89 1616.89 0.00

29 1217.36 1217.36 0.00 1727.00 1727.00 0.00 1638.68 1638.68 0.00 1667.36 1667.36 0.00 1625.58 1625.58 0.00

30 1050.11 1050.09 -0.002 1415.14 1415.08 -0.004 1396.25 1395.52 -0.09 1385.71 1385.71 0 1236.57 1236.59 0.002

31 1216.24 1215.85 -0.03 1686.66 1684.95 -0.10 1698.68 1697.89 -0.04 1730.54 1728.86 -0.09 1545.89 1542.98 -0.18

32 1202.83 1201.38 -0.12 1700.82 1700.52 -0.017 1679.53 1679.35 -0.01 1687.62 1686.86 -0.04 1521.70 1515.61 -0.40

33 1213.71 1213.71 0.00 1716.05 1716.00 -0.003 1715.24 1715.14 -0.006 1732.86 1730.68 -0.12 1505.30 1505.30 0.00

34 702.84 701.48 -0.2 890.10 890.07 -0.003 908.90 906.85 -0.22 877.18 875.96 -0.14 808.02 808.32 0.37

35 747.01 747.01 0 1006.72 1005.27 -0.14 1020.11 1018.96 -0.11 1027.38 1026.83 -0.05 893.69 892.71 -0.11

36 488.96 488.66 -0.06 1090.58 1090.58 0.00 1126.35 1126.35 0 1052.64 1052.60 -0.003 946.13 947.31 0.12

Avg 741.085 740.48 -0.17 912.61 912.08 -0.13 906.39 905.68 -0.13 884.13 859.23 -0.24 846.30 839.21 -0.019
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Three vehicles are used to distribute letters and parcels between the existing path-way of the 
RPOJ which are illustrated as follows: 

Path 1: Tabarka {JDN-MLJBLJ-SJM-FRN-JTR-BBC-BMT-ABY-ADH-BBM-HMB-JBL-TBN-
AES- TBK-MMB-TBA-EMJ}

Path 2: Ghardimaou {CTT-HKM-HDL-ESD-SMK-EDK-OLH-OMZ-OGC-GDM-OMD}
Path 3: Bousalem {SSB-MRJ-BSL-BDR-SMR-RMN-BAN-BBR-BLT-ESB}

The vehicles has a fixed height(H), width(W ) and capacity weight(Q) equal to 2 meters, 2.5 
meters and 550 kg respectively. Each one must starts with the distribution center of Jendouba JND 
(depot) for two positions;

Table 7. Results for the 2L-VRPB from class 1 to 5 with 60% linehaul customers and 40% backhaul customers

Ist Class 1 Class 2 Class 3 Class 4 Class 5

BR- 
LNS

Our 
AGA

%gap BR- 
LNS

Our 
AGA

%gap BR- 
LNS

Our 
AGA

%gap BR- 
LNS

Our 
AGA

%gap BR- 
LNS

Our 
AGA

%gap

1 274.25 272.52 -0.63 275.25 275.25 0 274.25 274.25 0 274.25 274.52 0.10 284.22 284.22 0.00

2 323.52 321.01 -0.77 323.52 323.28 -0.07 323.52 321.86 -0.5 323.52 323.23 -0.09 323.52 318.98 -1.4

3 352.70 350.98 -0.49 380.89 378.98 -0.5 355.02 355.02 0 352.83 352.87 0.011 352.70 352.70 0.00

4 396.11 394.89 -0.31 397.66 395.87 -0.45 396.11 393.96 -0.54 396.11 395.98 -0.03 396.11 396.27 0.04

5 365.55 365.47 -0.02 378.70 375.98 -0.71 365.55 365.55 0.00 373.66 371.96 -0.45 365.55 364.75 -0.22

6 405.66 405.99 0.08 408.53 408.53 0.00 405.99 405.99 0.00 425.35 425.35 0.00 405.99 405.99 0.00

7 678.88 676.98 -0.28 703.67 702.75 -0.13 693.58 691.85 -0.25 703.67 702.76 -0.13 693.58 693.58 0.00

8 692.49 689.94 -0.36 693.58 693.58 0 703.67 703.76 0.013 703.67 700.67 -0.43 693.58 695.58 0.00

9 526.48 526.48 0 531.24 530.42 -0.15 530.35 528.53 -0.32 526.48 524.66 -0.34 526.48 521.84 -0.82

10 550.62 548.59 -0.37 611.94 610.49 -0.23 576.50 574.86 -0.28 637.45 634.78 -0.42 590.46 590.64 0.03

11 550.62 550.28 -0.06 626.35 626.59 0.03 565.46 565.64 0.31 638.45 638.45 0.00 565.82 563.28 -0.45

12 497.63 495.36 -0.47 515.80 515.66 -0.027 497.63 495.36 -0.45 498.25 498.25 0 497.63 497.39 -0.05

13 725.95 725.59 -0.05 894.55 894.55 0 886.27 882.78 -0.4 871.59 868.95 -0.30 767.04 767.17 0.017

14 725.95 720.59 -0.05 894.55 893.98 -0.06 886.27 868.89 -1.96 871.59 871.57 -0.002 767.04 767.04 0.00

15 725.95 725.33 -0.08 834.07 832.00 -0.25 886.93 886.71 -0.02 899.68 899.86 0.020 892.28 884.98 -0.81

16 582.64 582.60 -0.007 578.20 578.20 0 578.20 576.89 -0.22 599.82 597.87 -0.33 578.20 576.88 -0.23

17 697.42 696.23 -0.17 681.87 689.88 1.17 680.30 680.30 0 680.30 675.69 -0.63 680.30 678.28 -0.3

18 814.27 811.27 -0.37 956.22 956.02 -0.43 918.54 920.45 0.20 963.98 963.98 0 880.82 868.78 -1.37

19 878.70 876.96 -0.19 694.60 668.99 -3.7 712.12 708.12 -0.56 678.47 666.74 -1.72 625.08 628.11 0.49

20 304.45 301.54 -0.96 427.23 425.36 -0.44 424.19 423.89 -0.07 467.63 463.85 -0.80 392.19 390.98 -0.30

