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ABSTRACT

A novel coronavirus is the causative agent identified for the current COVID-19 outbreak. Globally, 
more than 43 million people have been infected by this virus. The total number of deaths has 
surpassed 1.6 million across 210 countries due to the current pandemic. Till date, there is no specific 
therapeutic agent available for its treatment. Mpro, a non-structural protein cleaves viral polyproteins 
into other non-structural proteins. Inhibition of Mpro could prevent the virus replication projecting 
it as a potential candidate for anti-COVID-19 drug development. The authors report herein 10 top-
ranked curcumin derivatives as non-peptide covalent-binding Mpro inhibitors using systematic virtual 
screening approach. Detailed ligand-receptor interaction analysis conferred that the α,β-unsaturated 
carbonyl moiety of curcumin functions as a warhead to yield a Michael adduct with Cys145 of the 
catalytic dyad of Mpro. Collectively, these results have offered new high affinity molecules for the 
development of potential drugs for the treatment of COVID-19.
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INTRODUCTION

Three major outbreaks of acute respiratory syndrome induced by coronaviruses (CoVs) have been 
witnessed in the last two decades. The first outbreak was Severe Acute Respiratory Syndrome 
(SARS) in 2003 with Guangdong, China as epicenter (Peiris et al., 2004) followed by Middle East 
Respiratory Syndrome (MERS) in 2012 in Saudi Arabia (Zaki et al., 2012) and now the novel 
coronavirus disease (COVID-19), first reported in Wuhan, China in late 2019(Wang et al., 2020). 
World Health Organization (WHO) declared COVID-19 outbreak as a global pandemic on 11th 
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March 2020 (Cucinotta & Vanelli, 2020). The spread of the disease around the world and the number 
of infected patients and mortality of COVID-19 are increasing exponentially day by day. As per the 
WHO report (28th October, 2020), COVID-19 is affecting more than 210 countries and territories 
with over 43,766,712 confirmed cases and over 1,663,459 total deaths around the world (World 
Health Organization, 2020). Currently, the global fatality rate is around 3.80% (calculated as deaths 
per confirmed cases). A large number of people are being identified as COVID positive every day in 
the USA followed by India, Brazil, Russia, South Africa and other countries.

CoVs are a group of enveloped, positive-sense, single-stranded RNA viruses belonging to the 
Corona viridae family. They induce respiratory, neurological and gastrointestinal complications 
of varying severity in human hosts. Novel coronavirus (2019-nCoV) also known as severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) belonging to the category of β-coronavirus is 
the causative agent of COVID-19 (Chen et al., 2020; Osman et al., 2020).Although SARS-CoV-2 is 
considered to be introduced from bats, its specific source, animal reservoir and enzootic patterns of 
transmission remain unresolved.

The SARS-CoV-2 genome, comprising of ~30,000 nucleotides encodes 4 structural proteins, 
16 non-structural proteins and 9 accessory proteins (Chen et al., 2020). By translation of the viral 
genomic RNA (gRNA), CoVs produce two overlapping polyproteins pp1a (450-500 kDa) and pp1ab 
(750-800 kDa) (Thiel et al., 2003). These polyproteins undergo extensive proteolytic processing and 
ultimately the functional polypeptides are released which are crucial for the replication and assembly 
of the virus. This proteolytic processing is mediated predominately by the main protease (Mpro) also 
referred to as 3-chymotrypsin-like protease (3CLpro) or non-structural protein-5 (NSP-5), and by 
papain-like protease (PLpro). Mpro is a cysteine protease that digests the polyprotein within the Leu-
Gln↓ (Ser, Ala, Gly) sequence (↓indicates the cleavage site), which appears to be a conserved pattern 
of this protease. The ability of CoVs to hydrolyze the peptide bond specifically after Gln residue is 
very unique which is unknown for human enzymes (Pillaiyar et al., 2016; Hilgenfeld, 2014). This 
characteristic feature along with the functional importance of Mpro makes it a potential target for 
COVID-19 antiviral drug discovery (Zhang, Lin, Sun, Rox, et al., 2020; Jin et al., 2020).

The X-ray crystallographic structure of SARS-CoV-2 Mpro bound to a covalent inhibitor N3 
was resolved by Jin et al (2020). Mpro has 306 amino acids long chain with three domains. Domain I 
contains Phe8 –Tyr101 residues, domain II contains Lys102 –Pro184 residues, and domain III contains 
Thr201 –Val303 amino acid sequence linked with domain II by a long loop region of Phe185 – Ile200 
residues. The substrate-binding site with a Cys145 – His41 catalytic dyad is present in a cleft between 
domains I and II. The major active subsites where the substrates bind to Mpro are well defined. The 
S1 subsite is composed of Phe140, Leu141, Asn142, His163, Glu166 and His172 amino acids. A 
small S1’ subsite involves Thr25, Thr26 and Leu27 residues. Hydrophobic S2 subsite is composed of 
His41, Met49, Tyr54, Met165 and Asp187 residues. The S4 subsite is made up of Met165, Leu167, 
Phe185, Gln189 and Gln192 residues (Jin et al., 2020; Zhang, Lin, Sun, Curth, et al., 2020).

