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ABSTRACT

A lot of real-life mobile sensing applications are becoming available nowadays. The traditional 
approach for activity recognition employs machine learning algorithms to learn from collected data 
from smartphone and induce a model. The model generation is usually performed offline on a server 
system and later deployed to the phone for activity recognition. In this paper, the authors propose a 
new hybrid classification model to perform automatic recognition of activities using built-in embedded 
sensors present in smartphones. The proposed method uses a trick to classify the ongoing activity by 
combining weighted support vector machines (WSVM) model and hidden Markov model (HMM). 
The sensory inputs to the classifier are reduced with the linear discriminant analysis (LDA). They 
demonstrate how to train the hybrid approach in this setting, introduce an adaptive regularization 
parameter for WSVM approach, and illustrate how the proposed method outperforms the state-of-
the-art on a large benchmark dataset.
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INTRoDUCTIoN

Embedded Sensors are ubiquitous and are becoming sophisticated by nature. This has been changing 
people’s daily life and has opened the doors for many interesting data mining applications. Human 
activity recognition (HAR) is a research domain behind many applications on smartphone such as 
health monitoring, fall detection, context-aware mobile applications, human survey system, home 
automation, etc. The HAR systems consist to identify the actions being carried out by a person given a 
set of observations of him/herself and the surrounding environment. Recognition can be accomplished 
by exploiting the information retrieved from various sources such as environmental sensors (Fahim, et 
al., 2013), body-worn sensors (Helbostad, et al., 2017; Liang et al., 2018) or the smartphone sensors 
(Shoaib et al., 2015; Siirtola et al., 2012; Bayat et al., 2014).

Recent developments in sensing technology have led to wireless sensor networks which provide 
a non-intrusive, privacy friendly and easy to install solution to in-home monitoring (Van Kasteren 
et al., 2010). Sensors used are generally contact switches to measure open-close states of doors and 
cupboards; pressure mats to measure sitting on couch or lying in bed; mercury contacts for movement 
of objects such as drawers; passive infrared sensors to detect motion in a specific area and float sensors 
to measure the toilet being flushed.
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Automatic activity recognition systems aim to capture the state of the user and its environment 
by exploiting heterogeneous sensors attached to the subject’s body.The such systems can monitor and 
keep track of the activities of daily living (ADL), learn from them and assist us in making decisions. 
Such assistive technologies can be of immense use for remote health care (Manirabona et al., 2018; 
Nimkar et al., 2019), for elderly people, the disabled, and those with special needs.

Human physical activities range from simple full body motor activities like walking, sitting and 
standing to complex motor activities such as jogging and climbing, the recognition of which plays an 
important role in many applications such as human-computer interaction and surveillance (Anguita 
et al., 2013; Liang et al., 2018). Performance in these activities can also be important indicators for 
patients recovering from newly acquired disability or people who are at risk of decline, due to aging 
factor. For e.g. a person staying away from his/her elderly parent can monitor their daily activities 
by providing an alarm if there is a change in the regular pattern or an early alarm of a health care 
emergency.

Some approaches have adapted dedicated motion sensors in different parts of the body, such as the 
waist, wrist, chest and thighs achieving good classification performance (Shoaib et al., 2014). These 
sensors are usually un-comfortable for the common user and do not provide a long-term solution for 
activity monitoring (e.g. sensor repositioning after dressing (Bao et al., 2004). Activity recognition 
using wearable body motion sensors has attracted more interests for decades (Lara et al., 2013).

Smartphones are becoming an integral part of daily human life (Kwapisz et al., 2011), and they 
are being preferred as the most usable appliances that could recognize human activities due to its 
powerful in terms of mobility, user-friendly interface, network capability, strong CPU, memory, and 
battery (Shoaib et al., 2015). They contain a large number of hardware sensors such as accelerometer, 
gyroscope, compass, barometer, temperature, humidity, light sensor and GPS receiver. The availability 
of different sensors encourages implementation of human activity recognition system and makes the 
smartphone a rich environment for many systems such as healthcare system.

Building a system to accurately identify these activities is a challenging task. HAR using 
smartphone data is a classical multivariate time series, for which the task is to detect and classify those 
contiguous portions of sensor data streams that cover various activities of interest. In general, most of 
smartphone-based HAR systems are built with four major components: sensory data acquisition, data 
processing and feature extraction, model training from collecting labeled data, and pattern recognition.

Sensor data can be processed in real-time or logged for offline analysis and evaluation. The 
model generation is usually performed offline on a server system and later deployed to the phone to 
recognize the activity performed.

The first component utilizes various sensors embedded in smartphones to gather data from human 
activities. These sensors can be used alone (Siirtola et al., 2012; Bayat et al., 2014), or combined 
together (Shoaib et al., 2013; Chetty et al., 2015; Capela et al., 2016) to record data generated from 
human activities.

