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ABSTRACT

In recent years, nanomaterials have gained tremendous attention due to their wide variety of industrial 
applications including food packaging, consumer products, nanomedicines, etc. The fascinating 
properties of nanoparticles which are responsible for creating several exciting opportunities, 
however, are also accountable for growing concerns of their toxic effects on humans as well as the 
environment. Thus, in the present study, the authors have developed generalized models for predicting 
the cytotoxicity and genotoxicity of seven metal oxide nanoparticles. The models not only take 
into account the structural features, but also the diverse experimental conditions under which the 
toxicity of nanoparticles was determined. The diverse experimental conditions were captured in the 
generalized models using the Box-Jenkins moving average approach. Here, two machine learning 
techniques, namely, linear discriminant analysis and random forest were utilized to build the final 
models. Importantly, the validation metrics showed that the developed models have significant 
discriminatory power.
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INTRODUCTION

Nanotechnology is a branch of science and engineering that involves the manipulation of matter with 
at least one dimension sized from 1 to 100 nanometers (Jeevanandam, Barhoum, Chan, Dufresne, & 
Danquah, 2018). Nanomaterials or nanoparticles, due to their small sizes in nanometer range have 
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fascinating properties that widely vary from the corresponding bulk material. Thus, in recent years, 
the nanomaterials have gained a prominent status due to their diverse applications in several fields 
such as food packaging, medicines, electronics, consumer products, optical devices, etc. (Özogul, 
McClements, Kosker, Durmus, &Ucar, 2019). However, along with the exciting opportunities, there 
have been growing concerns regarding the risks of nanomaterials on the environment as well as 
human health (Jeevanandam et al., 2018). For instance, the nanomaterials used in consumer products 
like pharmaceuticals, cosmetics, powdered food, etc. are anticipated to end up into aquatic, and/or 
terrestrial environments, where their behavior, toxic effects, and fate are still not completely predictable 
(Handy & Shaw, 2007; Maynard et al., 2006).

Although the experimental techniques like high throughput screening (HTS) allow to execute 
large batteries of toxicity assays, they are expensive as well as time-consuming. Further, it is becoming 
more and more tedious to manage the experimental determination of toxicity for progressively growing 
nano-particles space considering the possible combinations of nanoparticles showing different sizes, 
shapes, and chemical compositions, etc. In this scenario, the quantitative structure-activity/toxicity 
relationship (QSAR/QSTR) models (Puzyn et al., 2011; Roy, Kar, & Das, 2015) play an important 
role to enable cost-effective means of determining or screening potential nano hazards, and thus helps 
in reducing the burden of in vitro/in vivo assays. Moreover, QSAR models also help in understanding 
the structural features or factors that are responsible for their toxicity. Several nano-QSAR models 
have been already reported ((Gajewicz et al., 2015; Kar, Gajewicz, Puzyn, Roy, & Leszczynski, 
2014; Mu et al., 2016; Pathakoti, Huang, Watts, He, & Hwang, 2014; Puzyn et al., 2011; Singh, 
Gupta, Kumar, & Mohan, 2014; Sizochenko et al., 2014; Toropov et al., 2012)) for predicting the 
toxicity of metal oxide nanoparticles. Although the prediction quality of these nano-QSTR models 
were within the acceptable range, these models were directed to single target only. Thus, it should 
be noted that the conventional QSAR models have the ability to predict the toxicity of nanoparticles 
against only one biological target and may not always take into consideration several important 
experimental parameters/conditions such as cell-line used, nanoparticle core size, shape, time of 
exposure, concentration exposed, etc. Therefore, in recent years, several researchers are focusing on 
developing multi-tasking QSAR models that are capable of handling multiple biological targets and/
or multiple experimental conditions simultaneously. Several new approaches were reported in the 
literature, for instance, some authors have reported mtk-QSTR-perturbation modeling technique to 
develop multitasking nano-QSAR models to predict ecotoxicity, genotoxicity and/or cytotoxicity of 
nanoparticles (Halder, Melo, & Cordeiro, 2020; Kleandrova et al., 2014; Luan et al., 2014). While in 
another study (Basant & Gupta, 2017) the authors have modified the traditional QSAR methodology 
and reported an optimal multi target-QSTR model having a functional relationship between four 
different toxicity endpoints and corresponding predictors. Moreover, Choi et. al., (2018) reported 
a new methodology to develop a generalized nano-QSAR model by combining physicochemical 
properties, quantum-mechanical parameters, and different biological experimental conditions as 
descriptors/attributes, etc.