The Cys145 amino acid present in catalytic dyad functions as a common nucleophile in the 
proteolytic cleavage of the natural substrate of Mpro. The proteolytic cleavage is believed to be 
performed in a multiple-step mechanism (Figure 1). Once the Cys145 side-chain proton is abstracted 
by the imidazole nitrogen of His41 (Step-I), the resulting thiolate nucleophile attacks the carbonyl 
amide group of the natural substrate (Step-II). The N-terminal peptide product is released with the 
abstraction of a proton from His41 (Step-III). Then, the thioester is hydrolyzed (Step-V) and the 
C-terminal product is released which restores the active catalytic dyad (Step-VI) (Pillaiyar et al., 2016).

Covalent inhibitors hold an important place in the history of drug discovery, beginning in the late 
19th century with aspirin and continuing with the current surge of rationally designed kinase inhibitors 
as anti-neoplastic agents (Sutanto et al., 2020). Till recently, these covalent-binding drugs were not 
invented intentionally, but their covalent binding modes were invented only after their development. 
Targeted covalent inhibition has come out as a validated strategy to drug discovery after the FDA 
approval so fibrutinib (2013), afatanib (2013) and osimertinib (2015), drugs that were intended to 
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undergo an irreversible Michael addition reaction with a specific cysteine amino acid residue of a 
target protein (Gehringer & Laufer, 2019).Studies as reported in the literature have demonstrated 
that Cys145 is a key residue in the active site of Mpro which makes this residue an attractive target 
for covalent binding by Mpro inhibitors (Figure 2) (Mengist et al., 2020; Ullrich & Nitsche, 2020; 
Kanhed et al., 2020).

Many research groups have carried out the repurposing of FDA-approved drugs, and to date, 
many FDA-approved drugs are being investigated in more than 100 clinical trials (Pawar, 2020; 
Joshi et al., 2020; Serafin et al., 2020; Abuo-Rahma et al., 2020). Some of them have turned out to 
be effective against SARS-CoV-2 and used as COVID-19 treatments (Pandey et al., 2020). At the 
same time, several companies have initiated clinical trials of vaccines against COVID-19. Keeping 
in mind the severity of the disease and urgent medical need for an efficient drug, it was envisaged to 
identify potential leads for SARS-CoV-2 Mpro inhibitors amongst the reported curcumin derivatives 
for possible COVID-19 treatment.

This study aims to identify novel potential Mpro inhibitors that could inhibit the intended protein 
irreversibly through covalent modification of its active site cysteine residue. Our quest for a potential 
lead is to identify compounds having Michael acceptor-like structures as they are strong electrophiles 
which react covalently with the nucleophilic cysteine thiolate group in the enzyme active site. In the 
current report, a systematic virtual screening of a library of curcumin derivatives was carried out 
using the Glide and CovDock modules of Schrodinger Suite. The promising compounds are discussed 
here in detail that could be used as possible hits for further drug development for getting an adequate 
drug treatment of COVID-19.

RATIONALE FOR SELECTION OF CURCUMIN SCAFFOLD

In an incisive crystal structure analysis of the SARS-CoV-2 Mpro (PDB Code: 6LU7), it was 
observed that there is Cys145 amino acid residue in the active site which was covalently attached to 
the β-position of the peptide-like α,β-unsaturated carbonyl compound N3 (Figures 3A and 3B) as a 
Michael adduct (Jin et al., 2020). In addition to this, it was also noted that the ligand N3 had adequate 
hydrogen bonding and stacking interactions with different hydrophilic and hydrophobic regions of 

Figure 1. Proteolytic cleavage of natural amide substrate by His41 and Cys145 of the active site of Mpro
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the protein. Michael-type of addition reaction of thiol to α,β-unsaturated ketone functional group is 
very well-known in biological systems. These observations made us to select molecules possessing 
α,β-unsaturated ketone as sufficiently electrophilic warhead in the ligand for covalent interactions 
with the enzyme along with additional structural features for noncovalent interactions.