The second component for HAR is an important task. It consists of transforming raw signal data 
into feature vectors for classification task, where a fixed length analysis window is shifted along the 
signal sequence for frame extraction. Statistical features such as mean, standard deviation, entropy, 
correlation coefficients, etc. are the most widely used handcrafted features in the HAR (Figo et al., 
2010). Fourier transform and wavelet transform (Hea et al., 2009) are another two commonly used 
handcrafted features, while the discrete cosine transform (DCT) have also been applied with promising 
results (Tamura et al., 1997), as well as auto-regressive model coefficients (He, 2008). The third 
component is built by using different classification methods. This phase is divided into Training and 
Classification. In the training phase, which is conducted offline, the model is built and tuned with the 
optimal parameters. After constructing the optimized model, it becomes ready to use in classification 
phase. In this paper, we mainly focus on feature extraction, training, and classification phases infer 
what activity an individual is engaged in.
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The traditional approach for intelligent HAR employs machine learning algorithms to induce a 
model. The accuracy of the system depends on the quality of the training model. This paper mainly 
introduces a new hybrid classification approach that combines Weighted Support Vector Machines 
(WSVM) and Hidden Markov Model (HMM). We choose WSVM and HMM classifiers because they 
are widely used for HAR (Ordonez et al., 2013; Abidine et al., 2018). WSVM has been applied to 
investigate the effect of overweighting the minority class on SVM modeling between the performed 
activities and it deals with a “class-imbalance problem” (Abidine et al., 2018). To improve the training 
of HMM method, we used a new model of WSVM to estimate the probabilities of transitioning between 
states that represent the physical activities. This aims to overcome some of inherent limitations of 
the traditional HMM approach. The model generation is usually conducted offline where the model 
is built and fine-tuned with the optimal parameters on a server system and later transferred to the 
phone to infer the user’s activities according to these observations. Therefore, we do not consider 
such growth of complexity a real problem in our work. The research may be significant in the field 
of pervasive healthcare, supporting a variety of practical applications such as elderly care, ambient 
assisted living and remote monitoring.

The first step of the proposed method is to reduce the data obtained from various sensors. There are 
two ways to perform the feature dimension reduction: feature extraction and feature selection (Guyon 
et al., 2006). In our work, we used the feature extraction approach. Feature extraction transforms 
the original high dimensional data into a lower dimensional feature space. The transformation can 
be linear or nonlinear. In this work, we employed Linear Discriminant Analysis (LDA) (Lara et al., 
2013) to extract the feature vectors. The entire HAR pipeline is shown in Figure 1.

The efficiency of the proposed technique in term of high accuracy can be explained by the fact 
that the training phase is more robust because it was done twice using WSVM learning and HMM 
learning. Fortunately, the training phase in a deployed activity recognizer is usually done offline and 
the classification model is stored, so we do not consider such growth of complexity a real problem 
in our work. Another contribution of this paper is the new method to estimate the probabilities of 
emissions at each state for HMM learning based on the outputs of WSVM.

The remainder of the paper is organized as follows: Section 2 explains the related work and 
introduces a comparison between WSVM and HMM. Next, in Section 3, we used the supervised 
activity class prediction problem. We describe the proposed classification method WSVM-HMM. In 
Section 4, we give a description of the employed datasets, and describe some of the evaluation statistics 
of the activity recognition. Then, we discuss the experimental results obtained on real smartphone 
datasets. Finally, we present further analysis of our classifiers, which in turn motivate our future work.

Figure 1. Human activity recognition system
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RELATED WoRKS

There are various classifiers that have been implemented on smartphone data in the last few years 
such as the Support Vector Machine (SVM) (Anguita et al., 2012), Random Forest (Peterek et al., 
2014), HMM (Ronao et al., 2014), k-Nearest Neighbor (kNN) (Kose et al., 2012), Decision Tree (Yan 
et al., 2012), Naive Bayes (Kose et al., 2012), Artificial Neural Networks (ANN) (Khan et al., 2013), 
Boosting algorithm (Reiss et al., 2013), Multi-layered classifiers, Rule-based classifier, Quadratic 
discriminant analysis, Fuzzy classification (Shoaib et al., 2015; Lara et al., 2013). Since there are 
many challenges in designing an HAR system, despite the amount of work that has been done in this 
area (Su et al., 2014; Ordóñez et al., 2012; Lester et al., 2006), the performance of HAR systems is 
still far from optimal.

In the activity recognition field, hybrid approaches have been successfully employed. For 
example, in (Ordóñez et al., 2012), the authors showed that an ANN could be hybridized with HMMs 
to deal with the activity recognition problem. Lester et al. developed a hybrid model that combined a 
modified version of AdaBoost with HMMs, and demonstrated it to be quite effective in recognizing 
various human activities using wearable devices. A decision tree and a Dynamic Hidden Markov 
Model (DHMM) are used in combination in (Walse et al., 2016). Anguita et al. in (Anguita et al., 
2013) proposed the Multiclass Support Vector Machine approach (MC-SVM), where the One-Vs-All 
(OVA) approach is used because it learned model uses less memory when compared to the One-
Vs-One (OVO) method. This is advantageous for systems having few resources. In (Anguita et al., 
2012) the authors introduced the concept of a Multi Class Hardware-Friendly SVM (MC-HF-SVM). 
This method was designed for binary classification problems by employing fixed point arithmetic 
(number of bits) in the feed-forward phase of the SVM classifier, with the purpose of allowing its 
use for battery-constrained devices. The authors state that the proposed method improves in terms 
of computational cost while maintaining similar accuracy when compared to traditional SVM. In 
(Menhour et al., 2018), the authors developed new schemes named PCA/KNN-SVM and LDA/
KNN-SVM and demonstrated that LDA has shown to be more effective than PCA due to separability 
criteria between classes in a high-dimensional implicit feature space.

