
DOI: 10.4018/JOEUC.2020100105

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

﻿
Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

85

Designing a XSS Defensive Framework
for Web Servers Deployed in the
Existing Smart City Infrastructure
Brij B. Gupta, National Institute of Technology, Kurukshetra, India & Asia University, Taiwan & Macquarie University,
Australia

Pooja Chaudhary, National Institute of Technology, Kurukshetra, India

 https://orcid.org/0000-0003-0766-0530

Shashank Gupta, Birla Institute of Technology and Science, Pilani, India

ABSTRACT

Cross-site scripting is one of the notable exceptions effecting almost every web application. Hence,
this article proposed a framework to negate the impact of the XSS attack on web servers deployed
in one of the major applications of the Internet of Things (IoT) i.e. the smart city environment.
The proposed framework implements 2 approaches: first, it executes vulnerable flow tracking for
filtering injected malicious scripting code in dynamic web pages. Second, it accomplished trusted
remark generation and validation for unveiling any suspicious activity in static web pages. Finally,
the filtered and modified webpage is interfaced to the user. The prototype of the framework has been
evaluated on a suite of real-world web applications to detect XSS attack mitigation capability. The
performance analysis of the framework has revealed that this framework recognizes the XSS worms
with very low false positives, false negatives and acceptable performance overhead as compared to
existent XSS defensive methodologies.

Keywords
Smart City Cyber Security, Trusted Remark Statement Injection, Untrusted Javascript Code, XSS Attack

1. INTRODUCTION

Urbanization and migration require global development of economic, social, institutional and physical
infrastructure. Consequently, it puts pressure on the city’s organization as request for resources like
education, healthcare, transportation, government, and safety exceed their availability. To overcome
these issues, cities are focusing on the utilization of technology i.e. becoming ‘smart’. Smart cities
(Ferraz & Ferraz, 2014; Seth, 2013) are the cities that harness Information and Communication
Technology to automate and enhance services for improving the living standard of their citizens and
attain sustainable development. This concept of “smart cities” is the outcome of the new computing
paradigm, that is, Internet of Things. Internet has been risen up to the level where everything nearby
us is connected and turns out to be part of some form of network. Informally, we can define IoT as a
network formed by devices capable of generating, sending and receiving information related to any
business, accesses by any person, any time irrespective of the geographical location. Technology
should be used to make cities smart in terms of the services provided such as smart traffic control,

This article, originally published under IGI Global’s copyright on October 1, 2020 will proceed with publication as an Open Access article
starting on January 21, 2021 in the gold Open Access journal, Journal of Organizational and End User Computing (converted to gold Open

Access January 1, 2021), and will be distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium, provided the author of the original work and

original publication source are properly credited.

https://orcid.org/0000-0003-0766-0530

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

86

smart parking, smart health-care, smart transportation, smart city management system like waste
management, water management, Smart Street lighting and so on (Hossain & Shamim, 2018; Li, &
Daming, 2019). Therefore, in a nutshell, smart city means everything is embedded with sensors to
enable them to interact with the environment. Smart cities comprise of some of the main components
as illustrated in Figure 1. Indeed, smart city concept has given a new direction for nation’s growth;
nevertheless, for the exchange of the data, it utilizes server infrastructure which brings some major
challenges also. Cyber security is the biggest challenge because people share large amount of
information comprising personal and professional over the Internet (Li, Jianzhong, 2018; Almomani,
Ammar, 2013; Parada, Raúl,2018; Drennan, Judy, 2019). There are numerous cyber-attacks that have
contaminated web application.

Figure 2 shows detailed architecture of the smart city and also shows what type of attacks are
launched at which layer in the architecture of smart city. It may include DDOS, phishing, XSS, SQL
injection, spamming etc. Code injection vulnerabilities are the most common and dangerous threat
on Internet. It includes Cross-Site Scripting (XSS) (Chaudhary, Gupta, & Gupta, 2019; Gupta &
Gupta, 2016a, 2016b, 2018b), SQL injection, etc. XSS attack (Chaudhary, Gupta, & Gupta, 2016;)
is a type of code injection attack in which adversary injects malicious script code into the source
program of the web application, triggers malicious actions like cookie stealing, session hijacking,
dis-information and so on. It covers 3 types: Persistent XSS (Gupta & Gupta, 2018d, 2018e, 2018f),

Figure 1. Smart city components

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

87

Reflected XSS (Gupta et al. 2017a, 2018c) and Document Object Model (DOM) based XSS attack
(Gupta, Gupta, & Chaudhary, 2018a).

Numerous XSS defensive solutions have been proposed by the researchers for detecting and
alleviating the effect of XSS vulnerabilities from the different platforms of Web applications. XSSFilt
(Pelizzi & Sekar, 2012), a client-side XSS filter could discover non-persistent XSS vulnerabilities.
This filter identifies and thwarts portions of address URL from giving an appearance in web page.
This filter could also discover partial script insertions. XSS Auditor (Bates, Barth, & Jackson, 2010)
is a filter that realizes equally extraordinary performance as well as high accuracy via jamming scripts
following the HTML parsing and prior to execution. The filter can simply spot the components of
the response which are considered as a script. BIXSAN (Chandra & Selvakumar, 2011) comprises of
JavaScript Detector, which discovers the existence of JavaScript, an HTML parse tree producer which
is used to diminish the inconsistent performance of web browser and for the recognition of static
script tags for permitting legitimate HTML source code. ScriptGard (Saxena, Molnar, & Livshits,
2011) is a complementary technique that presumes the collection of accurate sanitizers and injects
them to match the parsing context of web browser.

An automated technique proposed by (Livshits & Chong, 2013) of sanitizer placement by statically
analyzing the stream of infected data in the program. However, placement of sanitizer is static and
sometimes changes to dynamic wherever required. JSand (Agten et al., 2012) is a server-driven
JavaScript-based sandboxing support, which implements a server-specific policy on the injected scripts
with no requirement of filtering or modification of scripts. The technique facilitates the developer of a
website to safely incorporate third-party scripts, with no requirement of disorderly alterations to both
client and server-side infrastructure. XSS-Guard (Bisht & Venkatakrishnan, 2008) is a technique that
detects the collection of scripts that a web application intends to create for any HTML web request.
The technique creates a shadow web page to learn the web application’s intent for every HTTP web
response, including the legitimate and expected scripts. Any divergence between the real generated

Figure 2. Architecture of smart city with possible threats

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

88

web page and the shadow web page points towards the possible script inclusions. However, main
issue with these existing techniques is that they cannot solve the problem of isolating executable
untrusted JavaScript code from the remaining data of HTML web page. Moreover, these are not able
to effectively make distinguish between valid and injected JavaScript code in the web page. Some of
the existing techniques demands major alterations in the existing infrastructure of Web applications.