Turmeric is crowned with captivating medicinal properties in traditional Indian literature (Prasad 
& Aggarwal, 2011; Chattopadhyay et al., 2004). It is used routinely as a spice, food preservative, and 
also for various minor and major illnesses as a medication by the Indians. These impressive therapeutic 
attributes of turmeric inspired the researchers to explore the therapeutic potential of its principal 
constituent curcumin. Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), 
also termed as diferuloylmethane, is the main natural polyphenol found in the rhizomes of turmeric 
(Curcuma longa and in others Curcuma spp.) belonging to the Zingiberaceae family. There are three 
common pharmacophoric features present in the structure of curcumin i.e. the α,β-unsaturated keto-
enol system, two phenolic moieties and the seven-carbon skeleton linking both the phenolic groups 
which are crucial for covalent and/or noncovalent interactions with biological macromolecules. The 
aromatic functionality can have π-π interactions while the phenolic hydroxyl groups and keto-enol 
groups can participate in hydrogen bonding interactions. The seven-carbon linker provides flexibility 
to the molecule so that it can easily adopt suitable conformation to maximize the intermolecular 
interactions. The covalent interactions of curcumin are mostly due to the reaction of the thiol group 
present in the proteins with the β-position of the α, β-unsaturated ketone present in curcumin structure. 
It is these covalent and non-covalent interactions with biomolecules that are responsible to elicit a 
specific biological activity (Nelson et al., 2017). These valuable structural features (Figure 3C) in 
a single scaffold inspired us to take advantage of their presence in the search for potential Mpro 
inhibitors for the treatment of COVID-19.

Figure 2. Mechanism of a covalent Mpro inhibitor as anti-COVID-19 agent (schematic representation of Michael addition, as a well-
known example of the covalent reaction between α,β-unsaturated ketone group of the ligand and cysteine residue of the protein)
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RESULTS AND DISCUSSION

Protein Preparation
The 3D-crystal structure of cysteine protease Mpro was retrieved from RCSB protein data bank (PDB 
ID: 6LU7) (Jin et al., 2020) and the covalent bond between the co-crystallized ligand N3 and amino 
acid Cys145 residue was cleaved. After bond cleavage, structures of the ligand N3 and Cys145 residue 
of the enzyme were reconstructed by making suitable chemical changes and the resulting ligand-
protein complex was refined using Protein Preparation Wizard in Schrodinger (Schrödinger, LLC, 
New York, NY, 2020). Receptor grid was generated on the active site of Mpro protein by considering 
the centroid of ligand molecule N3 as the centre of the grid. The grid coordinates (i.e. X, Y, and Z) 
were -10.47, 12.23, and 68.7, respectively. To validate the generated grid, the co-crystallized ligand 
(N3) was re-docked into the active site of the protein using the generated grid. Here, the N3 molecule 
showed similar pattern of orientation and interactions, such as hydrogen bonding with Glu166, 
Gln189 and Thr190 residues of the active site. The XP docking score between N3 and Mpro protein 
was −7.85 kcal/mol. This cognate docking was analyzed further by identifying the all atom RMSD 
value of the re-docked N3 ligand vis-a-vis the co-crystallized ligand, and it was found to be 0.452 Å, 
which validated the docking protocol.

Library Designing and Docking-Based in Silico Screening
A library of reported curcumin derivatives was prepared using the Scifinder similarity search of 
curcumin structure. The resulting structures (12,421 compounds, with a similarity of 70 – 74% with 
curcumin) were retrieved. Among these, compounds possessing α,β-unsaturated carbonyl group 
(warhead) were searched. The selected compounds (5,000 compounds) having this warhead were 
structurally polished for docking by Ligprep module of the Schrodinger Suite. These compounds 
were screened in silico systematically using sequential conformational precision approaches which 
included HTVS, SP, XP and CovDock protocols of Schrodinger Suite on the Mpro protein and the 
molecules obtained in the final step were analyzed manually for their predicted binding modes and 

Figure 3. Rationale for the selection of curcumin scaffold. A: Structural characteristics of N3 ligand of SAR-CoV-2 Mpro (PDB 
ID: 6LU7). B: 2D-interaction diagram of ligand N3 and Mpro. C: Important structural features present in the curcumin scaffold.
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scores (Toledo Warshaviak et al., 2014; Al-Khafaji et al., 2020). Amongst them, the top 10 potential 
covalent inhibitors of the Mpro of SAR-CoV-2 have been described here (Table 1). For all these 
compounds, the distance between the sulfur atom of Cys145 residue and nucleophilic β-position 
carbon of curcumin derivatives is shown in Table 1. In Mpro-N3 enzyme-ligand complex, the distance 
between the sulfur atom of Cys145 and the covalent carbon atom of N3 ligand is 1.8 Å, whereas 
this distance is around 1.8 Å for all the reported curcumin derivatives (except for compound 6). So, 
the proximity between these two atoms (i.e. sulfur and carbon) suggests high potential for covalent 
bonding between the chosen compounds and Cys145 residue of Mpro active site.