21 715.42 713.89 -0.21 927.84 919.89 -0.85 973.94 970.89 -0.31 860.51 859.21 -0.15 815.47 815.96 0.06

22 742.14 742.06 -0.01 883.66 883.66 0 935.45 934.54 -0.93 875.77 875.77 0 843.17 843.17 0

23 773.12 768.97 -0.53 931.68 929.87 -0.19 955.00 955.00 0.00 913.78 913.87 0.01 841.20 838.89 -0.27

24 873.83 874.83 0.11 1007.87 1007.78 -0.009 948.72 948.65 -0.007 948.54 943.85 -0.5 884.62 882.82 -0.20

25 830.07 825.70 -0.52 1219.02 1214.89 -0.33 1141.33 1140.39 -0.08 1178.43 1171.95 -0.54 1021.60 1021.60 0

26 773.24 773.24 0 1095.65 1090.56 -0.46 1086.15 1080.95 -0.47 1107.94 1107.22 -0.06 952.00 951.98 -0.002

27 974.54 974.45 -0.009 1173.29 1170.98 -0.19 1180.91 1180.13 -0.06 1091.93 1091.98 0.05 1074.09 1074.09 0

28 1039.50 1037.63 -0.18 1925.05 1922.36 -0.14 2029.48 2026.52 -0.14 1974.14 1971.41 -0.14 1827.23 1828.83 0.88

29 1342.38 1340.83 -0.11 1846.64 1846.46 0 1722.74 1722.74 0 1881.43 1881.34 -0.05 1798.12 1795.88 0.12

30 1059.28 1055.82 -0.32 1560.45 1558.54 -0.12 1554.94 1554.94 0 1566.45 1561.54 -0.13 1326.03 1325.33 -0.05

31 1278.37 1275.73 -0.20 1904.79 1900.97 -0.20 1866.44 1863.75 -0.14 1934.79 1931.92 -0.15 1719.53 1717.850 0.10

32 1291.09 1282.96 -0.63 1894.47 1891.74 -0.14 1846.20 1844.95 -0.07 1875.74 1875.47 -0.014 1662.50 1658.89 -0.21

33 1305.80 1305.37 0.03 1905.83 1901.38 -0.23 1947.88 1945.98 -0.09 1950.56 1950.65 0.005 1663.11 1660.69 0.14

34 633.81 631.38 -0.01 953.01 953.01 -0.43 988.73 981.37 -0.38 953.31 953.31 -0.56 867.07 869.70 0.30

35 793.11 793.01 -0.01 1133.30 1128.38 -0.43 1156.39 1151.93 -0.38 1205.36 1198.63 -0.56 1026.55 1024.55 -0.19

36 550.55 549.58 -0.17 1267.03 1266.91 -0.001 1315.68 1315.52 -0.1 1230.27 1230.22 -0.004 1109.22 1109.10 -0.01

Avg 723.50 721.77 -0.24 917.79 928.83 -0.33 925.28 923.4 -0.30 928.76 927.70 -0.26 853.06 851.85 -0.18
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The first one is to deliver (linehaul) parcels to different deliver post office, the second one is 
to pickup (backhaul) parcels from the post office and return to the distribution center of Jendouba.

The geographical locations of a set of the post offices to be serviced (deliver or collect) are 
already known by the dispatcher before the server leaves the depot. All linehaul (deliver) must be 
done be- fore the backhaul (collect). The customer demand is formed by a set of two-dimensional, 
rectangular, weighted items.

During the execution of the distribution plan, new customers call-in, requesting (pickup) services. 
These arriving requests (here after denoted as Dynamic Requests, DRs) have to be collected and 
returned back to depot.

A new requests can be happen over time of backhaul. Therefore, the new request must be served 
with respect to the constraints of capacity and time limited. Otherwise, the new demand will be shifted 

Table 8. Results for the 2L-VRPB from class 1 to 5 with 80% linehaul customers and 20% backhaul customers

Ist Class 1 Class 2 Class 3 Class 4 Class 5

BR- 
LNS

Our 
AGA

%gap BR- 
LNS

Our 
AGA

%gap BR- 
LNS

Our 
AGA

%gap BR- 
LNS

Our 
AGA

%gap BR- 
LNS

Our 
AGA

%gap

1 259.97 255.79 -1.60 259.97 255.79 -1.60 260.22 258.58 -0.63 275.25 272.36 -1.04 259.97 260.01 0.015

2 299.64 285.77 -4.62 314.14 302.52 -3.69 322.42 321.39 -0.31 299.64 297.46 -0.72 299.64 295.68 -1.32

3 349.12 342.66 -1.85 350.83 346.38 -1.26 367.86 364.68 -0.86 356.76 351.98 -1.33 349.12 347.89 -0.003

4 415.83 411.38 -1.07 395.42 389.10 -1.59 395.42 397.85 0.61 410.20 405.66 -1.10 395.42 391.99 -0.87

5 376.68 372.97 -0.98 376.68 374.89 -0.47 376.68 371.58 -1.35 385.74 385.95 0.05 376.68 378.68 0.53

6 432.83 428.38 -1.02 432.85 430.58 -0.52 432.83 429.38 -0.79 432.83 431.96 -0.20 432.83 429.38 -0.8

7 598.68 600.86 0.36 723.39 721.89 -0.2 674.70 673.04 -0.24 674.28 671.25 -0.44 631.28 630.21 -0.17

8 598.68 595.86 -0.47 683.64 681.69 -0.28 713.49 712.35 -0.15 660.95 661.97 0.15 603.43 601.34 -0.35

9 571.75 569.57 -0.38 573.06 558.60 -2.52 573.06 579.66 1.15 571.75 569.24 -0.43 571.75 569.57 -0.4

10 512.06 507.98 -0.79 642.58 643.85 0.19 613.95 608.59 -0.87 663.73 666.37 0.39 609.63 604.89 -0.77

11 512.06 512.06 0 662.43 662.43 0.00 663.37 663.37 0.00 737.89 737.89 0.00 614.38 615.98 0.26

12 523.41 523.41 0.00 546.33 546.33 0.00 524.53 524.53 0.00 534.87 534.87 0.00 522.56 522.56 0.00