1.1. Key Contributions
On the basis of these issues, authors have designed a framework based on vulnerable flow analysis
and injection of trusted Remark statements in the web page. At the server-side, our framework
performs 2 main functions: classification of response web page into static and dynamic web page;
and injection of trusted remarks statements at the borders of valid JavaScript code present in the
web page. These remarks help in differentiating malicious JavaScript from the valid JavaScript as it
includes features of valid JavaScript in the form of protocols with randomly generated nonce. These
protocols form the basis of comparison between JavaScript codes to detect XSS attack. At the client-
side, it detects the XSS attack by applying different techniques for static and dynamic web page. For
static response, it, firstly, extracts scripts and then make a comparison with the remark. If variance
is found then, it indicates XSS attack. For dynamic response, initially, it identifies vulnerable source
by completing vulnerable flow analysis. Then, it determines the context of this malicious source
followed by applying filtering on it with the help of filtering APIs. Finally, modified response web
page is displayed to the user.

1.2. Outline of this Paper
The rest of the paper is organized as follows: In section 2, we have introduced our work in detail.
Implementation and evaluation of our work are discussed in section 3. Finally, section 4 concludes
our work and discusses further scope of work.

2. PROPOSED WORK

This paper presents a hybrid defensive framework to protect the Internet users from XSS attack, in
smart city environment. The server-side framework, initially, explores the requested web application
to extract all the web pages of that web application. Then, it statically analyzes the content of the
web page and classifies them into 2 types: dynamic web page and static web page, depending on the
presence of input field in the web page, respectively. Furthermore, it returns the dynamic web page
to the browser and injects remark statements at the beginning and ending of the valid JavaScript
code present in the static web page. This is done to ensure the proper discrimination between valid
and malicious JavaScript code. The client-side framework dynamically executes the taint tracking
to identify the part of the malicious injected string used in the sensitive functions in the source code
of the dynamic webpage. Then, it substitutes the tainted string value with the testing attack vector
to exploit XSS vulnerability. If attack is successful then, it filtered out the tainted source with the
filtering APIs. In addition, it checks for the validity of remarks statement in the static web page to
detect XSS attack. The next sub-section discusses the abstract overview of our framework.

2.1. Abstract Design View of the Framework
The proposed framework works in four main phases: 1) statically classifies the web pages of the web
application; 2) generates remark statements comprising randomly generated nonces and features of
valid JavaScript code block; 3) checks for the validity of injected remark statements, at the client-
side, to detect XSS attack.; 4) dynamically performs the taint analysis and performs the filtering on
the tainted string value with the filtering APIs. Figure 3 elaborates the abstract design overview of
our framework.

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

89

This framework alleviates the propagation of XSS worm by performing two main mechanisms:
dynamic taint analysis and remark statements injection and validation. Payload tester accomplishes
the classification of web pages into dynamic and static web pages. Hereinafter, dynamic web page
undergoes taint analysis procedure with the help of vulnerable flow identification component. Exploit
generator component is used to identify suspicious web page with the help of inserting testing attack
payload at the taint source location and launch the XSS attack. If attack is successful then, it filters
the malicious string value. Otherwise, dynamic web page is free from XSS attack. Static web pages
are examined for the identification of malicious injected JavaScript code. This is done by injecting
remark statements at the border of the valid JavaScript code block. Remark variance detector seizes
the web page and implements a number of tests to detect XSS attack. Firstly, it identifies if any
JavaScript code block without remark statement is present or not. If present then, it is considered as
injected code and removed from the response. Otherwise, it tests for the validity of remark statements
comprising random nonce and features of valid JavaScript code. If a nonce is incorrect then, it is
declared as injected code. Otherwise, it matches the suspected features of JavaScript code with the
features included in the remark statements. If any deviation is found then, it is considered as injected.
Finally, it checks for the presence of any duplicate remark statements to identify remark statements
inserted by the attacker. If it identifies the presence of the injected JavaScript code in the response
then, it is removed from the response web page along with the injected remark statements. Figure 4
highlights the detailed working procedure of our framework in the form of flow chart. Hereinafter,
the next sub-section highlights the detailed illustration of our framework.

2.2. Detailed Design View of the Proposed Framework
This section furnishes the comprehensive architectural detail of our hybrid framework. Figure 5
shows the detailed design overview of our client-server XSS defensive framework. The outlined
framework executes in four high-level phases: 1) Classification of HTTP response web pages; 2)
Remark generation; 3) Remark validation; 4) Exploitation and filtering phase.

2.2.1 Classification of HTTP Response Web Page
The key goal of the server-side implementation is to efficiently classify the generated HTTP response
web page and insert remark statements at the borders of the JavaScript code. The key components
which implement these operations are: Internal Web page Tracing, Web page retrieval, Payload tester.
2.2.1.1 Internal Web Page Tracing

Figure 3. Abstract design overview of client-server framework

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

90

It is a server-side component that implements scanning of the web page to extract all the web pages
of the requested web application and save them for the later processing. Once the client enters the
requested URL then, it inevitably crawls the web application with the help of a selenium-based
crawler. Initially, it uproots all the internal and external URI links from the response web page and
then makes a request to retrieve all web pages from the server.

Figure 4. Flow chart of our proposed framework

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

91

2.2.1.2. Web Page Retrieval
It is a server-side component which is responsible for the extraction of requested web page of the web
application. This component receives the log provided by the internal web page tracing component
as its input. Then, it checks the requested URL to identify the specified web page of web application
as requested by the user. Finally, it extracts the web page from the log and supplied it to the other
component for later processing.
2.2.1.3. Payload Tester
Its main aim is to classify the web page into two categories: dynamic web page and static web page.
2.2.1.3.1. Dynamic Web Page
Web page which contains any type of input field such as search box, comment box, form fields and
so on. Payload tester has classified these web pages as dynamic because user can enter untrusted
input value into the input field. For instance, web application demanding user to fill a form regarding
personal information via a web page.

Figure 5. Comprehensive design overview of our proposed framework

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

92

2.2.1.3.2. Static Web Page
Static web pages are the web pages which are read only. It does not contain any input field to receive
user input. For instance, web page containing a product specification.

If the requested web page falls under the category of dynamic web page then, it is returned to
the client for further processing. Otherwise, static web pages are forwarded to the trusted remark
generation component for later processing.