MM-GBSA Binding Energy Calculation
The docked ligand-receptor complexes were further analyzed for Molecular Mechanism-Generalized 
Born Surface Area (MM-GBSA) analysis to predict the free binding energy of ligand-receptor 
complexes (Genheden & Ryde, 2015). These binding free energies were used for re-scoring the top 
leads obtained after CovDock screening as binding energy is considered to be more accurate than any 
other scoring parameter of molecular docking (Rastelli & Pinzi, 2019).The total free energy binding 
(MM-GBSA ΔG Bind) was estimated as follows using the software:

MMGBSA ΔG Bind = GComplex–(GReceptor+GLigand)	

where GComplex, GReceptorand GLigand represent the energies of optimized ligand-receptor complex, 
optimized receptor and optimized ligand, respectively.

The chemical structures of the top-ranked molecules with curcumin are depicted in Figure 4. 
Molecular docking scores along with other parameters and MM-GBSA energy components are 
represented in Tables 1 and 2.

Interaction Analysis of the Identified Curcumin Derivatives
After the docking study, top-ranked compounds were arranged according to their free binding energies. 
Lower binding energy represents a more favorable binding of a ligand with protein. The best poses 
were visualized for H-bonding interactions, π-π interactions using PyMol (DeLano L, 2002). By 
default, the covalent docking gives only a single docked pose per ligand, which is the lowest-energy 
pose. However, as shown in the curcumin structure, there are two matches of the ligand SMARTS 
pattern for reactive residue, so the covalent docking gave two docking poses (Figure 5). Ranking 
of poses can be done according to their docking scores and MM-GBSA binding energies. Here the 
pose-I where curcumin (1) is represented in the cyan color sticks showed better docking score (-7.028 
kcal/mol), MM-GBSA ΔGBind (-51.07 kcal/mol) and cdock affinity (-7.028 kcal/mol) compared to 
the pose-II represented in grey color. The interactions of curcumin (1) and other derivatives (2-10) 
with the active site of Mpro discussed below are for the lowest-energy poses.

The molecular docking of curcumin (1), the basic scaffold within the active site of Mpro is 
shown in Figure 6. It shows that curcumin is fitting snugly inside the substrate-binding pocket of 
Mpro, interacting covalently with Cys145 residue (covalent binding affinity value of -7.028 kcal/
mol). Curcumin showed good binding free energy (-51.07 kcal/mol). Main contributors to this notable 
binding of curcumin to Mpro are the exceptionally strong van der Waals interactions (ΔGvdW) followed 
by electrostatic interactions (ΔGCoulomb), lipophilic interactions (ΔGLipo), and hydrogen bond interactions 
(ΔGHbond).The phenolic hydroxyl group showed H-bonding with Thr26 residue (1.66 Å) and oxygen of 
methoxyl group on phenyl ring showed H-bonding with Gly143 residue (2.10 Å). Curcumin is found 
to involve in an important covalent interaction with Cys145 residue of Mpro through Michael addition. 
The α,β-unsaturated ketone in curcumin showed a covalent bond (1.83 Å) between the β-position and 
Cys145 residue. LE value indicates the effectiveness of the molecule to use its structural features for 
binding to the target. Curcumin showed LE value of 0.27 kcal mol–1 per heavy atom.
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Compound (2) having hydroxypropyl acrylate side chains attached to two hydroxyl groups of 
curcumin showed prominent binding interaction to Mpro with free binding energy and covalent 
binding affinity of -67.44 and -8.341 kcal/mol, respectively. As shown in Figures 7A and 7B, the 
hydroxy groups present at C2 position of the propyl acrylate side chains showed H-bondings with 
Thr25 residue (1.93 Å) and Glu166 residue (1.72 Å). The covalent bonding between the β-position of 
the α,β-unsaturated ketone group with Cys145 residue (1.84 Å) and H-bonding between the oxygen of 
α,β-unsaturated ketone and Gly143 residue (2.21 Å) provide stability to the ligand-receptor complex.

Similar to compound (2), compound (3) showed notable binding to Mpro with a covalent binding 
affinity value of -8.821 kcal/mol (Figures 7C and 7D). Hydroxyl groups present in the compound 
showed H-bondings with Thr24 (2.27 Å), Thr25 (1.84 Å) and Thr190 (1.61 Å) residues. Carbonyl 
group oxygen of acrylate moiety showed H-bonding with Ser46 residue (2.28 Å). The covalent bonding 
between the β-position of α,β-unsaturated ketone with Cys145 residue (1.83 Å) and H-bonding 
between the oxygen of α,β-unsaturated ketone and His41 residue (2.05 Å) provided stability to the 
ligand-receptor complex.