In the Table 1, we show the advantages and disadvantages of the WSVM and HMM methods. 
Merging two types of classification techniques would give complementary decisions and advance the 
accuracy level as in the results of hybrid approach HMM/ANN that obtains a significant and notable 
better performance in (Ordóñez et al., 2012). We consider that WSVM based approaches have great 
potential and further uses in this human activity recognition problem.

WSVM-HMM SySTEM BASED LDA FEATURES

One significant drawback in WSVMs is that, they are inherently static classifiers - they do not implicitly 
model temporal evolution of data. HMM has the advantage of being able to handle dynamic data 
with certain assumptions about stationary and independence. Taking advantage of the relative strengths 
of these two classification paradigms, we have developed a hybrid WSVM-HMM architecture using 
our training method to increase recognition performance. Figure 2 shows the architecture of the 
proposed activity recognition system combining WSVM and HMM. Sensor data for different activities 
has been collected from multiple sensors on smartphone simultaneously. Data has also been divided 
into two partitions: training data and testing data. First, we reduce the number of features by the LDA 
method in order to obtain the best discrimination between the classes in the new LDA space. Second, 
we train and test the Weighted SVM on the LDA features to generate an estimate of the label vector 
of the predicted classes � � � � �y y y y

WSVM
= 


1 2 m . The final classification is performed by the 

‘Viterbi’ algorithm using the LDA features, by the use of an HMM model. In this work, we used a 
new approach to estimate the emission model of HMM. This emission model is calculated from the 
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estimated label vector �y
WSVM

 and the original label vector of dataset (see Section 3.3). An estimated 
label vector is generated by the ‘Viterbi’ algorithm and the system will output the recognized activity.

Feature extraction by Linear Discriminant Analysis (LDA)
LDA seeks directions that are efficient for discrimination (Wu et al., 2010). We first define 

Between-Class Scatter matrix SB and Within-Class Scatter Sw by

S N m m m m
B

T= − −=∑ ii
N

i i1 ( )( )  (1)

S x m x m
w

Ti= − −== ∑∑ ( )( )j i j ij
N

i
N

11  (2)

Where, N is the number of activity class, m
i
 is the average value of the samples in class Ci. The 

average of the total samples is m . Ni is the number of data samples in class Ci. The steps of the 
algorithm are as follows

1.  Compute the total mean vector:

Table 1. Advantage and Disadvantages of WSVM and HMM Algorithms

Algorithms Advantages Disadvantages

Weighted Support Vector 
Machines 
(WSVM)

- Faster inference 
-Less over fitting, robust to noise 
- Performs linear and nonlinear 

Classification problems 
- Adapted for the imbalanced dataset

- Slow training 
-SVM is a binary classifier; to do a multi-class 
classification, pair wise classifications are used 
- Sensitive to lots of irrelevant attributes 
- Sensitive to outliers in input space

Hidden Markov Model 
(HMM)

- Fast training 
-Efficient learning algorithms- learning 

can take place directly from raw 
sequence data 

- The creation of the HMM model is 
simple and fast. 

- An update of the model is possible 
with the algorithm of Baum-Welch 
- Used to model complex activities.

-Incapable of dealing the imbalanced problem 
- Cannot express dependencies to its 
assumptions between hidden states 
- No way to configure the classifier 

- Observed values must be whole numbers 
- The prediction of a hidden state is only made 

with a single observed value.

Figure 2. Hybrid WSVM-HMM recognition approach
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2.  Compute the mean vector for each class

 m
x

Ni
ii

Ni

i

=
∑ =1                          (4)

3.  Compute the between-class scatter: S
B

4.  Compute the within-class scatter: S
w

5.  Solves the generalized eigenvalue problem for the matrix S S
w B
−1

[ , ] ( )V D eig S S
w B

= −1  (5)

6.  Get the projection matrix: M is composed by the top n eigenvectors corresponding to the largest 
eigenvalues.

Weighted Support Vector Machines (WSVM)
Weighted SVM (Osuna et al., 1997; Tian et al., 2011; Huang et al., 2005) implements cost sensitive 
learning for SVM modeling. It also reduces the effect of imbalance data and is a promising candidate 
for addressing the rare class problem. WSVM in its basic form corresponds to a two class classification 
problem. We consider E x y x R y to= ∈ ∈ + − ={ }{ }( , ), , , ,i i i

n
i i m1 1 1  the training dataset 

where the inputx i corresponding to the (n) feature vector, obtained using the LDA transform, is 
labelled either belonging to the class (yi = +1 ) or not (yi = −1 ). The aim of SVM is to find the 
maximum-margin hyperplane in the feature space that best separates the pointsy

i
whose associated 

yi = +1 from those points whoseyi = −1 . The feature space is built through some non-linear 
mapping Φ ofx i whose exact knowledge is not necessarily known, and one often limits to the 
knowledge of the associated ‘Kernel Function’, which satisfies the Mercer’s condition (Huang, 2005). 
A typical kernel function commonly employed in this context is the Gaussian radial basis function 
as follows:
K x x x x( , ) exp( || || / )