2.2.2. Remark Generation Phase
This is the second phase which receives static web page. The key motto of this phase is to generate
the trusted remark statement that is to be injected at the beginning and ending of the valid JavaScript
code block. This is done to ensure that at the time of execution at the client-side, browser is able to
distinguish between legitimate and malicious JavaScript code injected by the attacker. To accomplish
this, firstly, we uproot all the legitimate JavaScript code embedded in the web page. Then, it analyzes
each JavaScript code to find out the unique features and embed them in the protocol. These protocols
are injected into the response web page at the starting and ending of the valid JavaScript code block in
the encrypted form. The key modules which perform this functionality are: Trusted Remark generation
and encoding. These are described below:
2.2.2.1. Trusted Remarks Generation
The trusted remark statement comprises of a randomly generated nonce and extracted features of
the valid JavaScript code embedded in the static web page. These features are wrapped into the
protocols and it injects these protocols in the remarks statement for execution time checking at the
client-side. This module comprises the following key components: Script Extractor, feature Identifier
and Protocol Generation.
2.2.2.1.1. Script Extractor
It is a server-side component which performs two main functionalities: first, extraction of legitimate
JavaScript code embedded in the static web page. Second, injection of initial remark statements at
the starting and ending of extracted JavaScript code block. To accomplish its first task, it utilizes
HTML parser i.e. HtmlUnit [34], to parse web page and extract JavaScript code and store them in a
separate log. To complete its second task, it inserts the initial remark statement (comprises of randomly
generated nonce) in the extracted JavaScript code. To achieve this, it modifies the locations in the
source code of the web page where JavaScript code is present. Then, it stores the modified code
into the original source code of the web page. Here, authors have examine 5 cases where JavaScript
code may be present in the web page: 1) inline scripts; 2) scripts inclusion via remote source file; 3)
scripts inclusion via local external source file; 4) scripts inclusion via event handling code; 5) script
inclusion via URL attribute value. Table 1 explain these cases and also show how it injects the remark
statements in its initial stage. First example, shows a inline script inclusion with method named as
documents.cookie(“ABC”). It injects remark statement at the starting and ending of the JavaScript
code block. Initially, remark statements comprise of a randomly generated nonce (a 32-bit number) as
/*N1*/. Remotely accessible JavaScript file cannot be modified; therefore, it injects remark statement
with <script> tag to convert them into inline script code (example 2). JavaScript code included in the
local external file is handled separately. So, no remark statement will be injected for them (example
5). This will reduce the overhead of injecting remark statements.
2.2.2.1.2. Feature Identifier
It is a server-side component which receives extracted JavaScript code log as its input. The aim of
this component is to analyze each script in the log to identify the unique features. These identified
features are then used for the protocol generation. To inject malicious JavaScript code, attacker either

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

93

modifies the JavaScript function definition written by the programmer or injects a function call to
maliciously written function. For instance, consider the code snippet as shown below:
<input type=”text” name= “username” value=”<%request.
getParameter(“U_name”)%>”>

Here, no filtering mechanism is applied on the username before it is used in the response web
page. Thus, this field is vulnerable to the XSS attack. Suppose, an adversary injects a malicious
function as: <script>alert(“document.cookie”);</script>. Therefore, the original code becomes
<input type=”text” name= “username” value=”<script>alert(“document.cookie”);</script>”>.
Consequently, when browser renders this response then attacker gets cookie information of the user.
Therefore, function call and function definition patterns are extracted out from the valid JavaScript
code, as its unique feature. Table 2 illustrates some of the examples related to the probable features
of the valid JavaScript code including function call and function definition features. For example,
first example describes the inbuilt function call as Math.pow(4,5), we represent the probable features
as {pow,2,4,5}. It means function ‘pow’ has 2 parameters 4, 5. Similarly other examples are shown.
2.2.2.1.3. Protocol Generation
It is a server-side component which is responsible for the encapsulation of extracted JavaScript
features in protocol. These protocols are then included in the initial remark statement. This is to
ensure that legitimate JavaScript present in the response web page can be properly distinguished
from the injected JavaScript code by comparing their features with ones stored in protocol. Table 3
describes the script code, protocol generation and remark generation. Protocols are stored by using
Protocol ID, type, name and paramcount. According to the number of parameters, param field stores
the actual parameters. Modified remarks statement comprises a nonce and protocol ID as /*N1, 1*/.
In function call type, instead of paramcount, we use argcount and arg fields.

2.2.2.2. Encoding
This is the last working component at the server-side of our framework which preserves the integrity
of the remarks statement i.e. protocol. If raw form of remark is exposed to browser then, it might be
possible that an attacker modifies the protocols so that it reflects features similar to legitimate one
but actually are malicious. To address this problem, we transform protocols into encoded format and

Table 1. JavaScript code with initial remark statement injected with different source type

Source
type

Code instance Code with initial remarks

Inline <script>﻿
document.write(“ABC”);﻿
</script>

<script>/*N1*/﻿
document.write(“ABC”);﻿
/*N1*/</script>

Script
call
(remote
site)

<script src= “http//www.example.com/exm.js”></
script>

<script>/*N1*/</script>﻿
<script src= “http//www.example.com/exm.js”></
script>﻿
<script>/*N1*/</script>

Event
Handling

<body onLoad= “alert (“ABC”);”> ….. </body> <body onLoad=/*N1*/alert (“ABC”);”/*N1*/> …
</body>

URL
property
value

 <a href= /*N1*/ javascript:window.alert(“ABC”)
/*N1*/>

External
script
injection

<script src= “external.js”></script> <script src= external.js></script>

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

94

then embed them into remark statement. It uses Base 64 encoding representation to achieve our goal.
It stores all encoded protocols injected in remark statement into a repository for processing at the
client-side. These protocols are decoded at the client-side before comparison of features.

All the, aforementioned, phases are implemented at the server-side. In the entire process at the
server-side, initially, we classify the response web page into dynamic and static web page. If web
page is categorized as dynamic web page then it is forwarded at the client-side. Otherwise, static
web page undergoes trusted remark statement injection process. Then, modified static web page is
returned to the user.

2.2.3. Remark Validation Phase
Heretofore, our proposed framework has effectively classified response web page and inject trusted
remark statement into static web page. In this phase, we perform the analysis of the static web page
to detect injected JavaScript code for the identification of XSS attack. This phase is accountable for

Table 2. Extracted probable features of the valid JavaScript code

Type Example Probable features

Inbuilt function call Math.pow (4,5) {pow,2,4,5}

User defined
function call

function active(a, b, c){..}; {active, 3,a,b}

Nested method call
(user defined)

pro(3, pro(6,7)) {pro,2,3,{pro,2,6,7}}

Nested method call
(inbuilt)

Math.pow(2, Math.min(3,4)) {pow, 2, 2, {min, 2, 3, 4}}

Anonymous function
call

var X= pro (a, b){…}; {X, 2, a, b}

Host object method
call

Var ID=document.getElementByName(“value”);﻿
ID.innerHTML= “hello world”;

{document.getElementByName, 1,
value}

Table 3. Protocol generation with modified remark statement

Script code Protocol generation Modified remarks

<script>﻿
var x= product(2,3);﻿
</script>

<protocolID>1</protocolID>﻿
<type>def</type>﻿
<name>product</name>﻿
<paramcount>2</paramcount>﻿
<param>2</param>﻿
<param>3</param>

<script>/*N1,1*/﻿
var x= product(2,3) /*N1,1*/﻿
</script>

<body onLoad= “active (a, b)”>…
</body>

<protocolID>2</protocolID>﻿
<type>call</type>﻿
<name>active</name>﻿
<argcount>2</argcount>﻿
<arg>a</arg>﻿
<arg>b</arg>

<body onLoad= /*N2, 2*/“active (a,
b)” /*N2,2*/>..</body>

<a href= “javascript:window.alert
(document.cookie)”>

<protocolID>3</protocolID>﻿
<type>call</type>﻿
<name>window.alert</name>﻿
<argcount>1</argcount>﻿
<arg>document.cookie</arg>

<a href= /*N3,
3*/“javascript:window.alert
(document.cookie)” /*N3, 3*/>

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

95

the authentication of the remark statement. The key components to accomplish this task are: Parser,
Script separation, Decoding, and Remark Variance Detector.
2.2.3.1. Parser
It is the client-side component which receives the static web page with the remark statement. It is
responsible for construction of the Parsed Tree (PT) corresponding to that web page. It is to ensure
that the browser renders the web page correctly. For instance, consider the following code snippet
as shown in listing 1. In the above example, untrusted user input is applied at S_GET(‘name’)
and $_GET(‘age’). The parse tree generated for the above code snippet is shown in Figure 6. Each
node of the tree represents HTML tags or text. This tree will be processed to determine script node
embedded in to the web page.