Compound (4) having 1-adamantylamine moiety attached to ethyl curcumin through a propionyl 
bridge showed strong interaction with Mpro having free binding energy and covalent binding affinity 
of-61.60 and -7.696 kcal/mol, respectively (Figures 7E and 7F). The –NH of 1-adamantylamine 

Figure 4. Chemical structures of top-ranked curcumin (1) and its derivatives (2-10)
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moiety gets protonated at physiological pH and showed H-bondings with Phe140 residue (2.63 Å) 
and Glu166 residue (1.89 Å). The protonated nitrogen showed strong salt bridge interaction with 
Glu166 residue (2.84 Å). Carbonyl oxygen of propionyl bridge showed H-bonding with Glu166 
residue (1.69 Å). The covalent bonding between the β-position of the α,β-unsaturated ketone with 
Cys145 residue (1.75 Å) and H-bonding between α,β-unsaturated ketone andGly143 residue (1.75 
Å) provide stability to the ligand-receptor complex.

Table 1. Molecular docking results for the hit compounds from the library of curcumin derivatives

Compd Rank Docking 
Score

Atom 
Distance

cdock 
Affinity

MM-
GBSA 

ΔG Bind
h

Glide 
LE

RMSD 
(Å)

2 1 -8.156 1.84 Å -8.341 -67.44 -0.181 0.042

3 2 -9.091 1.83 Å -8.821 -65.99 -0.198 0.027

4 3 -6.134 1.75 Å -7.696 -61.60 -0.104 0.040

5 4 -9.656 1.84Å -8.562 -59.84 -0.268 0.040

6 5 -7.791 2.15Å -8.204 -59.02 -0.190 0.043

7 6 -8.031 1.83 Å -8.917 -58.36 -0.136 0.044

8 7 -7.045 1.85 Å -7.190 -56.48 -0.157 0.040

9 8 -7.198 1.84 Å -7.174 -55.95 -0.248 0.047

10 9 -7.334 1.84 Å -7.259 -53.87 -0.216 0.047

Cur (1) 10 -7.045 1.83 Å -7.028 -51.07 -0.27 0.048

N3 lig. - -7.466 1.84 Å -7.466 -74.91 -0.167 0.043

Docking scores and other values are listed for the identified pose. Atom distance is the distance between the putative reactive atom of the drug and 
Cys145. cdock affinity: covalent docking affinity, LE: ligand efficiency, binding free energy per heavy atom count (LE = ΔG/HA), Cur: curcumin, N3 lig: N3 
ligand.

Table 2. Energy components of the Mpro-ligand complexes from MMGBSA calculation

Compd ΔG 
Coulomb

a
ΔG 

Covalent
b

ΔG 
Hbond

c
ΔG 

Solv GB
d

ΔG Lipo
e ΔG 

Packing
f

ΔG vdW
g

2 -42.72 10.72 -3.25 34.91 -13.3 -0.95 -52.86

3 -32.41 1.99 -3.72 35.41 -14.24 -0.97 -52.04

4 -38.13 12.11 -3.09 54.71 -18.57 -1.68 -66.95

5 -28.61 -0.24 -2.5 40.71 -15.93 -2.19 -51.09

6 -13.6 3.04 -1.33 24.16 -9.36 -3.11 -58.82

7 -32.06 0.66 -2.59 45.35 -11.55 -2.75 -55.43

8 -38.66 16.46 -1.4 52.84 -20.05 -3.08 -62.57

9 -22.44 -0.95 -0.99 27.33 -15.23 -0.09 -43.58

10 -12.69 0.3 -0.57 23.65 -17.15 -3.36 -44.05

Cur (1) -18.9 1.9 -0.97 26.84 -15.47 -0.11 -44.36

N3 lig. -29.96 5.92 -3.2 44.21 -14.70 0.00 -77.17

All energy values are in kcal/mol. aCoulomb energy (Coulomb), bcovalent binding energy, chydrogen-bonding correction, dgeneralized Born electrostatic 
solvation energy, elipophilic energy, fpie-pie packing correction, gvan der Waals energy, Cur: curcumin, N3 lig: N3 ligand.
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Figure 5. Overlap of two binding poses of curcumin (1) with SARS-CoV-2 Mpro. Curcumin is shown in cyan color and grey color. 
The docking scores and energies reported here are in kcal/mol.