1 2 1 2
2 22= − − σ                       (6)

Osuna et al (Osuna et al., 1997) proposed a Weighted SVM to deal with the imbalanced dataset 
by introducing two different cost misclassification parameter C- and C+ in SVM optimization primal 
problem for the minority and majority classes, respectively, as given in the primal Lagrangian Eq.(7) 
below. Using m+  (resp. m− ) the number of positive (resp. negative) instances in the dataset (
m m m− ++ = ). We assume positive class to be the majority class and negative class to be the 
minority class.

L w C C y w x bp
d d

= + ∑ + ∑ ∑ + − ++
=

+

− −
=−

−

=

1
2

1
2

1 1 1
ζ ζ αi

i i

m

i
i i

m

i
i

m

i i
| |
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Subject to αi
i

m

i
=
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1

0y , 0≤ ≤+ +α
i
C , and 0≤ ≤− −α

i
C , i m= 1,...,  (7)
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Whereα
i
+ and α

i
− represent the Lagrangian multipliers of positive and negative examples, 

respectively. The w parameter stands for the weight vector normal to the hyperplane that will be 
determined as part of the optimization problem (7). The WSVM method introduces non-negative 
slack variables ζ

i
, which measure the degree of misclassification of x

i
.

The dual optimization problem of WSVM with different constraints on α
i
can be solved similarly 

to (Huang et al., 2005):

max{ ( , )}
α

α αα
i

i
i

m

i j i j
j

m

i

m

i j
= ==
∑ − ∑∑
1 11

1
2

yy K x x  (8)

Solving the dual optimization problem of WSVM gives a decision function in the original space 
for classifying a test point y R∈ n  with m

sv
 is the number of support vectorsx Ri

n∈ .

�y
WSVM

= +∑
=











sgn ( , )αi i i
i

m

y K x x b
sv

1
 (9)

Three parameters can affect the decision outcome: b, αi, and K. The equality constraint (8) 
indicates that if there are more positive samples than negative samples, i.e. if more yi equal +1 than 
-1, then the negative class will have higher αi values in order to guarantee a zero sum. In the decision 
function (9), αi can be regarded as the weight of each example; thus larger αi values essentially 
increase the influence of the minority class, which automatically rebalances the skewed dataset.

When the dataset is imbalanced, the density of majority class examples would be higher than the 
density of minority class examples even around the class boundary region, where the ideal hyperplane 
would pass through. As a consequence, in order to reduce the total number of misclassifications in 
SVM learning, the predicted decision boundary can be shifted (or skewed) towards the minority class, 
see Figure3. This shift can cause the generation of more false negative predictions, which lowers 
the model’s performance on the minority negative class. When the class imbalance is extreme, the 
SVM could produce models having largely skewed hyperplanes, which would even recognize all 
the examples as positives. This explains why SVM fails completely in situations with a high degree 
of imbalance dataset, which motivates the so called Weighted Support Vector Machines (WSVM) 
detailed later on.

If the training data gets more imbalanced, the ratio between the positive and negative support 
vectors also becomes more imbalanced. Some authors (Abidine et al., 2018; Fernández Hilario et al., 
2018; Yang et al., 2007), have proposed adjusting different cost parameters to solve the imbalanced 
problem as follows:

C
C

m
m-

-+

+

= .  (10)

One way to deal with this problem is to increase the tradeoff C+ associated with the positive 
instances as in (Abidine et al., 2018) where different misclassification Ci per class were used to solve 
this problem. Especially, by taking C- =Ci and C+ = C, where m+ and m

i
stand for the number of 

samples of majority classes and the number of samples in the ith class, respectively.
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C C m mi = × 

+round
i

( / ), i N= 1,..., .  (11)

Where C is the common cost parameter of the WSVM.

Hidden Markov Model (HMM)
The Hidden Markov Model (HMM) (Nguyen et al., 2015) is a classic way of modeling generative 
sequence process probabilistically, which generates hidden states y from observable data x. It 
constructs the activity model by observing the effects of an activity. In our case, the hidden variable 
is the activity that the subject was performing at a given time step and the observed variable is the 
vector of sensor readings.

HMM model mainly works on two basic principles as follows:

•  The observable variable at time t, namely xt, depends only on the hidden variable yt.
•  The hidden variable at time t, namely yt, depends only on the previous hidden variable yt-1.