Listing 1. Example shows vulnerable HTML code produced by vulnerable server.
<html>
<body>
<div name= “val” onClick= “my()”> Click Me!!! </div>
<script>
function my() {
document.getElementByName(“val”).innerhtml= “hello” + “$_
GET(‘name’)” + “you are” + “$_GET(‘age’)” + “years old”;}
</script>
</body></html>

2.2.3.2. Script Separation
This component is a client-side process in which parse tree is processed to identify all JavaScript
code with injected remark statement. As shown in listing 1, user provides the untrusted data by the
$_GET[‘...’] variables. $_GET supposed to provide the name of the user who is currently logged
in and $_GET provides the age of the corresponding user. As no sanitization procedure is applied
on these variables and are directly processed by the browser, so, these are vulnerable to the XSS
attack. Therefore, scripts nodes must be separated from the response page. To ease this problem, it
searches in the parse tree to check for the opening and closing HTML tags. Then, for every couple of
JavaScript tags (<script>…. </script>), it inspects each unique path between opening and closing tags
by using graph traversal algorithm such as Depth First Search (DFS). Each identified path represents
the JavaScript code that the web page code might result. Figure 7 illustrates the algorithm used for
the Script separation. This algorithm works as follows: Script_log is a log maintained to store all
possible recognized JavaScript code included in the web page. This algorithm processes Control
Flow Graph (CFG) as follows:

It examines each node (v) in the graph (V, E) to check its content. If it is <script> tag, then it
extracts the content of each node in Script_log that appears during the traversal of unique path, until
a node with content </script> is found. Otherwise, ignore the content of that node. Finally, it outputs
Script_log comprising of JavaScript code that a web page might result.
2.2.3.3. Decoding
It is a client-side process to decode the trusted remark statements injected at the borders of the valid
JavaScript code present in the static web page. In the second phase of our framework, we perform
encoding of the remark statement to ensure the integrity of the extracted features of valid JavaScript
code, stored in remarks. In order to perform a comparison between these known features and script
present in the response web page, there is a need to transform the encoded features into raw form.
Therefore, this component performs the reversible process of encoding, at the client-side. Encoding,
basically, builds up a mapping between content types from the features to encoded value and stores
these mapping in a repository. In decoding process, this repository is used to which perform reverse

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

96

mapping i.e. encoded value to original content type. This component will produce decode features of
the valid JavaScript code, as its output and it if forwarded to the next component for further processing.
2.2.3.4. Remark Variance Detector
It is a client-side component which is responsible for detecting the variance in the script features
extracted at client-side and the known features of the valid JavaScript code extracted at the server-
side. It receives two things as its input: decoded features and extracted script code. Then, it checks
for whether script without remark is present or not. If present then, it is injected malicious code.
Otherwise, it checks for the remark validity. If nonce is invalid then, it is indicated as injected code.
Otherwise, it checks for the validity of the embedded protocols (i.e. compare the features stored in it
with the JavaScript extracted from the response page). If features are valid then, response is free from
XSS attack, otherwise, it is considered as injected code. Finally, if the framework detected injected
malicious JavaScript code then, it is removed from the response web page and modified response
web page is displayed to the user. If no injected code is found then, framework removes the remark
statements from the response web page and response is forwarded to the user. Figure 8 represents
the entire working process of this component in the form of the flow chart.

2.2.4. Exploitation and Filtering Phase
This is the last phase of the framework at the client-side. The input to this phase is the dynamic web
page. The key goal of this phase is to identify the location of the tainted source and the sensitive
function where this value is used (i.e. determine the vulnerable points in the source code of the
response web page). Moreover, it performs filtering on the taint source to negate the effect of the
injected malicious script at the source point. Finally, filtered response is displayed to the user. The
key Components to accomplish the entire functionality of this phase are: Determine Vulnerable flow,
Exploit Generation, and Filtering.

Figure 6. Parse tree generated for the code shown in listing 1

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

97

2.2.4.1. Determine Vulnerable Flow
This component is responsible for the determination of the flow of untrusted user data from source to
the sensitive function present in the response web page. Web application is marked as XSS free if it is
possible to decide the output of web page statically (i.e. static JavaScript). Nevertheless, if dynamic
JavaScript is generated by the web application that generates the improperly sanitized content, then,
attacker can utilized this vulnerability to inject some malicious code. Table 4 illustrates the vulnerable
source and sinks locations used in our framework. For example, consider the following code snippet
shown in the Figure 9. In this code, uname is directly resulting from the parameter value name and
is output to user deprived of any validation mechanism.

Adversary may exploit this vulnerability by injecting malicious code at name parameter like
“<script>alert(document.cookie);</script>. Consequently, uname hold this JavaScript code and
browser renders attacker’s provided code. Hence, this component extracts tainted source and sink
information as: taint source (uname= request.getParametervalue(“name”) and taint sink (document.
write(tag)). This information is forwarded to the next step phase to determine the context and analyze
it for the presence of XSS loopholes.

Figure 7. Algorithm implemented for JavaScript separation

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

98

2.2.4.2. Exploit Generation
This module examines the vulnerable flow to identify vulnerable source and sink. Then, it generates
context-based testing attack payload that can be simply used to verify vulnerable webpages. It is
achieved in 3 main steps: Malicious Flow Decomposer, Context Recognizer and Testing Payload
injector.
2.2.4.2.1. Malicious Flow Decomposer
It is the component which receives the logs that contains information about the vulnerable flow
present in the web page. It extracts the following from the log: 1) Taint Source which contains the

Figure 8. Flow chart showing the working process of the remark variance detector

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

99

source type and the string value in the source used in sink. 2) Taint Sink which defines the location
where string value supplied by the attacker is used in the program. 3) TaintID which is the unique
identifier to identify each vulnerable flow. 4) Taint URL which contains the URL of the web page
in which vulnerable flow was revealed.
2.2.4.2.2. Context Recognizer
This component is responsible for the determination of the context of the vulnerable source. It accepts
the information provided by the malicious flow decomposer and then uses it to determine the portion
of the web page where vulnerable string value is injected. Figure 10 illustrates the algorithm
implemented for this step. This algorithm works as follows: Input to the above algorithm is the set
of IDs of untrusted source T_ID. Con_ log is a log maintained to store context of each untrusted
source. For each tainted source TI ∈ T_ID, it attached a context recognizer CR in the form as
CI← (CR)TI. The generated output is the internal representation of the extracted JavaScript code
embedded with the context recognizer CR corresponds to each untrusted variable present in it. After
this, it is merged with the Con_log as Con_log←CI∪ Con_log. For each CI ∈Con_log, it generates
and solves the type constraints. Here, Λ represents the type environment that performs the mapping
of the JavaScript variable to the Context recognizer CR. In the path sensitive system, variable’s context
changes from one point to other point. Thus, to handle this issue, untrusted variables are represented

Table 4. Vulnerable source and sink location

Taint source Taint sink

Location document.URI, window.location, location.
search, location.href, URL, document.
location, baseURI, location.hash

location.href, location.pathname, location. port,
location.protocol, location.search, location.assign,
location.replace, location.hash, location.host

Link href, media, rel, rev, type link.innerhtml, link.namespaceURI, link.toString, style.