13 1997.84 1991.98 -0.29 2489.25 2490.96 0.06 2468.80 2459.98 -0.35 2518.66 2514.63 -0.16 2286.38 2283.83 0.11

14 746.28 744.82 -0.19 1017.55 1015.96 -0.15 879.84 877.48 -0.26 900.65 899.56 -0.12 863.12 863.12 0.00

15 746.28 743.82 -0.32 963.49 961.98 -0.15 1024.84 1024.48 -0.03 1085.14 1085.14 0 1002.07 1002.00 0.007

16 613.19 611.96 -0.20 614.67 613.23 -0.23 610.99 610.55 -0.07 622.18 620.81 -0.22 610.99 611.01 0.003

17 725.83 727.84 0.27 734.15 731.33 -0.38 723.17 724.71 0.21 724.47 721.74 -0.37 722.62 722.96 0.05

18 791.40 790.22 -0.14 1000.84 1000.25 -0.05 971.94 970.98 -0.09 989.86 987.68 -0.22 909.63 907.06 -0.28

19 567.89 565.98 -0.33 698.50 692.69 -0.83 742.96 739.48 -0.46 722.10 720.98 -0.15 637.06 638.60 0.24

20 288.90 283.99 -1.69 460.16 461.18 0.22 466.63 464.36 -0.48 500.80 501.89 0.21 445.67 445.67 0.00

21 703.81 703.81 0.00 965.26 965.62 0.03 1035.99 1032.45 -0.34 906.63 906.66 0.003 848.91 848.91 0.00

22 733.42 733.42 0.00 990.59 990.59 0.00 968.10 968.10 0.00 996.26 996.26 0.00 886.16 888.16 0.22

23 794.85 794.58 -0.03 958.56 955.65 -0.30 986.13 984.31 -0.18 956.42 951.24 -0.54 873.26 867.62 -0.6

24 904.53 904.98 0.04 1061.97 1062.95 0.09 999.72 997.69 -0.20 1002.35 1002.37 0.001 922.58 922.58 0.00

25 859.97 857.69 -0.26 1312.22 1314.01 0.13 1255.11 1253.98 -0.09 1271.21 1270.12 -0.08 1088.57 1085.75 -0.02

26 833.59 831.95 -0.19 1259.05 1257.98 -0.08 1229.65 1230.56 0.07 1283.55 1282.95 -0.05 1125.75 1125.57 -0.015

27 1004.20 1000.99 -0.31 1245.97 1244.79 -0.09 1283.22 1286.99 0.29 1207.54 1207.54 0 1149.52 1149.52 0

28 1059.68 1057.86 -0.17 2303.88 2303.88 0 2334.18 2328.98 -0.22 2186.90 2175.03 -0.54 2047.11 2041.02 -0.29

29 1210.77 1205.69 -0.41 2009.95 2001.59 -0.41 1986.48 1984.84 -0.08 1905.98 1902.89 -3.97 1935.20 1934.58 -0.032

30 1067.26 1068.62 0.12 1687.05 1685.05 -0.11 1663.83 1661.38 -0.14 1642.08 1642.08 0 1445.86 1445.86 0.00

31 1260.15 1258.51 -0.13 2048.22 2046.89 -0.06 2029.25 2030.52 0.06 2141.65 2153.56 0.55 1864.63 1865.36 0.4

32 1260.15 1260.15 0 2038.96 2036.69 -0.11 2026.01 2023.10 -0.14 2005.18 2003.81 -0.88 1795.95 1792.23 -0.20

33 1295.28 1293.82 -0.11 2081.76 2080.67 -0.05 2191.51 2192.15 0.02 2147.33 2147.33 0.00 1880.20 1878.89 -0.07

34 654.71 655.17 0.07 1066.72 1063.79 -0.27 1087.44 1089.89 0.22 1078.34 1075.78 -1.06 946.10 946.88 -0.08

35 839.02 837.20 -0.21 1253.38 1251.38 -0.19 1308.31 1303.13 -0.39 1318.93 1315.39 1.2 1146.00 1147.89 0.16

36 584.62 584.62 0 1500.73 1500.73 0 1494.50 1494.50 0 1448.06 1447.96 0.06 1309.89 1301.98 -0.6

Avg 722.064 725.416 -0.56 1047.894 1045.663-0.48 1046.88 1039.99 -0.19 1043.504 970.28 -0.43 955.80 954.58 -0.15

Computational Results for the dynamic 2L-VRP with backhaul
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to the next day and it will be included within the static service planning. The operation is carried out 
on a daily basis Monday through Friday. The service period is 8h, the service area is 3102 km2, and 
vehicle speed is 60 km/h. Requests occur during the static service period according to a continuous 
uniform distribution, except static requests are known and no new request is known in advance.

Our objective is to distribute parcels safely within the given time restrictions while minimising 
the costs as possible. Table 11 detailed Vehicle’s expenses in the post office of Jendouba for a year 
suchas fuel, expenses, driver’s salary/year and Conveyor’s salary/year.

In the RPOJ, the degree of dynamism increases with the demands during the period of events. 
Therefore, we handled the 27-day transportation problems of the RPOJ and we ranked the problems 
according to their percentage of linehaul, backhaul and value of dynamism as follow:

Case1: 50% Linehaul and 50% Backhaul( where the value of dynamism are 25%,50% and 85% re- 
spectively )

Case2: 60% Linehaul and 40% Backhaul( where the value of dynamism are 25%,50% and 85% re- 
spectively )

Case3: 80% Linehaul and 20% Backhaul( where the value of dynamism are 25%,50% and 85% re- 
spectively ).

To assess the performance improvement, we run our present algorithm against the same data 
of the RPOJ. Then, our solutions are compared with RDPJ previous solutions. The comparisons are 
pre- sented in tables 12, in which the first column indicates the value of dynamism (25%,50% and 
85%), the second column shows selected day, the third one presents the RPOJ results, the forth column 
gives the results of our AGA and the last one describes the %gap of the results. Table 14 indicates 
that the proposed method provides an improvement over the current solution designed manually by 
the dispatcher since it reduces the overall costs for all the data sets. Our solutions minimize the total 
cost with an improvement of up to 17%.