With these assumptions we can specify an HMM using three probability distributions: the 
distribution over initial states p(y1); the transition distribution p(yt|yt-1) represents the probability 
of going from one state to the next; and the emission distribution p(xt|yt) indicating the probability 
that the state yt would generate observation vector xt. Learning the parameters of these distributions 
correspond to maximizing the joint probability p(x, y) between the sensor data and activities in the 
training data. It is described above as follows:

P p y y p x y
t t

t

T

t t
( , ) ( | ) ( | )x y = ∏ −

=
1

1
 (12)

in which we write the distribution over initial states p(y1) as p(y1| y0), to simplify notation.
A HMM is quantitatively described by these parameters:λ π= { , , }A B the distribution over 

initial states parameterized by π π= { }i ; the transition probability distribution parameterized by
A ;and the emission distribution parameterized byB .

A =[aij] (13)

Figure 3. Weighted SVM classification problem.
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a Pij t j t iy y= = =( | )
-1

, and aij
j

N

=
∑ =
1

1  (14)

B=[bj(Ot)] (15)

bj(Ot)= P(qk+1 =Ot / qt=i) (16)

π=[ π1, π2…, πN] (17)

πi= P(q0 =i) (18)

With : i, j ϵ {1,2, …, N} 
t ϵ {1,2, …, T} 

Ot: Vector of observations
The initial state distribution p(y1) is a probability table with individual values as follows:

p i i( )y
1
= = π , πi i N≥ ≤ ≤0 1 and πi

j

N

=
∑ =
1

1  (19)

In our work, for estimating the emission distribution B= bj(Ot) at each state, we consider Ot = 
�y
WSVM

 will be the label vector generated by WSVM algorithm (Label_WSVM) and qt represent the 
vector of the original activity classes (Labels) of the dataset. The pseudo code for constructing the 
matrix of emission B is outlined as follows.

HMM used the Baum-Welch supervised learning algorithm to estimate the transition probabilities 
between states and the Viterbi algorithm (Cheng et al., 2010) to predict the series of states for a test 
sequence given emissions. The pseudo-code in Table 3 illustrates the execution of the suggested 
multiclass LDA/WSVM-HMM

EXPERIMENTAL RESULTS AND DISCUSSIoN

In this section, we give a description of the employed datasets, then the testing setup is detailed, and 
finally the results are highlighted and discussed.

Figure 4. The graphical representation of a HMM. The shaded nodes represent observable variables, while the 
white nodes represent hidden ones
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Datasets Description
In this paper, we use four publicly available online datasets. The first dataset used is from Human 
activity recognition (Dataset1, 2017). The second dataset (HAPT) with Postural Transitions (Dataset2, 
2016) is quite similar to the previous one, but, it includes postural transitions. The third dataset 
is from (Dataset3, 2017), is known as the Sensors Activity Recognition (SAR). The last dataset 
is from (Dataset4, 2017), titled Wireless Sensor Data Mining (WISDM 2017). All four datasets 
have been recorded by means of Android smartphones and their characteristics, in order to ease 
the comparison. These datasets vary in their formats, types of sensors they are generated from, and 
sampling frequencies. Some of these datasets included 3 axis gyroscope measurements, in addition 
to the 3 axis accelerometer measurements common to all, with the exception of the WISDM Lab 

Table 2. Construction of matrix B for HMM learning

Algorithm 1

Input:

% Number_classes = N

% cl_c is the vector Id for each class

cl_c =[1:N];

% Original vector label of activity

% classes y

Labels= y;

Output:

% Estimating the emission of probability Matrix (B)

format short

B= mat;

B=Emission_mat(Labels,Label_WSVM,cl_c)

nb_cl=max(size(cl_c));

for i=1 to nb_cl do

indv=find(Labels==cl_c(i));

if(length(indv)~=0) then

for j=1 to nb_cl do

diff= Labels(indv)-Label_WSVM(indv);

nb_c=length(find(diff==cl_c(i)-cl_c(j)));

mat (i,j)=(nb_c/length(indv));

end for

else mat(i,:)=0;

end if

end for
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public dataset which used tri-axial accelerometer data. The HAR and HAPT datasets provide a large 
number of features (see the Table 4) extracted by prepossessing the raw signals generated from the 
accelerometer and the gyroscope sensors. For the annotation of the activities, the video-recording is 
used to label the data manually.

As mentioned previously, Sensor data streams were segmented in time slices of constant length 
fixed in our experiments. Table 5 enables us to visualize the disparity between activities in terms of 
number of observations (particularly for the HAPT dataset, e.g. Walking and Sit to Stand). Therefore, 
the HAPT dataset suffers from a severe class imbalance due to the nature of the data.