In the present work, the authors intended to develop a generalized quantitative structure-activity 
(/toxicity) relationship (QSAR/QSTR) models for predicting the cytotoxicity and genotoxicity of 
seven nanoparticles (namely, SiO2, ZnO, TiO2, CuO, Fe2O3, Fe3O4, Al2O3). Note that the study 
involves handling two different toxicity endpoints (cytotoxicity and genotoxicity), where the collected 
experimental response values were determined in different experimental conditions. Thus, to deal 
with such data we chose to build classification-based multi-tasking (mtk)-QSAR models (Kleandrova 
et al., 2014; Luan et al., 2014; Speck-Planche& Cordeiro, 2015) using Box-Jenkins moving average 
approach (Hill, Lewicki, & Lewicki, 2006). The Box-Jenkin’s approach allows developing a multi-
tasking QSAR model that can predict multiple responses, while taking into account the different 
experimental/theoretical conditions. The key difference in the present mtk-model compared to the 
previously reported mtk-QSAR models are, i) largest number of available data points are employed, 
ii) several important experimental conditions are considered while developing the model, iii) models 
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were developed using simple 2D-descriptors and periodic-based descriptors, and thus are not dependent 
on computationally expensive quantum-mechanics based descriptors.

MATeRIAL AND MeTHODS

Dataset Collection and Preparation
The dataset was collected from several reliable data repositories such as eNanoMapper (Jeliazkova 
et al., 2015), NANoREG (Gottardo et al., 2017), NanoDESK database (http://sudoenanodesk.net/) 
and also from several published literature (N. Chen et al., 2016; De Angelis et al., 2013; Fisichella 
et al., 2014; Ruizendaal et al., 2009; Choi, Ha, Trinh, Yoon, & Byun, 2018).

Initial raw data comprises 2491 data points with available toxicity information for several 
nanoparticle type, such as SiO2, CuO, Fe2O3, Fe3O4, ZnO, TiO2, Ag, Al2O3, Graphene and CeO2. These 
data points represent the cytotoxicity and genotoxicity of these nanoparticles determined in different 
experimental protocols and conditions (i.e., exposure time, concentration exposed, the nanoparticle 
core sizes, cell lines). However, there was some missing information such as concentration exposed, 
nanoparticle size, etc. for some data points, as well as, several data points were found to be duplicates. 
The duplicates were likely since the data were collected from different sources as well as many data 
points represent experimental replicates. Notably, the data points were considered duplicates only if 
they were exactly identical in the following aspects: nanoparticle composition, studied toxicity (i.e., 
cytotoxicity or genotoxicity), experimental protocol, cell line, exposure time (in hours), concentration 
(in µg/ml), nanoparticle core size (in nanometer). Further, before removing the found duplicates, the 
duplicate analysis (Fourches, Muratov, &Tropsha, 2010) was performed in the following manner:

1.  If the experimental toxicity (response) values of the duplicates are identical, then we have simply 
removed all the duplicates while keeping a unique data point in the dataset;

2.  If the response values are not identical, then two situations were considered. In the first situation, if 
the response values of the duplicates were similar to each other such that all or most of the duplicates 
come under the same category (i.e., toxic or non-toxic), then the authors have removed all the 
duplicates except one and a curated response value was assigned to the data point kept. Here, the 
curated response value was computed by taking the average response values of the duplicates. In 
the second situation, where the activity values of the retrieved duplicates were highly different from 
each other (such that some of them are categorized as ‘toxic’, while some of them are categorized 
as ‘non-toxic’), then such data points were removed. In this study, we found only 3 data points with 
ambiguous response values and thus were removed from the data set.

Finally, after removing the duplicates and the data points with the missing essential information, 
the resultant data set comprises 717 data points representing 7 metal oxides nanoparticles, namely, 
SiO2, ZnO, TiO2, CuO, Fe2O3, Fe3O4, Al2O3.