Figure 6. Binding mode and molecular interactions of curcumin (1) with SARS-CoV-2 Mpro (PDB ID: 6LU7). A: 3D structure of 
Mpro having three domains as shown in three different colors. The ligand-binding site region is enclosed within the square. B: 
Magnified view of the catalytical center. Curcumin is shown as a stick model with cyan color. The dashed circle highlights the 
C-S covalent bond. C: 2D-ligand interaction diagram of curcumin with Mpro active site.
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Curcumin mono-α-D-arabinopyranoside (5) is able to covalently dock inside the Mpro with a 
covalent binding affinity value of -8.562 kcal/mol. As shown in Figures 8A and 8B, the phenolic 
hydroxyl group showed H-bonding with Glu166 residue (2.53 Å). The α-D-arabinopyranosyl ring was 
also found to fit closely inside the polar region of Gln189, Thr190 and Gln192 amino acid residues. 
The hydroxy group on the 4th position of the α-D-arabinopyranosyl ring showed H-bonding with 
Thr190 residue (1.62 Å). The α,β-unsaturated ketone group of curcumin moiety showed a covalent 
bond (1.84 Å) between the β-position and Cys145 residue.

Insertion of the thiophenyl group at C5 position of the phenyl ring in curcumin showed 
improvement in the covalent binding affinity (-8.204 kcal/mol). The phenolic hydroxyl group of 
the compound (6) showed H-bonding with Glu166 residue (2.23 Å) and oxygen of methoxyl group 
on phenyl ring showed H-bonding with Thr24 residue (2.36 Å) (Figures 8C and 8D). The covalent 

Figure 7. Docking interactions of compounds (2-4: A-E) in the active site of Mpro. A, C and E: Binding modes of compounds 2, 3 
and 4 within Mpro active site, respectively. Ligands are shown as cyan sticks. Mpro residues are shown as atom type color sticks. 
Hydrogen bonds formed between ligands and receptor are indicated by dotted lines. The circle highlights the C-S covalent bond. 
B, D and F: 2D-ligand interaction diagram of compounds 2, 3 and 4 with Mpro active site, respectively.



International Journal of Quantitative Structure-Property Relationships
Volume 6 • Issue 2 • April-June 2021

68

bonding between the β-position of the α,β-unsaturated ketone with Cys145 residue (1.83 Å) and 
H-bonding between α,β-unsaturated ketone with Cys145 residue (2.15 Å) provide additional stability 
to the ligand-receptor complex.

Some quercetin-curcumin hybrids have been reported as antioxidant agents by Yanase et al 
(2010). Amongst these hybrids, compound (7) showed notable binding to Mpro with covalent binding 
affinity value of -8.917 kcal/mol as shown in Figures 8E and 8F. The phenolic hydroxyl group at 
C3′ position and oxygen of the chromone ring of quercetin moiety showed H-bondings with Glu166 
residue (1.75 Å) and Asn142 residue (2.62 Å), respectively. Carbonyl group oxygen of curcumin 
moiety showed H-bonding with His41 residue (2.02 Å). The covalent bonding between the β-position 
of the α,β-unsaturated ketone in curcumin with Cys145 residue (1.83 Å) provide stability to the 
ligand-receptor complex.

Liu et al. (2013) reported novel antiproliferative curcumin analogs having o-aminoalkyl moieties 
attached to the curcumin scaffold. Compound (8) with o-pyrrolidinopropyl chains attached to the 
curcumin scaffold showed good binding interactions with the Mpro active site as shown in Figures 
9A and 9B. The aromatic phenyl rings of curcumin scaffold allow the formation of more favorable 
π−π stackings with His41 (4.92 Å) and His163 (5.03 Å). The nitrogen atom of the pyrrolidine ring 
got protonated at physiological pH. The salt bridge between −NH of the pyrrolidine and Glu166 (4.56 
Å), and H-bonding interaction between the nitrogen of pyrrolidine and Glu166 (2.10 Å) provided 
stability to the ligand−receptor complex. It also showed covalent bonding between the β-position of 
the α,β-unsaturated ketone with Cys145 residue (1.85 Å) and H-bonding between α,β-unsaturated 
ketone with Cys145 residue (2.22 Å).

Insertion of the fluoro group at C5 positions of the phenyl ring in curcumin as in compound (9) 
showed a slight improvement in the covalent binding affinity (-7.174 kcal/mol) (Figures 9C and 9D). 
This might be due to the electronegative nature of the fluoro group which made the β-position of the 
α,β-unsaturated ketone more electrophilic for Michael addition. The β-position of the α,β-unsaturated 
ketone showed covalent bonding with Cys145 residue (1.84 Å). The phenolic hydroxyl group showed 
H-bonding with Thr26 residue (1.66 Å).

Compound (10) with a 4-fluorophenyl ring in R-configuration showed good binding interactions 
within the active site of Mpro having a free binding energy value of -53.87 kcal/mol and covalent 
binding affinity value of -7.259 kcal/mol. As shown in Figures 9E and 9F, the covalent bonding 
between the β-position of the α,β-unsaturated ketone with Cys145 residue (1.84 Å) and H-bonding 
between α, β-unsaturated ketone with Gly166 residue (2.58 Å) provide stability to the ligand-receptor 
complex. A compound having the 4-fluorophenyl ring in S-configuration showed free binding energy 
(-46.33) and covalent binding affinity (-6.345 kcal/mol) for Mpro.