HTML Iframe, image, body, div, audio, video, em,
form, input, style, var

InnerHTML, outerhtml, src, action, value, toString,
defaultChecked, checked, selectedIndex, rel, write,
writeln, script.innerhtml, textcontent. Crossorigin.

JavaScript Script, document, events. Src, eval, setTimeout, setInterval, baseURI, document.
URL, document.cookie, document.scripts, onClick,
onLoad, onChange, onMouseOver.

Storage Cookie, localStorage, sessionStorage Cookie, localStorage, sessionStorage

History - Current, next, previous, length, toSring

Window - defaultStatus, status, location, frames, innerHeight,
innerWidth, localStorage.

Figure 9. Code snippet

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

100

through the typing judgments as Λ  e: CR. It indicates that at any program location, e has context
recognizer CR in the type environment Λ . Finally, all CI variables have been assigned the context
dynamically and produce the modified log Con_log as output. This step provides tainted source with
their identified context, in which browser interprets it.
2.2.4.2.3. Testing Payload Injector
To exploit the vulnerability present in the webpage, it substitutes attack vector at the place of tainted
string. Testing attack vector must be injected according to the context of the tainted string. It is
achieved with the help of available repository of XSS attack vector. Then, this module validates the
successful execution of the injected attack vector. If attack is successful then, Tainted ID and Taint
Source information is forwarded to the filtering module, otherwise, web page is not vulnerable and
is returned to the user.
2.2.4.2.4. Filtering
This component accepts the taint Source and tainted ID information as its input. It applies filtering
on the tainted string present at the taint Source in the web page, with the help of Filtering APIs. This
is done to halt the execution of injected malicious string and triggers malicious effects. Figure 11
shows the algorithm processed for the completion of the filtering process. The working procedure of
this algorithm is explained below: Algorithm takes Con_log as its input which stores identified context
of all untrusted JavaScript variable. FAPI_lib is the externally available library which stores filtering
APIs corresponding to each malicious context. T_ID is the list comprising the IDs of each tainted
source. For each Untrusted Source (i.e tainted value) TI∈T_ID, it extracts the context of TI as XI
from the Con_log. Then, it identifies for the corresponding Filtering API, from the FAPI_lib, with
matching context and stores it in FI. It applies the identified filtering API on the TI and store result
into the YI. It then merges YI with FAPI_lib as FAPI_lib←YI∪ FAPI_lib; finally, it embeds all
sanitized variable into the HTTP response and produce HTTP response for the user.

3. IMPLEMENATION AND PERFORMANCE EVALUATION

Authors have implemented their work in java, for mitigating the effect of XSS vulnerabilities from the
tested suite of real-world web applications. Initially, Authors have manually verified the performance
of the framework against available XSS attack repositories (HTML5 Security Cheat Sheet, RSnake,
2008, Technical Attack Sheet for Cross Site Penetration Tests), which includes the list of old and new
XSS attack vectors. Very few XSS attack vectors were able to bypass the framework. Authors have
utilized HtmlUnit (HtmlUnit parser) to inject the initial trusted remark statements. To inject remark,
it modifies locations where JavaScript code is present (i.e. inline, event handling, etc.) and store the
modified source program information in MySQL database. To extract the features of valid JavaScript
code, Authors have used Rhino (Rhino JavaScript parser) JavaScript parser.

3.1. Experimental Evaluation
Authors have categorized the XSS attack vectors into four main categories i.e. Character Encoding
Scripts (CES), Embedded Character Tags (ECT), Event Handlers (EH) and HTML Quote
Encapsulation (HQE). Table 5 illustrates the attack patterns of these categories of XSS attack vectors.
The observed results of our framework on five real world HTML5 web applications corresponding
to chosen categories of XSS worms has been shown in the Figure 12-16.

Authors have also calculated the XSS detection rate of our framework by dividing the number
of attacks detected (i.e. # of True Positives) to the number of XSS attack vectors injected on each
individual HTML5 web application. Table 6 highlights the detection rate of all five web applications
w.r.t. individual category of XSS worms. It is clearly reflected from the Table 6 that OsCommerce
and BlogIt observed overall higher percentage detection rate in all the four categories of XSS worms.

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

101

In the next two sub-sections, authors have evaluated the performance analysis of the framework by
applying two statistical analysis methods: F-Score and F-test.

Figure 10. Algorithm implemented for the context recognizer

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

102

Figure 11. Algorithm for filtering process

Figure 12. Observed results on Simplecms

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

103

Table 5. Categories of XSS worms with their pattern examples

XSS Worm
Category

Explanation Script Example

CES The techniques of character encoding are utilized for
exemplifying a database of typescripts through certain
encoding system. Such techniques are utilized for calculation,
data storing, and broadcast of documented info and could be
utilized for exploiting numerous attacks.

%253cscript%253ealert(document.
cookie)%253c/script%253e

ECT This category of attack is generally embedded inside the
normal syntax of JavaScript code.

<IMG SRC=”jav	ascript:alert(
‘XSS’);”>

EH These are non-compulsory system commands in the form of
scripts, which only execute when an alteration is observed in
the service state.

<input onBlur =”alert(‘xss’)”
type=”text” >

HQE This category is generally used for exploiting the XSS attack
on web applications that permit “<script>” tag but not
“<SCRIPT SRC...”

<script src=”data:text/
javascript,alert(1)”></script>

Figure 13. Observed Results on OsCommerce

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

104

Figure 14. Observed Results on WebCalender

Figure 15. Observed Results on PunBB

Figure 16. Observed Results on BlogIt

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

105

3.2. Performance Analysis using F-Score
Authors have presented detailed performance analysis of our framework by conducting a statistical
analysis method (i.e. F-Score). The analysis conducted reveals that our framework exhibits high
performance as the observed value of F-Scores in all the platforms of HTML5 web applications
is 0.9. Therefore, the proposed framework exhibits 90% success rate in all the five HTML5 web
applications. Table 7 highlights the detailed performance analysis of our work.