Descriptor Calculation
In the next step, several (1670) molecular 2D-descriptors were calculated using an in-house python 
script, ChemDes web platform (Dong et al., 2015) (http://www.scbdd.com/chemdes/), PaDEL-
descriptor (Yap, 2011) and the periodic table-based descriptors (De, Kar, Roy, & Leszczynski, 
2018). The computed descriptors include several classes of 2D-descriptors such as atom centered, 
autocorrelation, burden eigenvalues, connectivity indices, constitutional, edge adjacency, eigenvalues, 
getaway, information indices, topological, topological charge, two dimensional, walk path counts, 
functional group, and simple descriptors derived from the periodic table information. Here, the 
SMILES notations of metal oxides were utilized for the calculation of all 2D-descriptors except the 
periodic table-based descriptors. The periodic table-based descriptors were collected from the literature 
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(De et al., 2018). However, the final data set comprises 733 descriptors after removing the constant 
and inter-correlated descriptors using the variance cut-off (= 0.001) and correlation coefficient cut-
off (= 0.99), respectively. Moreover, three experimental parameters, i.e., nanoparticle core size (in 
nanometer), concentration of nanoparticle exposed (in µg/ml), and exposure time (in hours) were 
also considered as descriptors while developing the models.

Model Development and Validation
In the present study, as mentioned earlier, the authors have employed Box-Jenkins moving average 
approach which allows to develop a multi-tasking QSAR model that can predict two endpoints, i.e., 
cytotoxicity and genotoxicity with different experimental/theoretical conditions simultaneously 
using a single QSAR model equation. Six experimental conditions (denoted as ‘c’) were considered 
for developing multi-tasking QSAR models: toxicity endpoints (denoted as ‘Te’, cytotoxicity, and 
genotoxicity), the experimental protocols (denoted as ‘Ep’, total 11 different protocols), exposure time 
(denoted as ‘Et’, time in hours), concentration exposed (denoted as ‘Ce’, concentrations in µg/ml), 
nanoparticle core size (denoted as ‘Ns’, measured in nanometer), cell lines (denoted as ‘Cl’, total 15 
different cell lines). Additional details about the data set statistics, and the experimental conditions 
are provided in the supporting information available at https://osf.io/cbdpx/ (online data repository). 
Note that the combination of these six experimental parameters define a unique experimental condition 
cj, under which a nanoparticle is tested. Thus, cj is represented as an ontology with the form cj→ (Te, 
Ep, Et, Ce, Ns, Cl). Further, each data point in the data set was annotated to belong to 1 of 2 possible 
classes, namely positive [TEi(cj) = P] or negative [TEi(cj) = N]. Here, TEi(cj) is a binary variable that 
symbolizes the toxicological effect (TE) of the ith nanoparticle under the experimental condition cj. 
The class assignments were performed according to predefined cutoff values (L. Chen, Peijnenburg, 
de Haan, &Rietjens, 2019; López-García, Lehocký, Humpolíček, &Sáha, 2014; Sharma et al., 2010), 
as shown in Table 1.

All the task related to mtk-QSAR model development using Box-Jenkin’s moving average 
approach was performed using QSAR-Co software (Ambure, Halder, GonzálezDíaz, & Cordeiro, 
2019) (freely available to download at https://sites.google.com/view/qsar-co). Notably, once the 
prepared input file with essential information (i.e., compound ID, experimental conditions, response 
class, and descriptors) is provided to the QSAR-Co software, using the software one can perform 
all the steps required for the QSAR model development such as computing modified descriptor 
set (based on Box-Jenkins moving average approach), data pre-treatment (removes constant and 
inter-correlated descriptors), data set division, variable selection, model development, validation 
and determination of the applicability domain. In this study, the data set was divided into a training 
set (70%) and a test set (30%) using the Random approach available in the QSAR-Co software. The 
training set was employed for the development and selection of the optimum model whereas the 
test set was exclusively utilized to validate the model. The genetic algorithm (GA) and best subset 

Table 1. Pre-defined cut-off values for classifying the data into toxic and non-toxic category

Toxicity Endpoint 
(Measurement Type)

Pre-Defined Cut-Off Values

Non-Toxic (Negative) Toxic 
(Positive)

Cytotoxicity 
(% cell viability) >80 ≤ 80

Genotoxicity 
(% DNA in the tail) <10 ≥ 10
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selection (BSS) were utilized as variable/feature selection techniques. The final mtk-models were 
developed using two machine learning techniques implemented in QSAR-Co software, i.e., linear 
discriminant analysis (LDA) (Snedecor& Cochran, 1989; Venkatasubramanian & Sundaram, 2002) 
and Random Forest (RF) (Breiman, 2001).