Molecular Dynamics (MD) Simulation Studies
The interactions of a ligand with receptor in the non-covalent mode help us to understand the possibility 
of covalent interactions between the amino acid of the enzyme and the warhead group of the ligands. 
When the sulfur atom of thiol group of Cys145 is in close proximity to the α,β-unsaturated carbon of 
the ligand, it is able to bind covalently through Michael addition reaction. Here, the distance between 
these two centres was monitored using the MD simulations. The two complexes of the top-ranked 
compounds (2 and 3) with the active site fragment of Mpro were evaluated using MD analysis. 
The covalent bond was broken and necessary atoms were added to reconstruct the structures. This 
complex was considered as the starting pose for carrying MD analysis. A 10 ns MD analysis was 
carried out. To understand the binding stability of the ligand-receptor complex over the simulation 
period, statistical properties like RMSD-P, RMSF-P, and RMSD-L (P = protein; L = ligand), van der 
Waals and electrostatic interaction energies were examined to cross-check and support the stability 
of the interactions.

The RMSD-P for Mpro in complexation with compound (2) was in the range of 0.1–0.23 nm 
with an average of 0.15 nm (Figure 10A). This suggests the stability of the protein while having 
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compound (2) in the active site over this period of simulation. Despite having freely rotatable bonds, 
the average RMSD-L was 0.54 nm with a range of 031 nm to 0.68 nm (Figure 10B). This suggests the 
protein–ligand stability without a major change in orientation of the ligand in the active site over the 
period of simulation time. The RMSF value explains the structural integrity and residual mobility of 
the structure. Here again, all the residues including terminal residues of the protein structure showed 
RMSF-P below 0.45 nm, while having compound (2) in the active site (Figure 10C). The distance 
module from GROMACS was used to determine the distance between the thiol group of Cys145 and 
the α,β-unsaturated carbon of the ligand. The average distance between the sulfur atom of thiol group 
of Cys145 and the α,β-unsaturated carbon of the ligand was observed to be 0.40 nm with a range 
of 0.15 nm to 0.64 nm (Figure 10D). The short-range electrostatic (Coul-SR) and van der Waals/

Figure 8. Docking interactions of compounds (5-7: A-E) in the active site of Mpro. A, C and E: Binding modes of compounds 5, 6 
and 7 within the Mpro active site, respectively. Ligands are shown as cyan sticks. Mpro residues are shown as atom type color 
sticks. Hydrogen bonds formed between ligands and receptor are indicated by dotted lines. The circle highlights the C-S covalent 
bond. B, D and F: 2D-ligand interaction diagram of compounds 5, 6 and 7 with Mpro active site, respectively.
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hydrophobic (LJ-SR) interaction energies between the protein and compound (2) explained promising 
electrostatic as well as hydrophobic interactions. The average values of Coul-SR -56.94 ± 11 kJ/mol 
and LJ-SR -138.58 ± 10 kJ/mol were observed. This explains that the role of hydrophobic interaction 
was more important than the electrostatic interactions in stabilizing the complex.

Similar evaluation was done for Mpro in complexation with compound (3). The RMSD-P was 
observed in the range of 0.11–0.25 nm with an average of 0.19 nm (Figure 11A). Despite having 
multiple rotatable bonds, the RMSD-L was observed in the range of 0.38–0.61 nm with an average 
value of 0.46 nm (Figure 11B). The observed RMSF-P for all the residues except for the terminal 
residues was below 0.2 nm, whereas for the terminal residues, it was below 0.6 nm (Figure 11C). The 
average distance between the sulfur atom of thiol group of Cys145 and the α,β-unsaturated carbon of 

Figure 9. Docking interactions of compounds (8-10: A-E) in the active sites of Mpro. A, C and E: Binding modes of compounds 
8, 9 and 10 within the Mpro active site, respectively. Ligands are shown as cyan sticks. Mpro residues are shown as atom type 
color sticks. Hydrogen bonds formed between ligands and receptor are indicated by dotted lines. The circle highlights the C-S 
covalent bond. B, D and F: 2D-ligand interaction diagram of compounds 8, 9 and 10 with Mpro active site, respectively.
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the ligand was 0.37 nm with a range of 0.21 nm to 0.58 nm (Figure 11D). The short-range electrostatic 
(Coul-SR, energy: -49.73 ± 6 kJ/ mol) and van der Waals/hydrophobic (LJ-SR, energy: -153.45 ± 
4 kJ/mol) interaction energies suggested promising interactions between the ligand and the protein.