Precision =
TruePositives TP

TruePositives TP False Positives FP

()

() ()+
	

Recall =
TruePositives TP

TruePositives TP FalseNegatives FN

()

() ()+
	

False Positive Rate (FPR) =
False Positves FP

False Positives FP TrueNegatives TN

()

() ()+
	

False Negative Rate (FNR) =
FalseNegatives FN

FalseNegatives FN TruePositives TP

()

() ()+
	

F-Score =
2

2

()

()

TruePositives

TruePositives FalseNegatives False Posit+ + iives
	

Table 6. Detection rate (in %age) of HTML5 web applications

Web Applications CES ECT EH HQE

Simplecms 88.8 86.8 88.0 86.3

OsCommerce 91.6 94.7 92.8 91.0

WebCalender 86.1 89.4 88.0 88.6

PunBB 88.8 86.8 85.7 88.6

BlogIt 88.8 86.8 92.8 88.6

Table 7. Performance analysis by calculating F-Score

Web Application Total # of
TP

of
TN

of
FP

of
FN

Precision FPR FNR Recall F-Measure

SimpleCms 160 140 6 9 5 0.939 0.6 0.034 0.965 0.952

OsCommerce 160 148 2 4 6 0.973 0.67 0.038 0.961 0.927

Web Calender 160 141 8 6 5 0.959 0.428 0.034 0.965 0.962

PunBB 160 140 4 7 9 0.952 0.478 0.087 0.939 0.945

BlogIt 160 143 6 6 5 0.959 0.5 0.034 0.966 0.913

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

106

3.3. Performance Analysis Using F-Test Hypothesis
In order to prove that the number of XSS worms detected is less than to the number of XSS attack
vectors injected, we use the F-test hypothesis, which is defined as:

Null Hypothesis (H0) = Number of XSS worms detected is equal to the number of XSS attack vectors
injected. (S12 = S22)

Alternate Hypothesis (H1) = Number of XSS worms injected is greater than number of XSS attack
vectors detected (S12< S22)

Table 8. Statistics of XSS Attack Vectors Applied

of Malicious Scripts Injected
(Xi)

(Xi - µ) (Xi - µ)2 Standard Deviation
S1 =

() / ()Xi N
i

N

− −
=
∑ µ 2
1

1

1 1

158 2 4 3.162

160 4 16

156 0 0

154 -2 4

152 -4 16

Mean (µ) = Xi N/∑ 1 = 156 ()Xi
i

N

−
=
∑ µ
1

1
2 = 40

Table 9. Statistics of XSS attack vectors detected

of JS Attack Payload Detected
(Xj)

(Xi - µ) (Xi - µ)2 Standard Deviation
S2 =

() / ()Xi N
i

N
� ��

�
� 2

1

2
2 1

150 1 1 3.316

154 5 25

148 -1 1

148 -1 1

145 -4 16

Mean (µ) = Xi N/∑ 2= 149 ()Xi
i

N
��

�
�

1

1
2 = 44

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

107

The level of Significance is (α=0 05.). The detailed analyses of statistics of XSS attack worms
applied and detected are illustrated in the Tables 8 and 9. Analysis using F-test is showing below:

Number of XSS Worms Injected (# of Observation (N1)) = 5	
Degree of Freedom (df1) = N1 -1 = 4.	
Number of XSS Worms Detected (# of Observation (N2)) = 5	
Degree of Freedom (df2) = N2 -1 = 4.	

We can calculate F-Test as: FCALC = S1
2 / S2

2 = [(3.162)2/ (3.316)2] = 0.9092
The tabulated value of F-Test at df1 = 4, df2 = 4 and α = 0 05. is

F
(, ,)df df1 2 1−α = F (4, 4, 0.95) = 6.3882	

It is already known that the Null hypothesis is correct if the two variances are equal and condition
FCALC < F

(, ,)df df1 2 1−α is false, however, in this case, since FCALC < F (4, 4, 0.95) is true, therefore, the alternate
hypothesis (H1) is true that means the number of XSS worms detected is less than number of XSS
attack vectors injected and any difference in the sample standard deviation is due to random error.

3.4 Limitations of our Work
This section discussed about some of the limitations of our work.

•	 Vulnerable to Click Jacking and Phishing Attacks: Initially, the attack vector could utilize the
capabilities of Click Jacking or Phishing attacks for stealing sensitive credentials of user. (e.g.
user-id, password, etc.). This is beyond the scope of this current work. Secondly, it can also be
argued that as the attack vectors are executing under the license of web site, this is considered
an easy way for the attack vector to exploit such attacks.

•	 Vulnerable to Drive-by Download Worms: Finally, this framework is also exposed to worms
like Koobface, which transmit the binaries to the web browser of victim by utilizing drive-by
exploits. This category of attack is also beyond the scope of this work.

Table 10. Comparison of existing work with our XSS defensive work

Techniques
Parameters XSSFilt XSSAudior BIXSAN ScriptGard Livshits Jsand XSS-

Guard
(Present

work)

AM Active Active Passive Passive Passive Passive Passive Active

MP Dynamic Static Static Static Dynamic Static Static Dynamic

TOXH Reflected Reflected Stored Reflected Reflected Stored Reflected Reflected,
Stored

Ttrac ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

CRW ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✓

APPR ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗

PSID ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓

SCM ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

SCMod ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

108

3.5 Comparative and Strengths of the Proposed Work
This section discusses the comparison of our framework with the other recent existing XSS defensive
methodologies. Table 10 compares the existing XSS defensive methodologies with our work based
on nine useful performance parameters: AM: Analyzing Mechanism, MP: Monitoring Procedure,
TOXH: Type of XSS Worm Handled, Ttrac: Taint Tracking, CRW: Code Rewriting, APPR: Automated
Pre-Processing Required, PSID: Partial Script Injection Detection, SCM: Source Code Monitoring
and SCMod: Source Code Modifications.

In addition, recognition of malicious script methods is simply evaded by most of the techniques.
Moreover, lot of pre-processing is required in the existing framework of web applications for their
successful execution on different platforms of web browsers as well as web applications. Most of
the existing work relies on the concept of exact JavaScript injection; however, they could not able to
detect the partial injection of XSS worms.

This framework simply isolates the untrusted JavaScript code from the actual data by executing
the process of code rewriting, that is not handled by most of the existing XSS defensive techniques.
In addition, the proposed framework executes the runtime monitoring on the JavaScript code for
determining the dependency between the tainted source and sink functions in the program code.
Moreover, context of untrusted variables embedded in such code is determined. Now, here, instead of
performing context-sensitive sanitization on such variables, our framework performs the deep string
analysis on such variables for tracking their tainted flow. The examination of tainted variables will
be carried out in order to determine whether it may function as vulnerable point or not. The existing
work performs the context-sensitive sanitization on such variables.