The parameters/setting used in the GA were as follows, (a) the total number of iteration/
generations: 1000, (b) model equation length: 8, (c) mutation probability: 0.3, (d) the initial number 
of model equations generated: 500, (e) number of model equations selected in each generation: 150. 
Both Mathew’s correlation coefficient (MCC) and Wilks lambda (λ) parameter (Wilks, 1932) were 
employed to compute the fitness score in the GA, which is then utilized to select the best model in 
each generation. A set of top descriptors were selected based on the results of the GA (i.e., from the 
models with good fitness scores), which were then utilized in BSS for finding the best possible LDA 
model as well as to derive a RF model.

The optimum LDA and RF models were evaluated and selected based on the qualitative validation 
metrics computed for the training set and then the selected models were externally validated using the 
test set. Thus, qualitative validation metrics (Fawcett, 2006) such as accuracy, precision, sensitivity, 
specificity, MCC, F-score were calculated for both the training and test sets for performing internal 
and external validation, respectively. Further, receiver operating characteristics (ROC) curve (Fawcett, 
2006) along with the area under the curve (AUC) were checked to determine the discriminating ability 
of the developed LDA and RF models. The robustness of the LDA model was also evaluated using 
Y-randomization test (Fisher, 1960), where the dependent variable (response class) of the training 
set was scrambled 50 times and the models were built again that resulted in 50 random LDA models. 
Further, Wilks λ parameter of the original model was compared to the Wilks λ values of 50 random 
models to circumvent the possibility that the original LDA model was developed by chance. Finally, 
the domain of applicability was determined for both LDA and RF models using the standardization 
approach (Roy, Kar, & Ambure, 2015).

ReSULT AND DISCUSSION

Linear Discriminant Analysis (LDA) Model
Among all models generated from the BSS algorithm (i.e., utilizing all possible combinations of 
pre-screened 23 top descriptors obtained from the GA), the best LDA model was selected with least 
Wilks (λ)Train and highest MCCTrain. The following Equation 1 shows the standardized coefficients for 
the selected descriptors in the selected optimal LDA model:

TEi(cj)= (0.679 × HallKierAlpha_Ce) + (2.097 × MATS2m_Ns)  
– (0.372 × ExposureTime_Ce) + (0.907 × CrippenMR_Ep) + (2.195 × AATS0Z_Ns) …   
– (2.687 × LogEE_m_Ns) – (0.344 × Conc. Exposed_Ep) – (0.353 × SM1_se_Cl) (1)

The standardized coefficient values in Equation 1 give an idea about the contribution of each 
descriptor towards the non-toxicity of the nanoparticles, for instance, in this case, the descriptor 
‘LogEE_m_Ns’ has the highest (negative) contribution (coefficient value = –2.687) towards the non-
toxicity of the nanoparticles. Notably, five experimental conditions, namely, concentration exposed, 
core size of nanoparticle, exposure time, experimental protocols, and cell lines (except ‘toxicity 
endpoints’) were found to play an important role in toxicity class prediction.

Here, we will briefly describe the meaning and contribution (along with the source) of each 
descriptor that are selected in the final LDA model (summarized in Table 2):

• HallKierAlpha_Ce: The Kier and Hall (L. H. Hall & Kier, 1991) defined molecular shape indices 
that compare the molecular graph with minimal and maximal molecular graphs depending on 
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the order (1, 2 or 3), where each order represent structural information such as count of atoms 
(path of length 1) and the presence of cycle (order 1), branching (order 2) and counts of paths 
of length 3 (order 3). The ‘HallKierAlpha’ descriptor represents the modified shape indices 
that also considers the contribution of covalent radii and hybridization states to the shape of the 
molecule. In the LDA model, this descriptor was found to positively contribute to the nontoxicity 
of the nanoparticles (thus, negatively contributing to the toxicity of nanoparticles), while the 
modified descriptor ‘HallKierAlpha_Ce’also considers and depends on the concentration of 
nanoparticle exposed;

• MATS2m_Ns: Moran autocorrelation are 2D-autocorrelation descriptors that explain how 
the values of certain functions, at intervals equal to the lag, are correlated. Here, the descriptor 
‘MATS2m’ represents a lag in terms of the topological distance (where, d = 2) and the ‘atomic 
masses’ is the function that was correlated. This descriptor provides a global and dimension-
limited code, while addressing the topology of the structures together with the association with 
identified physicochemical properties (Velázquez-Libera, Caballero, Toropova, &Toropov, 2019). 
In this study, it showed a positive correlation with the nontoxicity of the nanoparticles, while the 
modified descriptor ‘MATS2m_Ns’ also depends on the core size of nanoparticles;