Table 10. Post offices in Jenbouba(Tunis)

Post office Post office Post office

1. Ain Draham (ADH) 15. El Morjne (EMJ) 29. Melloula Maabar (MMB)

2. Ain El Beya (ABY) 16. Essaada (ESD) 30. Oued El Maaden (OMD)

3. Ain Essobh (AES) 17. Essanabel (ESB) 31. Oued Mliz (OMZ)

4. Babouch (BBC) 18. Fernana (FRN) 32. Ouerguech (OGC)

5. Badrouna (BDR) 19. Ghardimaou (GDM) 33. Ouled Hlel (OLH)

6. Balta (BLT) 20. Hakim (HKM) 34. Roumani (RMN)

7. Bellarijia (BLJ) 21. Hammam Bourguiba (HMB) 35. Sidi Meskine (SMK)

8. Ben Bechir (BBR) 22. Hdhil (HDL) 36. Souk Essebt (SSB)

9. Beni Mtir (BMT) 23. Jaballah (JBL) 37. Souk Jemaa (SJM)

10. Bou Salem (BSL) 24. Jantoura (JTR) 38. Soumrane (SMR)

11. Bouaouene (BAN) 25. Jendouba (JDB) 39. Tabarka (TBK)

12. Brirem (BRM) 26. Jendouba Nord (JDN) 40. Tabarka Aroport (TBA)

13. Cit Ettataouer (CTT) 27. Marja (MRJ) 41. Tbainia (TBN)

14. Eddkhailia (EDK) 28. Malga (MLG)
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We can conclude that our AGA produces best solutions using both benchmark and real data in- 
stances. Table 13 presents an example of instance with (50% Linehaul, 50% Backhaul and a value of 
dynamism equal to 25%). Figure 9 shows a cartographic format of the solution using Google Maps.

The new path obtained when adding the new nodes of ”Tabarka Airport” and ”OMD” is shown 
in Figure 9(c) it is described as follow:

Linehaul :

Distrib-center → F ernana → BeniM tir → AinDrahem → Babbouch → H.Borghuiba → T abarka 
→	
Jaballah → El − M orjen	

Backhaul :

El−M orjen → Jaballah → T abarkaAirport → T abarka → H.Borghuiba → babbouch → 
AinDrahem →	
BeniM tir → F ernana → Distrib − center.	

Figure 8. Existing Post Office in Jendouba

Table 11. Vehicle’s Expenses in the post office of Tunisia

Fuel Expenses/year Driver’s salary 
/year

Conveyor’s salary 
/yearInsurance Wheels Battery Vehicle’s 

tour
vehicle’s 

maintenance

0.500 DT/km 400 DT 440 DT 150 DT 30 DT 450 DT 20000 DT 17000 DT
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9. CONCLUSION AND FUTURE WORK

A Dynamic Vehicle Routing Problem with Backhauls and two-dimensional loading problem (2L- 
DVRPB) has been studied in this article. This problem is important both in research and industrial 
domains due to its many real world applications. We present an adaptive genetic algorithm for solving 
the 2L-DVRPB. In addition, a new heuristic MILAH is used to minimize the non-used area in the 
vehicle.

Table 12. Post offices in Jenbouba(Tunis)

DOD Days Post office Results Our AGA results %gap

For 50% Linehaul and 50% Backhaul 

Day1 687.68 622.63 -10.44

25% Day2 896.42 790.23 -13.44

Day3 789.52 620.85 -27.17

Day1 520.23 498.02 -4.46

50% Day2 625.25 589.55 -6.05

Day3 595.63 520.12 -14.51

Day1 720.13 678.02 -6.21

75% Day2 440.25 407.14 -8.13

Day3 797.63 550.26 -44.95

For 60% Linehaul and 40% Backhaul

Day1 487.68 322.63 -51.15

25% Day2 896.46 750.23 -19.49

Day3 778.25 689.85 -12.81

Day1 427.23 390.85 -9.30

50% Day2 525.78 512.58 -2.57

Day3 487.36 377.22 -29.20

Day1 320.74 204.53 -56.81

75% Day2 347.52 237.66 -46.22

Day3 640.66 560.32 -14.39

For 80% Linehaul and 20% Backhaul

Day1 587.68 422.63 -39.05

25% Day2 796.45 785.23 -1.42

Day3 782.62 620.25 -26.18

Day1 331.32 289.23 -14.55

50% Day2 235.51 178.75 -31.75

Day3 595.63 520.12 -14.51

Day1 520.13 448.02 -16.09

75% Day2 740.25 698.14 -6.03

Day3 578.63 540.22 -7.11

Avg - 598.24 512.04 -16.83
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To the best of our knowledge, the problem has not been analysed so far in the literature. Therefore, 
our approach is tested on an extensive set of instances which have been adapted from existing 
benchmarks for the 2L-VRP.

Since there has been no other algorithm in the literature for solving such problems, we could 
not compare the performances of different algorithms. To test the effectiveness of our solution 
approach, we have conducted a series of runs on the 2L-CVRP and static 2L-VRPB models. Fine 
quality results are obtained, improving and matching several best known solution scores. In addition, 
our algorithm was applied to a series of newly constructed 2L-DVRPB benchmark instances. The 
obtained results indicate that our method is stable and capable of achieving very high utilization of 
the vehicle loading spaces.