Data Analysis Setup
To evaluate the performance of classifiers, in particularly for the rare class, we use F-measure, 
which is defined as the harmonic mean of recall and precision in the table 6. Precision measures the 
percentage of activities inferred activities correctly recognized while recall measures the percentage 
of ground truth activities correctly recognized. They can be calculated by Eq. (20), (21), (22), and 
(23) respectively. As for the multi classification issue, the example (data with feature and label) can 
be divided into four categories according to classification result and ground truth: TPi (true positive) 

Table 3. Summary of the proposed method for activity recognition

Algorithm 2

Input: Raw data (Features, Labels)

Output: Viterbi Predict labels

Data features ¬ Raw data. Features;

Data labels ¬ Raw data. Labels;

// Feature extraction using LDA algorithm (step 1)

for ith_ partition =1 to 10 do

LDA Train Parameters ¬ LDA Train Algorithm (Data features [without ith_ partition], Data labels [without ith_ 
partition]);

LDA Features [ith_ partition] ¬ LDA Features Algorithm (Data features [ith_ partition], LDA Train Parameters);

end for

// 1st classification using WSVM (supervised method) (step 2)

for ith_ partition = 1 to 10 do

WSVM Train Model [without ith_ partition] ¬

WSVM Train Algorithm (LDA Features [without ith_ partition], Data labels [without ith_ partition]);

WSVM Predict labels [ith_ partition] ¬

WSVM Test Algorithm (WSVM Train Model [without ith_ partition], LDA Features [ith_ partition]);

end for

// 2nd classification using Viterbi algorithm avec HMM model (supervised method) (step 3)

for ith_partition = 1 to 10 do

HMM Train Model [without ith_ partition] ¬

HMM_Training_Algorithm (WSVM_Label [without ith_ partition], Original_Label [without ith_ partition]);

Viterbi Predict labels [ith_ partition] ¬

Viterbi_Algorithm (HMM Train Model [without ith_ partition], WSVM_Label [ith_ partition]);

end for
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Table 4. Summary of datasets used in evaluation of the proposed approach. Accelerometer (A), Gyroscope (G), 
Magnetometer (M)

Houses HAR HAPT SAR         W I S D M

Age (years) [19-48] [19-48] [25-30] -

Nb of subjects 30 30 10 29

Annotation Video Video PDA Graphical user 
interface

Features 561 561 9 6

Smartphone Samsung Galaxy SII Samsung Galaxy SII Samsung 
GalaxySII

Cell Phone

Position Waist Waist Belt Front leg pocket

Sensors A and G A and G A, G and M A

Activities 6 12 6 6

Table 5. Annotated list of physical activities.

Activities Status HAR HAPT SAR WISDM

Walking Dynamic 1012 1722 31751 2081

    Walking_
upstairs

Dynamic 858 1544 21903 632

    Walking_
downstairs

Dynamic 930 1407 18751 528

Sitting Static 1123 1801 30000 306

Standing Static 1029 1979 30000 246

Laying Static 792 1958 - -

Jogging Dynamic - - 29402 1625

Stand to Sit Transition - 70 - -

Sit to Stand Transition - 33 - -

Sit to Lie Transition - 107 - -

Lie to Sit Transition - 85 - -

Stand to Lie Transition - 139 - -

Lie to Stand Transition - 84 - -

Table 6. The Confusion matrix. The ϵij terms show the error between true class i and inferred class j.

Inferred

True 1 2 3 FN

1 TP1 ϵ12 ϵ13 FN1

2 ϵ21 TP2 ϵ23 FN2

3 ϵ31 ϵ32 TP3 FN3

FP FP1 FP2 FP3 Total
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is the number of true positives for an activity i, FPi (false positive) is the number of false positives for 
activity i, TNi is the number of true negatives for an activity i and FNi (false negative) is the number 
of false negatives for activity i. The confusion matrix is shown in the following table.

These measures are calculated as follows:

Accuracy
TP

Total
ii

N

= ∑ ×=1 100%  (20)

Precision 1 TP

TP FP1

=
+













∑ ×
=N

i

i ii

N
100%  (21)

Recall 1 TP

TP FN1

=
+

∑ ×
=N

i

i ii

N
100%  (22)

F
(1 .Precision .Recall

Precision Recall

2

2
− =

+

+
×score

²

²

)

.
%100  (23)

F-score and accuracy return values between [0, 100], where a value near to 100 shows the best 
performance, and near to 0 indicates the worst performance. In an extremely imbalanced dataset, 
the overall classification accuracy is considered not an appropriate measure of performance, but this 
measure was used to evaluate the accuracy of each activity class.

Results
Feature extraction stage: In this study, an approach based on LDA algorithm is used to select the 
best extracted features from the segmented raw data. See Figure 5 for the feature process. The input 
dimensionality is reduced by selecting the number of extracted features that directly equal to N-1-
dimensional feature space, where N is the number of class activities.

Classification stage: These algorithms are tested under MATLAB environment and the Weighted 
SVM algorithm is tested with an implementation from LibSVM (Hsu et al., 2011) with Gaussian 
kernel is used for all the datasets. Each training dataset is normalized before classification within a 
range of [-1, 1].

To study the effects of different σ on the performance of WSVM when the RBF kernel function 
is used, we conduct several experiments using different SVMs and hyper-parameter σ in the range 
[0.1, 0.2, 0.5, 1, 2, 3] to maximize the error rate of 5- fold- cross validation technique. We found 
the optimal values σopt = 0.9, σopt =0.9, σopt =1 and σopt= 0.8 for the training dataset of HAR, HAPT, 
SAR, and WISDM respectively. For the WSVM classification, a local optimization was done to the 
cost parameter Ci adapting to different classes where the common cost parameter C is fixed to 0.1.