• CrippenMR_Ep: CrippenMR descriptor represents the molar refractivity of the nanoparticle that 
is computed based on a group contribution, where the individual molar refractivity contributions 
for 150 atom types were defined by Ghose-Crippen (Ghose, Pritchett, & Crippen, 1988). 
Thus, CrippenMR can be calculated as the sum of the contributions of each of the atoms in the 
molecules. Here, the molar refractivity was found to be positively correlated to the nontoxicity 
of the nanoparticles, while it also considers and depends on the experimental protocol employed;

• AATS0Z_Ns: AATS0Z is the averaged Moreau-Broto 2D autocorrelation (Broto, Moreau, 
&Vandicke, 1984) of lag 0 weighted by atomic number. Like MATS2m, it also describes how a 
property is distributed along with the topological structure. Here, it is also positively contributing 

Table 2. Symbols and definitions for the descriptors selected in the mtk-QSAR (LDA and RF) models

Descriptor 
[Type] Brief Description Descriptor 

Source (Reference)

HallKierAlpha_Ce
[2D Topological]

‘HallKierAlpha’ represents the Hall-Kier alpha value for a molecule.‘_Ce’ suggests that 
this descriptor also considers (and depends on) concentration of nanoparticles exposed.

RDKit
(Landrum, 2013)

MATS2m_Ns
[2D 
Autocorrelation]

The ‘MATS2m’ stands for Moran autocorrelation - lag 2/weighted by atomic masses. 
‘_Ns’ suggests that this descriptor also considers (and depends on) the core size of 
nanoparticles.

Mordred descriptors
(Moriwaki, Tian, Kawashita, & 
Takagi, 2018)

ExposureTime_Ce
The ‘ExposureTime’ stands for exposure time (in hours) during the experiments. 
‘_Ce’ suggests that this descriptor also considers (and depends on) concentration of 
nanoparticles exposed.

Experimental data

CrippenMR_Ep
[Crippen 
Descriptor]

The ‘CrippenMR’ stands for Crippen’s molar refractivity. ‘_Ep’ suggests that this 
descriptor also considers (and depends on) the experimental protocol employed.

PaDEL-descriptor
(Yap, 2011)

AATS0Z_Ns
[2D 
Autocorrelation]

AATS0Z stands for averaged moreau-broto autocorrelation of lag 0 weighted by atomic 
number. ‘_Ns’ suggests that this descriptor also considers (and depends on) the core size 
of nanoparticles.

Mordreddescriptors 
(Moriwaki et al., 2018)

LogEE_m_Ns
[2D matrix-based]

LogEE_m stands for 2D matrix-based descriptors derived from the Barysz matrix 
weighted by mass. ‘_Ns’ suggests that this descriptor also considers (and depends on) 
the core size of nanoparticles.

Mordreddescriptors
(Moriwaki et al., 2018)

Conc. Exposed_Ep
The ‘Conc. Exposed’ stands for concentration of nanoparticles (in µg/ml) exposed 
during the experiments. ‘_Ep’ suggests that this descriptor also considers (and depends 
on) the experimental protocol employed.

Experimental data

SM1_se_Cl
[spectral moment]

SM1_se stands for spectral moment of order 1 from the Barysz matrix weighted by 
sanderson electronegativity. ‘_Cl’ suggests that this descriptor also considers (and 
depends on) the cell line used.

Mordreddescriptors
(Moriwaki et al., 2018)
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to the nontoxicity of the nanoparticles, while AATS0Z_Ns descriptor also considers and depends 
on the core size of the nanoparticles;

• LogEE_m_Ns: LogEE_m is a 2D matrix-based descriptor. It is defined as the logarithmic 
coefficient sum of the last eigenvector from the Barysz matrix and is weighted by mass (Barysz, 
Jashari, Lall, Srivastava, &Trinajstic, 1983). This descriptor was found to negatively contribute to 
the nontoxicity of the nanoparticles (thus, positively contributing to the toxicity of nanoparticles), 
while this descriptor also considers and depends on the core size of the nanoparticles;

• SM1_se_Cl: SM1_se descriptor represents the spectral moment of order 1 from the Barysz 
matrix and is weighted by Sanderson electronegativities (Barysz et al., 1983). It is negatively 
contributing to the nontoxicity of the nanoparticles (thus, positively contributing to the toxicity 
of nanoparticles), while this descriptor also considers and depends on the cell line used.