4. CONCLUSION

Digitalization in every aspect of life demands more technological advancements for providing
information anytime anywhere. This materializes the vision of making cities “smarter”. Undoubtedly,
this development induces multiple benefits to the people; nevertheless, it brings to light multiple
threats like XSS. Therefore, this paper described a technique to protect users from XSS attack. This
is achieved through classifying response web page into static and dynamic web pages. Static web
pages are processed by injecting and verifying trusted remark statements to detect persistent XSS
attack. Moreover, it accomplishes vulnerable flow analysis followed by filtering of tainted string, for
determining XSS attack in dynamic web pages. Authors have implemented the framework using java
development framework and has evaluated its detection capability on five real-world web applications.
The results revealed low false negative rate with tolerable performance overhead due to injection
and removal of remarks.

ACKNOWLEDGMENT

This publication is an outcome of the R&D work undertaken under the projects YFRF, Visvesvaraya
PhD Scheme of Ministry of Electronics & Information Technology, Government of India and being
implemented by Digital India Corporation.

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

109

REFERENCES

Agten, P., Van Acker, S., Brondsema, Y., Phung, P. H., Desmet, L., & Piessens, F. (2012, December). JSand:
complete client-side sandboxing of third-party JavaScript without browser modifications. In Proceedings of
the 28th Annual Computer Security Applications Conference (pp. 1-10). ACM. doi:10.1145/2420950.2420952

Almomani, A. et al.. (2013). Phishing dynamic evolving neural fuzzy framework for online detection zero-day
phishing email. Indian Journal of Science and Technology, 6(1), 3960–3964.

Bates, D., Barth, A., & Jackson, C. (2010, April). Regular expressions considered harmful in client-side
XSS filters. In Proceedings of the 19th international conference on World wide web (pp. 91-100). ACM.
doi:10.1145/1772690.1772701

Bisht, P., & Venkatakrishnan, V. N. (2008, July). XSS-GUARD: precise dynamic prevention of cross-site
scripting attacks. In Proceedings of the International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (pp. 23-43). Springer. doi:10.1007/978-3-540-70542-0_2

Chandra, V. S., & Selvakumar, S. (2011). BIXSAN: Browser Independent XSS Sanitizer for prevention of XSS
attacks. Software Engineering Notes, 36(5), 1–7. doi:10.1145/1968587.1968603

Chaudhary, P., Gupta, B. B., & Gupta, S. (2018). Defending the OSN-based web applications from XSS attacks
using dynamic javascript code and content isolation. In Quality, IT and Business Operations (pp. 107–119).
Singapore: Springer. doi:10.1007/978-981-10-5577-5_9

Chaudhary, P., Gupta, B. B., & Gupta, S. (2019). A Framework for Preserving the Privacy of Online Users
Against XSS Worms on Online Social Network. International Journal of Information Technology and Web
Engineering, 14(1), 85–111. doi:10.4018/IJITWE.2019010105

Chaudhary, P., Gupta, S., & Gupta, B. B. (2016). Auditing Defense against XSS Worms in Online Social Network-
Based Web Applications. In Handbook of Research on Modern Cryptographic Solutions for Computer and Cyber
Security (pp. 216-245). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-0105-3.ch010

Drennan, J., Sullivan, G., & Previte, J. (2006). Privacy, risk perception, and expert online behavior: An exploratory
study of household end users. Journal of Organizational and End User Computing, 18(1), 1–22. doi:10.4018/
joeuc.2006010101

Ferraz, F. S., & Ferraz, C. A. G. (2014, December). Smart city security issues: depicting information security
issues in the role of an urban environment. In Proceedings of the 2014 IEEE/ACM 7th International Conference
on Utility and Cloud Computing (pp. 842-847). IEEE. doi:10.1109/UCC.2014.137

Gupta, B. B., Gupta, S., & Chaudhary, P. (2017a). Enhancing the browser-side context-aware sanitization of
suspicious HTML5 code for halting the DOM-based XSS vulnerabilities in cloud. [IJCAC]. International Journal
of Cloud Applications and Computing, 7(1), 1–31. doi:10.4018/IJCAC.2017010101

Gupta, S., & Gupta, B. B. (2016a). An infrastructure-based framework for the alleviation of JavaScript worms
from OSN in mobile cloud platforms. In Proceedings of the International conference on network and system
security (pp. 98-109). Cham: Springer. doi:10.1007/978-3-319-46298-1_7

Gupta, S., & Gupta, B. B. (2016b). Enhanced XSS defensive framework for web applications deployed in
the virtual machines of cloud computing environment. Procedia Technology, 24, 1595–1602. doi:10.1016/j.
protcy.2016.05.152

Gupta, S., & Gupta, B. B. (2017b). Smart XSS attack surveillance system for OSN in virtualized intelligence
network of nodes of fog computing. International Journal of Web Services Research, 14(4), 1–32. doi:10.4018/
IJWSR.2017100101

Gupta, S., & Gupta, B. B. (2018b). Robust injection point-based framework for modern applications against
XSS vulnerabilities in online social networks. International Journal of Information and Computer Security,
10(2-3), 170–200. doi:10.1504/IJICS.2018.091455

Gupta, S., & Gupta, B. B. (2018c). RAJIVE: Restricting the abuse of JavaScript injection vulnerabilities on
cloud data centre by sensing the violation in expected workflow of web applications. International Journal of
Innovative Computing and Applications, 9(1), 13–36. doi:10.1504/IJICA.2018.090822

http://dx.doi.org/10.1145/2420950.2420952
http://dx.doi.org/10.1145/1772690.1772701
http://dx.doi.org/10.1007/978-3-540-70542-0_2
http://dx.doi.org/10.1145/1968587.1968603
http://dx.doi.org/10.1007/978-981-10-5577-5_9
http://dx.doi.org/10.4018/IJITWE.2019010105
http://dx.doi.org/10.4018/978-1-5225-0105-3.ch010
http://dx.doi.org/10.4018/joeuc.2006010101
http://dx.doi.org/10.4018/joeuc.2006010101
http://dx.doi.org/10.1109/UCC.2014.137
http://dx.doi.org/10.4018/IJCAC.2017010101
http://dx.doi.org/10.1007/978-3-319-46298-1_7
http://dx.doi.org/10.1016/j.protcy.2016.05.152
http://dx.doi.org/10.1016/j.protcy.2016.05.152
http://dx.doi.org/10.4018/IJWSR.2017100101
http://dx.doi.org/10.4018/IJWSR.2017100101
http://dx.doi.org/10.1504/IJICS.2018.091455
http://dx.doi.org/10.1504/IJICA.2018.090822

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

110

Gupta, S., & Gupta, B. B. (2018d). Evaluation and monitoring of XSS defensive solutions: A survey, open
research issues and future directions. Journal of Ambient Intelligence and Humanized Computing, 1–29.