Table 7 depicts the overall performance of our approach in terms of Accuracy, Recall, Precision, 
and F-score, during the testing phase. Our results using the proposed method show a remarkable 
performance in terms of F-score on all datasets, compared to other baseline methods (Anguita et al., 
2013; Anguita et al., 2012; Fu et al., 2014; Zainudin et al., 2017; Kwapisz et al., 2011), by recognizing 
different activities perfectly. For instance, with HAR dataset, we obtained a classification error of 3.9% 
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in terms of F-score on the LDA/WSVM-HMM method; it shows a decrease of the error comparatively 
to other methods. The MC-SVM and MC-HF-SVM methods present more than 10% of error.

On the other hand, the results also show that WSVM outperforms HMM for recognizing activities 
for all datasets except for the HAPT dataset. This can be explained by the fact that HAPT dataset 
contains the transition activities and HMM makes the transition states as activities: e.g. Sit-Stand. 
One also notices that the combined methods LDA-WSVM and LDA-HMM improve the classification 
results over WSVM and HMM classifiers used alone.

Discussion
To get a detailed knowledge of the performances on each class corresponding to current activity, 
we calculate the confusion matrix of the proposed method in Tables 8, 9 for the HAR and WISDM 
datasets respectively with six different activities. From these tables, we see that the performance 
was greatly affected by the data imbalance problem as in the WISDM dataset, in particular for the 
dynamic activities.

Figure 5. Feature extraction by Linear Discriminant Analysis
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Table 7. Comparison of existing approaches with the proposed approach (LDA/WSVM-HMM).

Datasets Approach Accuracy (%) Recall (%) Precision (%) F-score (%)

HAR MC-SVM (Anguita et al., 
2012) 
MC-HF-SVM (Anguita et 
al., 2012)
Decision Trees (Bharathi et 
al., 2020)
MLP (Bharathi et al., 2020)
Random Forest (Bharathi et 
al., 2020)
Logistic Regression 
(Bharathi et al., 2020)
LSTM (Bharathi et al., 
2020) 
CNN (Bharathi et al., 2020)
WSVM 
HMM 
LDA-WSVM 
LDA-HMM 
Proposed

89.3 
 
89.0 
 
82.4 
 
98.4 
89.5 
 
96.1 
 
94.5 
94.1 
96.4 
93.9 
96.2 
94.7 
96.7

89.6 
 
89.3 
 
- 
 
95.1 
89.1 
96.1 
 
94.5 
91.9 
91.5 
89.2 
93.4 
91.1 
94.5

89.9 
 
89.2 
 
- 
 
95.6 
89.6 
 
96.4 
 
94.6 
94.0 
88.7 
90.2 
89.4 
91.7 
97.9

89.7 
89.2 
 
 
82.9 
95.3 
89.3 
96.2 
94.5 
92.9 
90.1 
89.7 
92.8 
91.4 
 96.1

HAPT MC-SVM (Anguita et al., 
2012) 
TASG-SVM(Zheng et al., 
2018) 
RF (Zheng et al., 2018)
TASG-RF (Zheng et al., 
2018) 
KNN (Zheng et al., 2018)
TASG-KNN (Zheng et al., 
2018) 
RNN (Zheng et al., 2018)
TASG-RNN(Zheng et al., 
2018) 
WSVM 
HMM 
LDA-WSVM 
LDA-HMM 
Proposed

96.0 
96.2 
94.3 
94.6 
90.5 
92.8 
94.5 
95.8 
 
86.1 
96.5 
85.4 
94.8 
95.8

96.3 
90.7 
87.4 
89.3 
82.5 
86.3 
87.1 
90.4 
 
96.0 
98.3 
95.0 
97.4 
97.3

96.6 
90.9 
88.3 
89.6 
83.4 
87.9 
86.0 
91.2 
 
92.4 
97.1 
94.5 
94.8 
98.8

96.4 
90.8 
87.8 
89.4 
82.9 
87.1 
86.5 
90.8 
 
94.1 
97.7 
94.7 
96.1 
98.0

SAR Random Forest (Zainudin et 
al., 2017)
WSVM 
HMM 
LDA-WSVM 
LDA-HMM 
Proposed

95.6 
95.0 
94.7 
95.9 
90.8 
96.5

95.6 
90.5 
94.4 
93.8 
92.0 
95.9

95.7 
97.7 
93.0 
97.8 
97.1 
99.7

95.6 
94.0 
93.7 
95.8 
94.5 
97.7

WISDM J48 (Kwapisz et al., 2011)
LogisticRegression 
(Kwapisz et al., 2011)
MultilayerPerceptron 
(Kwapisz et al., 2011)
WSVM 
HMM 
LDA-WSVM 
LDA-HMM 
Proposed