Thus, both experimental conditions and the selected structural features (descriptors) play an 
important role in predicting the toxicity of studied nanoparticles. To understand it better, three cases 
are discussed utilizing the samples from the dataset and relevant information is provided in Table 3. 
The first case (example 1 in Table 3) involves nine data points (i.e., B028 to B036) that represents 
the same nanoparticle, i.e., CuO, however, one can notice that data points (B028 to B032) are non 
toxic while B033 to B036 are toxic. Here, all the experimental parameters (assay, cell line, exposure 
time, core nanoparticle size) are the same for all the data points except concentration exposed (Ce, 
dose). The data points (B028 to B032) with Ce ≤  5µg/ml are non toxic, while data points with Ce 
> 5µg/ml are toxic. It is important to note that this information is successfully encoded in the descriptor 
‘HallKierAlpha_Ce’ (modified descriptor, see the values in Table 3), whereas the original descriptor 
value is the same for all these data points (representing CuO), as expected. This example shows the 
importance of experimental parameters in predicting the toxicity of nanoparticles. The second case 
(example 2 in Table 3) also shows the importance of another experimental parameter i.e., core size 
of nanoparticles (Ns) in toxicity prediction. The data points (A027, A023, A050) represent the same 
nanoparticle, i.e. SiO2, however, A027 and A050 with core size 19.2 nm and 109.8 nm are non toxic, 
while A023 with size 31.4 nm is toxic. Here, the size information is successfully encoded in the 
modified descriptor ‘MATS2m_Ns’ (see the descriptor values in Table 3) and thus contribute to 
classification or prediction of toxicity. The third case (example 3 in Table 3) shows the importance 
of a descriptor (structural feature) in the prediction of toxicity. The data points B077 and B033 
represent two nanoparticles, i.e., Fe3O4 and CuO, where Fe3O4 is non toxic and CuO is toxic. Notably 
here all the experimental parameters (assay, cell line, exposure time, concentration exposed) for both 
the data points are the same with very little difference in the core sizes (see the sizes in Table 3), 
which means that there should not be a significant influence of experimental parameters in the toxicity 
of these nanoparticles. Thus, this case is a good example to observe the role of descriptors to describe 
the toxicity, for instance, in this example, HallKierAlpha descriptor (see the original descriptor values 
in Table 3) representing shape of the nanoparticles explains the toxicity very well and is positively 
contributing to the non-toxicity of nanoparticles.

Additionally, the classification/discriminant function that can be employed to predict the class 
of query or newly designed nanoparticle is mentioned in Table 4.

The optimal values obtained for statistical parameters such as accuracy, precision, sensitivity, 
specificity, F-measure and Mathew’s correlation coefficient (MCC) are indicative of good 
discriminatory power of the developed model (see Table 5). A similar performance was shown by the 
LDA model for the test set compounds. Thus, it can be concluded that the developed LDA mtk-QSAR 
model is aptly capable of differentiating between toxic and non-toxic nanoparticles.

To further evaluate the statistical significance of the developed model, ROC curves (Fawcett, 
2006) (see Figure 1) were plotted for both the training and test sets employing the 10-fold cross-
validation approach. The area under the ROC curve (AUC) values (see Table 5) obtained for both 
the training set (= 0.928) and the test set (= 0.920) shows that the model is a statistically significant 
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classifier since those values are considerably higher than that of a random classifier (=0.5). Moreover, 
the Y-randomization test (Fisher, 1960) inferred that the present mtk-QSAR model is not developed 
by chance. The Y-randomization test results are illustrated in Figure 2, where one can observe that 
the Wilk’s lambda values for all 50 random models (average λrandom= 0.984) are significantly higher 
than the original value for λTrain (i.e., 0.58). Finally, the applicability domain was determined using 

Table 3. Demonstrating the role of experimental conditions and descriptors in prediction of toxicity of studied nanoparticles 
using few examples

Example 1

Nano
ID Common Parameters Ce Response 

Class

HallKierAlpha
(Original 

Descriptor)