Table 13. An example of instance with 50% Linehaul, 50% Backhaul and a value of dynamism equal to 25%

Nbre of 
Items

Item1 Item2 Item3 Item4 Item5 Item6

h w q h w q h w q h w q h w q h w q

Path1: Distrib-Centre 28

Tabarka Fernana 3 5 10 8 7 7 20 10 2 50

Beni Mtir 2 7 7 20 4 7 35

Ain Drahem 5 4 8 45 5 9 20 5 6 51 5 12 15 12 2 11

Babbouch 3 4 9 10 4 18 21 2 18 23

Linehaul H.Borghuiba 3 7 3 24 4 3 31 8 2 26

Tabarka 6 6 10 17 8 8 15 5 4 22 5 4 27 17 3 28 4 16 21

Jaballah 2 12 5 30 4 8 17

El-morjen 4 5 9 14 9 2 25 3 7 31 5 9 38

El-morjen 4 5 9 14 9 2 25 3 7 31 5 9 38

Jaballah 1 2 9 35

New Tabarka airport 5 8 9 34 5 6 27 8 6 14 6 6 25 7 8 32

Tabarka 4 5 4 19 7 7 25 6 8 21 6 3 28

H.Borghuiba 2 8 3 34 8 8 31

Backhaul Babbouch 1 9 9 15

Ain Drahem 3 5 7 35 9 9 27 6 8 18

Beni Mtir 2 5 4 29 7 4 36

Fernana 1 8 10 12

Distrib-Center 23

Path2: Distrib-Centre 23

Ghardi Ettataouer 5 7 8 44 6 8 22 7 7 32 9 3 35 4 6 25

-maou West Jendouba 6 8 9 12 17 2 45 7 8 16 11 3 16 6 7 44 2 9 18

Oued Mliz 3 4 8 16 7 3 21 12 11 55

Ghardimaou 2 9 7 22 8 6 33

Linehaul Eddkhailia 1 5 9 26

Ouerghech 2 7 9 21 4 5 16

Hakim 1 8 9 42

Oued Mliz 3 11 2 38 7 7 28 8 3 36

Oued Mliz 2 8 2 37 4 9 25

Hakim 1 9 7 47

Ouerghech 2 5 6 28 8 7 36

Eddkhailia 1 8 6 29

Backhaul Ghardimaou 2 5 7 32 9 5 30

New OMD 5 9 4 18 7 15 33 5 9 35 4 11 37 8 4 28

Ettataouer 1 5 9 45

Distrib-Center 14
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Then, to measure the performance of our solutions, we calculated the Value of Information. The 
proposed algorithm generated good solutions.

Moreover, we applied our approach in a real case study of the regional Post Office of the city 
of Jendouba in the North of Tunisia. The results are then highlighted in a cartographic format using 
Google Maps. Results indicates that the proposed method provides an improvement over the current 
solution designed manually by the dispatcher since it reduces the overall costs for all the data sets. For 
future work, we can apply our method of AGA for the Two dimensional Dynamic Vehicle Routing 
Problem with Backhaul and Time windows constraints.

Figure 9. Geographical solution (a) Tabarka path before the simulation (b) Tabarka path after the simulation (c) Insertion of the 
node ”Tabarka aerport” in the path Tabarka.



International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

30

REFERENCES

AbdAllah, A. M. F. M., Essam, D. L., & Sarker, R. A. (2017). On solving periodic re-optimization dynamic 
vehicle routing problems. Applied Soft Computing, 55, 1–12. doi:10.1016/j.asoc.2017.01.047

Bartok, T., & Imreh, C. (2011). Pickup and Delivery Vehicle Routing with Multidimensional Loading Constraints. 
Acta Cybernetica (Szeged), 20(1), 17–33. doi:10.14232/actacyb.20.1.2011.3

Bortfeldt, A., Hahn, T., Mannel, D., & Monch, L. (2015). Hybrid Algorithms for the Vehicle Routing Problem 
with Clustered Backhauls and 3D Loading Constraints. European Journal of Operational Research, 243(1), 
82–96. doi:10.1016/j.ejor.2014.12.001

Chen, S., Chen, R., Wang, G. G., Gao, J., & Sangaiah, A. K. (2018). An adaptive large neighborhood search 
heuristic for dynamic vehicle routing problems. Computers & Electrical Engineering, 67, 596–607. doi:10.1016/j.
compeleceng.2018.02.049

Christoftdes, N., & Beasley, J. (1984). The period routing problem. Networks, 14(2), 237–256. doi:10.1002/
net.3230140205

Dahmani, N., Krichen, S., & Ghazouani, D. A. (2015). Variable neighborhood descent approach for the two-
dimensional bin packing problem. Electronic Notes in Discrete Mathematics, 47, 117–124. doi:10.1016/j.
endm.2014.11.016

Dominguez, O., Guimarans, D., Juan, A. A., & de la Nuez, I. (2016). A biased-randomised large neighbourhood 
search for the two-dimensional vehicle routing problem with backhauls. European Journal of Operational 
Research, 255(2), 442–462. doi:10.1016/j.ejor.2016.05.002

Duhamel, C., Lacomme, P., Quilliot, A., & Toussaint, H. (2011). A multi-start evolutionary local search for 
the two- dimensional loading capacitated vehicle routing problem.J. Computers & Operations Research, 38(3), 
617–640. doi:10.1016/j.cor.2010.08.017

Fekete, S. P., & Schepers, J. (2006). A general framework for bounds for higher-dimensional orthogonal packing 
problems. Mathematical Methods of Operations Research, 60(2), 311–329. doi:10.1007/s001860400376

Fisher, M., Jakumar, R., & van Wassenhove, L. (1981). A generalized assignment heuristic for vehicle routing. 
Networks, 11(2), 109–124. doi:10.1002/net.3230110205

Fuellerer, G., Doerner, K., Hartl, R., & Iori, M. (2009). Ant colony optimization for the two-dimensional loading 
vehicle routing problem. J. Computers & Operations Research, 36(3), 655–673. doi:10.1016/j.cor.2007.10.021

Gendreau, M., Iori, M., Laporte, G., & Martello, S. (2008). A Tabu search heuristic for the vehicle routing 
problem with two-dimensional loading constraints. Networks, 51(1), 4–18. doi:10.1002/net.20192

Guimarans, D., Dominguez, O., Panadero, J., & Juan, A. A. (2018). A simheuristic approach for the two- 
dimensional vehicle routing problem with stochastic travel times. Simulation Modelling Practice and Theory, 
89, 1–14. doi:10.1016/j.simpat.2018.09.004

Holland, J. H. (1975). Adaptations in Natural and Artiftcial Systems: an introductory analysis with applications 
to biology, control, and artificial intelligence. The University of Michigan Press.