Gupta, S., & Gupta, B. B. (2018e). POND: Polishing the execution of nested context-familiar runtime dynamic
parsing and sanitisation of XSS worms on online edge servers of fog computing. International Journal of
Innovative Computing and Applications, 9(2), 116–129. doi:10.1504/IJICA.2018.092588

Gupta, S., & Gupta, B. B. (2018f). A robust server-side javascript feature injection-based design for JSP web
applications against XSS vulnerabilities. In Cyber Security: Proceedings of CSI 2015 (pp. 459-465). Springer
Singapore. doi:10.1007/978-981-10-8536-9_43

Gupta, S., Gupta, B. B., & Chaudhary, P. (2018a). Hunting for DOM-Based XSS vulnerabilities in mobile cloud-
based online social network. Future Generation Computer Systems, 79, 319–336. doi:10.1016/j.future.2017.05.038

Hossain, M. S., Muhammad, G., Abdul, W., Song, B., & Gupta, B. B. (2018). Cloud-assisted secure video
transmission and sharing framework for smart cities. Future Generation Computer Systems, 83, 596–606.
doi:10.1016/j.future.2017.03.029

HTML5 Security Cheat Sheet. (n.d.). Retrieved from https://html5sec.org/

HtmlUnit parser. (n.d.). Retrieved from https://sourceforge.net/projects/htmlunit/files/htmlunit/

Li, D., Deng, L., Bhooshan Gupta, B., Wang, H., & Choi, C. (2019). A novel CNN based security guaranteed
image watermarking generation scenario for smart city applications. Information Sciences, 479, 432–447.
doi:10.1016/j.ins.2018.02.060

Li, J., Yu, C., Gupta, B. B., & Ren, X. (2018). Color image watermarking scheme based on quaternion Hadamard
transform and Schur decomposition. Multimedia Tools and Applications, 77(4), 4545–4561. doi:10.1007/
s11042-017-4452-0

Livshits, B., & Chong, S. (2013, January). Towards fully automatic placement of security sanitizers and
declassifiers. ACM SIGPLAN Notices, 48(1), 385–398. doi:10.1145/2480359.2429115

Parada, R., Melià-Seguí, J., & Pous, R. (2018). Anomaly Detection Using RFID-Based Information
Management in an IoT Context. Journal of Organizational and End User Computing, 30(3), 1–23. doi:10.4018/
JOEUC.2018070101

Pelizzi, R., & Sekar, R. (2012). Protection, usability and improvements in reflected XSS filters. In Proceedings
of the 7th ACM Symposium on Information, Computer and Communications Security (p. 5). ACM.
doi:10.1145/2414456.2414458

Rhino JavaScript parser. (n.d.). Retrieved from https://developer.mozilla.org/en-US/docs/Mozilla/Projects/
Rhino/Download_Rhino

XSS RSnake. (2008). Cheat Sheet. Retrieved from https://n0p.net/penguicon/php_app_sec/mirror/xss.html

Saxena, P., Molnar, D., & Livshits, B. (2011, October). SCRIPTGARD: automatic context-sensitive sanitization for
large-scale legacy web applications. In Proceedings of the 18th ACM conference on Computer and communications
security (pp. 601-614). ACM. doi:10.1145/2046707.2046776

Sen, M., Dutt, A., Agarwal, S., & Nath, A. (2013, April). Issues of privacy and security in the role of software
in smart cities. In Proceedings of the 2013 International Conference on Communication Systems and Network
Technologies (pp. 518-523). IEEE. doi:10.1109/CSNT.2013.113

Technical Attack Sheet for Cross Site Penetration Tests. (n.d.). Retrieved from http://www.vulnerability-lab.
com/resources/documents/531.txt

http://dx.doi.org/10.1504/IJICA.2018.092588
http://dx.doi.org/10.1007/978-981-10-8536-9_43
http://dx.doi.org/10.1016/j.future.2017.05.038
http://dx.doi.org/10.1016/j.future.2017.03.029
https://html5sec.org/
https://sourceforge.net/projects/htmlunit/files/htmlunit/
http://dx.doi.org/10.1016/j.ins.2018.02.060
http://dx.doi.org/10.1007/s11042-017-4452-0
http://dx.doi.org/10.1007/s11042-017-4452-0
http://dx.doi.org/10.1145/2480359.2429115
http://dx.doi.org/10.4018/JOEUC.2018070101
http://dx.doi.org/10.4018/JOEUC.2018070101
http://dx.doi.org/10.1145/2414456.2414458
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino/Download_Rhino
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino/Download_Rhino
https://n0p.net/penguicon/php_app_sec/mirror/xss.html
http://dx.doi.org/10.1145/2046707.2046776
http://dx.doi.org/10.1109/CSNT.2013.113
http://www.vulnerability-lab.com/resources/documents/531.txt
http://www.vulnerability-lab.com/resources/documents/531.txt

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

111

B. B. Gupta received PhD degree from Indian Institute of Technology Roorkee, India in the area of information
security. He has published more than 250 research papers in international journals and conferences of high repute.
He has visited several countries to present his research work. His biography has published in the Marquis Who’s
Who in the World, 2012. At present, he is working as an Assistant Professor in the Department of Computer
Engineering, National Institute of Technology Kurukshetra, India. His research interest includes information security,
cyber security, cloud computing, web security, intrusion detection, computer networks and phishing.

Pooja Chaudhary is currently pursuing her PhD degree in Information and Cyber security from National Institute of
Technology, Kurukshetra, Haryana, India. She has completed her M.Tech in Computer Engineering from National
Institute of Technology, Kurukshetra. She has received her B.Tech degree in Computer Science and Engineering
from Bharat Institute of Technology, Meerut, Affiliated to Uttar Pradesh Technical University, India. Her areas of
interest include online social network security, Big Data analysis and security, database security, and cyber security.

Shashank Gupta is currently working as an Assistant Professor in Computer Science and Information Systems
Division at Birla Institute of Technology and Science, Pilani, Rajasthan, India. He has done his PhD under the
supervision of Dr. B. B. Gupta in Department of Computer Engineering specialization in Web Security at National
Institute of Technology Kurukshetra, Haryana, India. Recently, he was working as an Assistant Professor in the
Department of Computer Science and Engineering at Jaypee Institute of Information Technology (JIIT), Noida,
Sec-128. Prior to this, he has also served his duties as an Assistant Professor in the Department of IT at Model
Institute of Engineering and Technology (MIET), Jammu. He has completed M.Tech. in the Department of Computer
Science and Engineering Specialization in Information Security from Central University of Rajasthan, Ajmer, India.
He has also done his graduation in Bachelor of Engineering (B.E.) in Department of Information Technology from
Padmashree Dr. D.Y. Patil Institute of Engineering and Technology Affiliated to Pune University, India. He has also
spent two months in the Department of Computer Science and IT, University of Jammu for completing a portion of
Post-graduation thesis work. He bagged the 1st Cash Prize in Poster Presentation at National Level in the category
of ICT Applications in Techspardha’2015 and 2016 event organized by National Institute of Kurukshetra, Haryana.
He has numerous online publications in International Journals and Conferences including IEEE, Elsevier, ACM,
Springer, Wiley, Elsevier, IGI-Global, etc., along with several book chapters. He is also serving as reviewer for
numerous peer-reviewed Journals and conferences of high repute. He is also a professional member of IEEE and
ACM. His research area of interest includes web security, cross-site scripting (XSS) attacks, online social network
security, cloud security, fog computing and theory of computation.