85.1 
78.1 
 
91.7 
 
81.4 
84.9 
79.5 
83.5 
84.9

81.7 
68.4 
 
80.4 
 
83.4 
79.4 
85.6 
83.9 
86.8

82.4 
70.5 
 
84.6 
 
76.5 
80.0 
82.1 
76.2 
91.2

82.0 
69.4 
 
82.4 
 
79.8 
79.7 
83.8 
79.8 
88.9
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In the table 8, 99.1% of ‘W. Upstairs’ activity instances are correctly recognized, while 0.7% 
goes into ‘W.Downstairs’ and 0.2% are confused with ‘Walking’ activity. The similar classes such 
as ‘Walking’, ‘W. Upstairs’, and ‘W. Downstairs’ show similar trend of sharing errors among each 
other. The reason is the similar status of smartphone when the user does these dynamic activities. We 
notice that the static activities ‘Sitting’, ‘Standing’ and ‘Laying’ share errors among each other. 11% of 
‘Standing’ activity instances are confused with ‘Sitting’ activity and 8% of ‘Sitting’ activity instances 
are confused with ‘Standing’ activity. Intuitively, this can be explained by the fact that the patterns 
in the acceleration data between these activities are somewhat similar. However, the minority class 
‘Laying’ in terms of number of instances (792) is rather better recognized using the proposed method.

Table 9 demonstrates that in most cases, we achieve high levels of accuracy. For the two most 
common activities in terms of number of instances, ‘Walking’ and ‘Jogging’, we generally achieve 
accuracies above 97%. Jogging appears easier to identify than other activities, which seems to make 

sense, since jogging involves more extreme changes in acceleration. On the contrary, it appears much 
more difficult to identify the two stair climbing activities (66.1% for ‘W. Upstairs’ and 67.9% for 
‘W. Downstairs’), but as we shall see shortly, that is because those two similar activities are often 
confused with one another. When grouping these two activities as one (activity: stairs), the system 
was able to recognize it with 100% accuracy. Note that there are very few instances of ‘Sitting’ (306) 
and ‘Standing’ (246), but we can still identify these activities quite well with the proposed method. 
Although some of the activities recorded reflect somewhat insufficient performance as in WISDM 
dataset for the ‘W. Upstairs’ and ‘W. Downstairs’ activities, we could state that our method is capable 
of producing a decent accuracy.

Table 8. Confusion matrix of activities for the proposed method on the HAR dataset.

Activities Walking W. Upstairs W. Downstairs Sitting Standing Laying

Walking 97.9 0.7 1.4 0.0 0.0 0.0

Walking_upstairs 0.2 99.1 0.7 0.0 0.0 0.0

Walking_downstairs 1.1 0.2 98.7 0.0 0.0 0.0

Sitting 0.0 0.0 0.0 82.1 11.0 6.9

Standing 0.0 0.1 0.0 8.0 90.2 1.7

Laying 0.0 0.0 0.0 0.6 0.4 99.0

The values are percentages

Table 9. Confusion matrix of activities for the proposed method on the WISDM dataset

Activities Walking W. Upstairs W. Downstairs Sitting Standing Jogging

Walking 97.7 1.4 0.8 0.0 0.0 0.1

Walking. Upstairs 8.9 66.1 24.8 0.0 0.0 0.2

Walking. Downstairs 12.9 15.8 67.9 0.2 2.5 0.7

Sitting 2.7 0.0 0.6 93.5 3.2 0.0

Standing 1.1 0.2 0.0 1.4 96.8 0.5

Jogging 0.8 0.0 0.0 0.1 0.3 98.8
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The impact of gyroscope and the accelerometer sensors were found to be sensitive to physical 
positions. Indeed, the gyroscope is unable to differentiate between similar activities like ‘Sitting’ 
and ‘Standing’. On the other side, the accelerometers perform badly with ‘W. Upstairs’ and ‘W. 
Downstairs’. For the WISDM dataset using the accelerometer sensor, we note that the performances 
are decreasing comparatively to the other datasets. This is explained by the fact that only accelerometer 
sensor is used and therefore it is insufficient to recognize all activities. However, the fusion sensors 
for collecting the datasets perform better in term of prediction accuracy. They become complementary 
and offer the best performances.

CoNCLUSIoN AND FUTURE WoRK

In this work, we developed a novel hybrid model WSVM-HMM applied to human activity classification 
using data from Smartphone from various sensor positions such as pocket and belt. Extensive 
experimental evaluations using different publicly available databases of human activity show the 
proposed strategy is highly effective. This can be explained by the fact that the learning model is 
more accurate because it was done twice using WSVM learning and HMM learning.

The fusion of the sequential model HMM with the WSVM model gave more chance to the 
HMM to improve the results. WSVM investigated the effect of overweighting the minority class on 
SVM modeling between the performed activities. HMM is a natural solution to address the activity 
complexity by ― capturing and smoothing information during the activity transition period. 
Additionally, accuracy also tends to decrease when including few informative features to classify. 
All the classification methods used the reduced data by the LDA as input to select minimal number 
of discriminative and relevant features.

For future work, we are planning to determine the most effective sensor positions for classifying 
various types of activities. They are very crucial for creating highly accurate smartphone based 
recognition system. Furthermore, another challenging is to evaluate the performance in recognizing 
the activity using the combinations of several sensor placements attached to the subject’s body. 
Additionally, we also encourage other researchers to improve upon our method in different domains.
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