Iori, M., Salazar, J. J., & Vigo, D. (2007). An exact approach for the vehicle routing problem with two- dimensional 
loading constraints. Journal of Translational Science, 41(2), 253–264.

Khebbache, S., & Prins, , CYalaoui, , A. (2008). Iterated local search algorithm for the constrained two- 
dimensional non-guillotine cutting problem. Journal of Industrial and Systems Engineering, 2(3), 164–179.

Kilby, P., Prosser, P., & Shaw, P. (1998). Dynamic VRPs: A study of scenarios. University of Strathclyde 
Technical Report, 1-11.

Koc, C., & Laporte, G. (2018). Vehicle routing with backhauls: Review and research perspectives. Computers 
& Operations Research, 91, 79–91. doi:10.1016/j.cor.2017.11.003

Larsen, A., Madsen, O., & Solomon, M. (2002). Partially dynamic vehicle routing-models and algorithms. The 
Journal of the Operational Research Society, 53(6), 637–646. doi:10.1057/palgrave.jors.2601352

http://dx.doi.org/10.1016/j.asoc.2017.01.047
http://dx.doi.org/10.14232/actacyb.20.1.2011.3
http://dx.doi.org/10.1016/j.ejor.2014.12.001
http://dx.doi.org/10.1016/j.compeleceng.2018.02.049
http://dx.doi.org/10.1016/j.compeleceng.2018.02.049
http://dx.doi.org/10.1002/net.3230140205
http://dx.doi.org/10.1002/net.3230140205
http://dx.doi.org/10.1016/j.endm.2014.11.016
http://dx.doi.org/10.1016/j.endm.2014.11.016
http://dx.doi.org/10.1016/j.ejor.2016.05.002
http://dx.doi.org/10.1016/j.cor.2010.08.017
http://dx.doi.org/10.1007/s001860400376
http://dx.doi.org/10.1002/net.3230110205
http://dx.doi.org/10.1016/j.cor.2007.10.021
http://dx.doi.org/10.1002/net.20192
http://dx.doi.org/10.1016/j.simpat.2018.09.004
http://dx.doi.org/10.1016/j.cor.2017.11.003
http://dx.doi.org/10.1057/palgrave.jors.2601352


International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

31

Larsen, A., Madsen, O. B., & Solomon, M. M. (2007). Classiftcation of dynamic vehicle routing systems. In 
Dynamic Fleet Management, Operations Research/Computer Science Interfaces Series, 38, 19-40.

Leung, S., Zhang, Z., Zhang, D., Hua, X., & Lim, M. (2013). A meta-heuristic algorithm for hetero- geneous 
fleet vehicle routing problems with two-dimensional loading constraints. J. Computers & Operations Research, 
225(2), 199–210.

Leung, S., Zhou, X., Zhang, D., & Zheng, J. (2011). Extended guided tabu search and a new packing algorithm 
for the two-dimensional loading vehicle routing problem. Computers & Operations Research, 38(1), 205–215. 
doi:10.1016/j.cor.2010.04.013

Lodi, A., Monaci, M., & Pietrobuoni, E. (2017). Partial enumeration algorithms for Two-Dimensional Bin Packing 
Problem with guillotine constraints. Discrete Applied Mathematics, 217, 40–47. doi:10.1016/j.dam.2015.09.012

Lund, K., Madsen, O.B.G., & Rygaard. (1996). Vehicle routing problems with varying degrees of dynamism. 
Technical report, Institute of Mathematical Modelling, Technical University of Denmark.

Malapert, A., Guret, C., Jussien, N., Langevin, A., Rousseau, L.-M. (2008). Two-dimensional Pickup and De- 
livery Routing Problem with Loading Constraints. Proceedings of the First CPAIOR Workshop on Bin Packing 
and Placement Constraints (BPPC08), 184.

Mannel, D., & Bortfeldt, A. (2016). A Hybrid Algorithm for the Vehicle Routing Problem with Pickup and 
Delivery and Three-dimensional Loading Constraints. European Journal of Operational Research, 254(3), 
840–858. doi:10.1016/j.ejor.2016.04.016

Mitrovic-Minic, S., Krishnamurti, R., & Laporte, G. (2004). Double-horizon based heuristics for the dynamic 
pickup and delivery problem with time windows. Transportation Research Part B: Methodological, 38(8), 
669–685. doi:10.1016/j.trb.2003.09.001

Montemanni, R., Gambardella, L. M., Rizzoli, A. E., & Donati, A. V. (2003). A new algorithm for a dynamic 
vehicle routing problem based on ant colony system. Second International Workshop on Freight Transportation 
and Logistics, 1(1), 27-30.

Ninikas, G., & Minis, I. (2014). Reoptimization strategies for a dynamic vehicle routing problem with mixed 
backhauls. Networks, 64(3), 214–231. doi:10.1002/net.21567

Ninikas, G., & Minis, I. (2018). Load transfer operations for a dynamic vehicle routing problem with mixed 
backhauls. Journal on Vehicle Routing Algorithms, 1(1), 47–68. doi:10.1007/s41604-017-0005-y

Paolo, T., & Vigo, D. (2002). The Vehicle Routing Problem, SIAM Monographs On Discrete Mathematics and 
Applications. Society for Industrial & Applied Mathematics.

Pillac, V., Gendreau, M., Guret, C., & Medaglia, A. L. (2013). A Review of Dynamic Vehicle Routing Problems. 
European Journal of Operational Research, 225(1), 1–11. doi:10.1016/j.ejor.2012.08.015

Pinto, T., Alves, C., & de Carvalho, J. V. (2017). Variable neighborhood search algorithms for pickup and delivery 
problems with loading constraints. Electronic Notes in Discrete Mathematics, 58, 111–118. doi:10.1016/j.
endm.2017.03.015

Pinto, T., Alves, C., de Carvalho, J. V., & Moura, A. (2015). An Insertion Heuristic for the Capacitated Vehicle 
Routing Problem with Loading Constraints and Mixed Linehauls and Backhauls. FME Transactions, 43(4), 
311–318. doi:10.5937/fmet1504311P