EXPERIMENTAL

Preparation of the In Silico Compound Library
A library of curcumin derivatives was generated by similarity search of curcumin scaffold in Scifinder. 
These molecules were retrieved (12421 compounds, 70 – 74% similarity) and the search for the 
compounds having α,β-unsaturated carbonyl group (as a chemical warhead) was performed manually 

Figure 10. (A) RMSD-P, (B) RMSD-L, (C) RMSF-P and (D) distance plots for Mpro with compound (2)

Figure 11. (A) RMSD-P, (B) RMSD-L, (C) RMSF-P and (D) distance plots for Mpro with compound (3)
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on the collected compounds’ library. The selected compounds (5000 compounds) having this warhead 
were prepared for computational study at physiological pH condition retaining the chiralities by using 
LigPrep module of Schrodinger (Schrödinger, LLC, New York, NY, 2020).

The 3D crystal structure of Mpro retrieved from RCSB Protein Data Bank (PDB ID: 6LU7) (Jin 
et al., 2020) was prepared to ensure structural correctness for hydrogen consistency, bond orders, 
steric clashes and charges using Protein Preparation Wizard in Schrodinger Suite supported by 
OPLS3e force field. Thus, the prepared structure was used for receptor grid generation required for 
the docking protocol. The receptor grid was generated considering the position of the co-crystallized 
ligand N3 in the active site.

Molecular Docking and Interaction Analysis
The noncovalent molecular docking protocol was applied prior to covalent docking in the virtual 
screening workflow based on the hypothesis that the covalent inhibitors enter into the binding site of 
the target protein first, and establish physical interactions with it before forming a covalent bond with 
the protein (Figure 12). For that the generated curcumin derivatives library having 5000 molecules 
was first screened using high-throughput virtual screening method. This is considerably fast but 
raw screening method. From the result, top 1500 molecules were picked up for the next standard 
precision (SP) docking. From the SP docking results, 500 molecules were carried forward for the 
extra-precision (XP) docking. From the XP analysis, top 50 compounds were considered for further 
covalent docking analysis. A covalent docking exercise was performed to identify curcumin derivatives 
that can target Cys145 residue of Mpro within the substrate-binding pocket, especially keeping in 
mind that the co-crystallized inhibitor N3 exists in covalent binding mode with Mpro. The targeted 
covalent docking of 50 compounds through Cys145 residue was carried out by CovDock module of 
Schrodinger Suite. In CovDock protocol, Cys145 was specified as reactive residue in the receptor, 
Michael addition as reaction type, α,β-unsaturated carbonyl group in the ligand as the active functional 
group represented by a SMARTS pattern [C,c]=[C,c]-[C,c,S,s]=[O] and docking was performed in 
pose prediction mode. For the scoring of the docked poses, MM-GBSA calculations were performed 
within CovDock protocol. Finally, the top 20% molecules were selected for manual analysis of their 
predicted binding scores and interactions with the active site of Mpro using PyMol.

Molecular Dynamics Simulation Study
The MD studies between the selected compounds and Mpro (PDB code: 6LU7) were performed for 
a period of 10 ns by using GROMACS 2020.1 software as per our previous report (Kanhed et al., 
2020). The covalent bond in ligand-enzyme complex was broken and necessary atoms were added 
to reconstruct the structures. This complex was considered as the starting pose for carrying out the 
MD analysis. The distance module from GROMACS was used to determine the distance between 
the thiol group of Cys145 and the α,β-unsaturated carbon of ligand.

CONCLUSION

In view of the long history of curcumin use in controlling various pathophysiological conditions and 
the unmet need for the drug development for COVID-19, we envisaged to assess the anti-SARS-CoV-2 
potential of some reported curcumin derivatives as Mpro inhibitors using in silico approach. As a result, 
we identified curcumin derivatives as non-peptidomimetic covalent-binding inhibitors of SAR-CoV-2 
Mpro by a systematic virtual screening method. The identified curcumin and its derivatives could 
modify Cys145 residue of Mpro by covalent bonding which could inhibit the proteolytic processing of 
viral polyproteins. Apart from covalent bonding with Cys145, these derivatives are also observed to 
form non-covalent interactions with other amino acid residues of the active site of Mpro. Collectively, 
these covalent as well as non-covalent interactions made these curcumin derivatives as potential lead 
molecules as Mpro inhibitors. Although experimental biological assessments are needed to support 
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these in silico findings; findings of the computational studies presented in this report are expected 
to assist the active researchers in the development of covalent Mpro inhibitors.

Figure 12. Schematic representation of the workflow adopted to identify curcumin analogs as covalent Mpro inhibitors
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