Pisinger, D., & Sigurd, M. (2007). Using decomposition techniques and constraint programming for solving 
the two-dimensional bin-packing problem. INFORMS Journal on Computing, 19(1), 36–51. doi:10.1287/
ijoc.1060.0181

Polyakovskiy, S., & M’Hallah, R. (2018). A hybrid feasibility constraints-guided search to the two-dimensional 
bin packing problem with due dates. European Journal of Operational Research, 266(3), 819–839. doi:10.1016/j.
ejor.2017.10.046

Reil, S., Bortfeldt, A., & Monch, L. (2018). Heuristics for vehicle routing problems with backhauls, time windows, 
and 3D loading constraints. European Journal of Operational Research, 266(3), 877–894. doi:10.1016/j.
ejor.2017.10.029

http://dx.doi.org/10.1016/j.cor.2010.04.013
http://dx.doi.org/10.1016/j.dam.2015.09.012
http://dx.doi.org/10.1016/j.ejor.2016.04.016
http://dx.doi.org/10.1016/j.trb.2003.09.001
http://dx.doi.org/10.1002/net.21567
http://dx.doi.org/10.1007/s41604-017-0005-y
http://dx.doi.org/10.1016/j.ejor.2012.08.015
http://dx.doi.org/10.1016/j.endm.2017.03.015
http://dx.doi.org/10.1016/j.endm.2017.03.015
http://dx.doi.org/10.5937/fmet1504311P
http://dx.doi.org/10.1287/ijoc.1060.0181
http://dx.doi.org/10.1287/ijoc.1060.0181
http://dx.doi.org/10.1016/j.ejor.2017.10.046
http://dx.doi.org/10.1016/j.ejor.2017.10.046
http://dx.doi.org/10.1016/j.ejor.2017.10.029
http://dx.doi.org/10.1016/j.ejor.2017.10.029


International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

32

Sbai, I., Krichen, S., & Limam, O. (2020). Two meta-heuristics for solving the capacitated vehicle routing 
problem: The case of the Tunisian Post Office. Operations Research, 1–43.

Sbai, I., Limem, O., & Krichen, S. (2017). An Adaptive Genetic Algorithm for the Capacitated Vehicle Routing 
Problem with Time Windows and Two-Dimensional Loading Constraints. Computer Systems and Applications 
(AICCSA), IEEE/ACS 14th International Conference, 88-95.

Sbai, I., Limem, O., & Krichen, S. (2020). An effective Genetic Algorithm for solving the Capacitated Vehicle 
Routing Problem with Two-dimensional Loading Constraint. International Journal of Computational Intelligence 
Studies, 9(1-2), 85–106. doi:10.1504/IJCISTUDIES.2020.106491

Taillard, E. (1994). Parallel iterative search methods for vehicle-routing problems. Networks, 23(8), 661–673. 
doi:10.1002/net.3230230804

Toth, P., & Vigo, D. (1997). An exact algorithm for the vehicle routing problem with backhauls. Transportation 
Science, 31(4), 372–385. doi:10.1287/trsc.31.4.372

Wang, X., & Cao, H. (2008). A dynamic vehicle routing problem with backhaul and time window. Proc. Service 
Operations Logistics and Informatics Conf. (IEEE/SOLI), 1256-1261.

Wei, L., Zhang, Z., Zhang, D., & Leung, S. C. (2018). A simulated annealing algorithm for the capacitated 
vehicle routing problem with two-dimensional loading constraints. European Journal of Operational Research, 
265(3), 843–859. doi:10.1016/j.ejor.2017.08.035

Wei, L., Zhang, Z., Zhang, D., & Lim, A. (2015). A variable neighborhood search for the capacitated vehicle 
routing problem with two-dimensional loading constraints. European Journal of Operational Research, 243(3), 
798–814. doi:10.1016/j.ejor.2014.12.048

Zachariadis, E., Tarantilis, C., & Kiranoudis, C. (2009). A guided tabu search for the vehicle routing problem 
with two-dimensional loading constraints. J. European Journal of Operational Research, 195(3), 729–743. 
doi:10.1016/j.ejor.2007.05.058

Zachariadis, E., Tarantilis, C., & Kiranoudis, C. (2013). Integrated distribution and loading planning via a 
compact metaheuristic algorithm.J. European Journal of Operational Research, 228(1), 56–71. doi:10.1016/j.
ejor.2013.01.040

Zachariadis, E. E., Tarantilis, C. D., & Kiranoudis, C. T. (2016). The vehicle routing problem with simultaneous 
pick-ups and deliveries and two-dimensional loading constraints. European Journal of Operational Research, 
251(2), 369–386. doi:10.1016/j.ejor.2015.11.018

Zachariadis, E. E., Tarantilis, C. D., & Kiranoudis, C. T. (2017). Vehicle Routing Strategies for Pick-up 
and Delivery Service Under Two Dimensional Loading Constraints. Operations Research, 17(1), 115–143. 
doi:10.1007/s12351-015-0218-5

http://dx.doi.org/10.1504/IJCISTUDIES.2020.106491
http://dx.doi.org/10.1002/net.3230230804
http://dx.doi.org/10.1287/trsc.31.4.372
http://dx.doi.org/10.1016/j.ejor.2017.08.035
http://dx.doi.org/10.1016/j.ejor.2014.12.048
http://dx.doi.org/10.1016/j.ejor.2007.05.058
http://dx.doi.org/10.1016/j.ejor.2013.01.040
http://dx.doi.org/10.1016/j.ejor.2013.01.040
http://dx.doi.org/10.1016/j.ejor.2015.11.018
http://dx.doi.org/10.1007/s12351-015-0218-5


International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

33

APPENDIX

Table 14. Results for the 2L-DVRPB from class 1 to 5 with 50% linehaul customers and 50% backhaul customers for a DoD= 
25%, 50% and 75% respectively

DoD= 25% DoD=50% DoD=75%

Cls 1 Cls 2 Cls 3 Cls 4 Cls 5 Cls 1 Cls 2 Cls 3 Cls 4 Cls 5 Cls 1 Cls 2 Cls 3 Cls 4 Cls 5

375.83 393.25 385.63 389.34 398.36 550.74 549.75 559.25 572.26 572.32 950.74 952.33 960.35 965.23 962.35

384.76 394.52 392.53 392.35 393.68 508.76 508.79 507.99 508.77 508.94 959.01 960.00 957.98 959.98 959.98

435.47 427.69 428.61 439.85 441.36 585.47 585.02 601.35 587.52 588.92 980.79 982.36 985.63 987.96 988.99

448.1 448.65 448.32 448.35 457.29 623.73 639.86 629.75 620.55 625.69 1043.28 1043.28 1043.48 1044.09 1044.96

442.98 442.32 442.89 441.15 444.65 619.06 635.36 635.27 623.85 637.28 1049.93 1078.36 1075.63 1072.86 1084.36

508.01 510.02 509.16 509.63 510.96 700.94 700.89 700.89 700.26 700.97 1151.00 1157.36 1157.65 1158.36 1159.78

776.44 792.36 786.35 777.63 794.39 1187.07 1194.35 1199.75 1187.09 1189.45 1887.09 690.25 695.85 698.99 687.83

838.75 858.97 963.75 851.36 967.98 1209.00 1229.92 1337.98 1298.36 1255.96 2054.64 2066.14 2068.56 2076.98 2078.23

594.11 594.36 597.13 596.38 599.18 794.37 846.98 843.96 846.97 443.96 1344.74 499.98 493.69 499.97 494.01

601.86 710.98 636.02 698.48 698.51 852.22 966.86 910.36 896.32 886.95 1465.28 1586.32 1496.52 1498.56 1499.36

622.77 732.39 689.35 697.52 698.96 941.81 602.85 581.37 644.21 573.57 1453.13 1568.32 1589.23 1592.36 1594.65

571.69 582.67 571.26 577.64 578.62 797.15 797.22 803.96 797.15 799.36 1373.81 1389.52 1390.12 1391.55 1391.64

2976.57 3018.94 3020.96 3019.35 3014.36 3633.26 3789.32 3779.36 3780.96 3789.36 5676.57 5778.63 5875.32 5876.32 5878.32

911.69 1024.39 1098.36 982.36 998.36 1307.05 1458.32 1459.22 1359.67 1359.98 1977.60 2025.36 2060.32 2058.32 2048.32

911.18 1001.99 1024.64 1128.39 1121.16 1291.76 1398.35 1398.75 1485.39 1488.35 2489.59 2598.25 2598.52 2679.55 2696.45

663.21 678.86 684.36 689.31 697.85 893.63 893.77 894.52 896.84 897.85 1343.21 1349.63 1349.77 1350.52 1351.23

788.28 798.25 782.69 798.36 798.88 1040.31 1042.36 1047.66 1052.96 1055.63 990.11 990.22 990.23 991.36 991.38

1015.18 1245.36 1203.97 1198.36 1101.39 1347.18 1452.36 1457.63 1458.36 1347.22 2220.87 2338.56 2339.62 2342.55 2343.56

686.61 789.36 786.39 789.64 791.38 913.19 1028.33 1024.36 1032.69 915.26 1426.08 1532.16 1532.17 1534.26 1531.23

399.52 501.39 501.87 499.86 501.97 569.51 672.85 673.95 678.25 688.65 1009.62 1110.22 1111.23 1110.55 1111.32

871.10 998.37 997.85 998.73 999.18 1177.22 1278.55 1298.55 1278.96 1299.36 2021.19 2142.36 2156.32 2151.33 2101.22

872.21 984.37 992.37 992.72 994.87 1172.04 1284.36 1298.55 1299.52 1299.89 2081.70 872.06 862.67 899.08 805.17

906.77 1008.96 1008.95 1007.85 1009.18 1186.00 1296.32 1294.56 1298.63 1295.86 2275.78 2383.63 2384.22 2387.52 2387.57

1019.44 1192.25 1193.68 1124.39 1194.85 1299.67 1399.36 1399.25 1399.54 1399.75 2259.05 2386.55 2386.57 2386.67 2386.69

1079.95 1279.73 1307.98 1279.35 1298.95 1412.95 1725.36 1739.35 1798.23 1798.66 2469.89 2773.66 2773.89 2784.36 2784.38

969.91 1398.36 1397.84 1397.84 1399.87 1345.44 1665.36 1668.96 1678.25 1687.56 2471.55 2778.55 2778.65 2778.66 2778.67

1073.13 1173.48 1187.97 1188.94 1197.98 1595.54 1695.86 1695.84 1696.85 1698.55 2471.55 2578.56 2588.65 2578.65 2578.96

1243.33 1992.38 1994.87 1918.37 1997.86 1693.70 2396.52 2396.36 2396.85 2398.77 2672.39 3378.55 3455.32 3455.36 3356.78

1567.94 2057.98 2078.94 2126.38 2132.98 1967.61 2417.52 2418.25 2427.25 2455.36 3483.57 3986.35 3889.23 3910.23 3970.85

1350.09 1415.08 1395.52 1385.71 1236.59 1700.50 2102.36 2109.26 2121.3 2123.63 3221.83 3663.25 3668.26 3689.27 3691.23

1536.16 1978.84 2009.38 2197.38 2009.87 1968.21 2365.32 2356.36 2365.32 2365.78 3478.87 3887.55 3889.54 3921.32 3898.65

1521.86 1978.58 2009.87 2158.96 2007.89 1960.92 2469.32 2478.23 2485.22 2485.86 3451.33 3965.23 3866.78 3879.25 3879.82

1534.66 2001.32 2278.96 2287.94 1978.89 1974.56 2470.23 2484 2484.32 2488.63 3486.84 3988.23 3988.36 3988.48 3856.23

851.84 990.28 1101.39 998.87 998.91 1158.30 1286.45 1352.63 1286.85 1289.63 1289.95 1977.60 906.85 875.96 808.32

907.67 1209.96 1291.69 1297.82 1198.34 1227.33 1526.27 1532.16 1592.36 1584.96 2130.44 2489.32 2489.96 2487.96 2496.83

587.34 1590.58 1663.53 1552.67 1449.87 857.51 1486.36 1487.25 1426.77 1488.56 1486.84 2008.32 2009.63 2009.87 2012.15
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