HallKierAlpha_Ce
(Modified Descriptor)

B028*

NtCuO
TeCyto-toxicity
EpMTT reduction assay
ClHCMEC
Et12
Ns46.3

0.001 Non Toxic 0.319 0.199

B029 0.01 Non Toxic 0.319 0.199

B030* 0.1 Non Toxic 0.319 0.199

B031 1 Non Toxic 0.319 0.502

B032 5 Non Toxic 0.319 0.133

B033 10 Toxic 0.319 -0.005

B034 20 Toxic 0.319 -0.014

B035 50 Toxic 0.319 -0.041

B036* 100 Toxic 0.319 -0.034

Example 2

Nano
ID Common Parameters Ns Response

Class MATS2m MATS2m_Ns

A027* NtSiO2
TeCyto-toxicity
EpMTT reduction assay
ClCaCo-2
Et4
Ce600

19.2 Non Toxic 0.405 0.405

A023* 31.4 Toxic 0.405 0.000

A050* 109.8 Non Toxic 0.405 0.405

Example 3

Nano
ID Common Parameters Nt (Ns) Response

Class

HallKierAlpha
(Original 

Descriptor)

HallKierAlpha_Ce
(Modified Descriptor)

B077*
TeCyto-toxicity
EpMTT reduction assay
ClHCMEC
Et12
Ce10

Fe3O4
(46.8) Non Toxic 1.078 0.754

B033 CuO
(46.3) Toxic 0.319 -0.005

*: data point present in the test set
Nt: Nanoparticle type
Te: Toxicity endpoint
Ep: Experimental protocol
Cl: Cell line
HCMEC: Human Cerebral Microvascular Endothelial Cell Line
CaCo-2: Human epithelial colorectal adenocarcinoma cells
Et: Exposure time
Ns: nanoparticle size (core)
Ce: concentration exposed
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the standardization approach available in the QSAR-Co software. The standardization approach (Roy, 
Kar, & Ambure, 2015) showed that 5 (out of total 502) data points of the training set and 6 (out 
of total 215) data points of the test set were found as possible outliers and outside the applicability 
domain, respectively.

Table 4. Classification or discriminant functions

Classification/Discriminant Functions
Negative 

(Non-Toxic)
Positive 
(Toxic)

p=0.723 p=0.277

Intercept -2.095 -1.287

HallKierAlpha_Ce 3.898 0.073

MATS2m_Ns 9.071 0.051

ExposureTime_Ce -0.037 0.003

CrippenMR_Ep 0.708 -0.002

AATS0Z_Ns 1.886 0.002

LogEE_m_Ns -6.211 -0.017

Conc. Exposed_Ep -0.007 0.000

SM1_se_Cl -1.432 -0.018

Table 5. Performance of the mtk-QSAR models (LDA and RF)

Classification Model 
Evaluation Parameters

LDA RF

Training Set Test Set Training Set Training Set 
(10-Cvd) Test Set

NCa Positive 139 53 139 139 53

NCa Negative 363 162 363 363 162

True Positive 125 50 136 122 49

False Positive 40 21 5 21 6

True Negative 323 141 358 342 156

False Negative 14 3 3 17 4

Accuracy (%) 89.24 88.83 98.41 92.43 94.42

Precision (%) 75.76 70.42 96.45 85.30 87.27

Sensitivity (%) 89.93 94.34 97.84 87.77 90.57

Specificity (%) 88.98 87.04 98.62 94.21 95.70

F-measure 0.82 0.81 97.14 0.865 0.89

MCCb 0.752 0.746 96.04 0.813 0.85

AUROCc 0.928 0.920 0.999 0.981 0.961

Wilk’s Lambda 0.58 - 0.58 0.58 -
aNC: Number of cases
bMCC: Mathew correlation coefficient
cAUROC: Area under the receiver operating characteristic curve
d10-CV: 10-fold cross-validation results
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Random Forest (RF) Model
The RF technique was also utilized to build a non-linear classification-based mtk-QSAR model using 
the same training and test sets that were employed to build the LDA model. It was also developed 
using QSAR-Co software, which utilizes the Weka version 3.9.3 library (M. Hall et al., 2009) for RF 
calculations. Though the authors initially utilized all 23 top descriptors obtained from the GA for 
development of the RF model; however, later they noticed that the model quality was similar to the 
RF model developed using the same 8 descriptors that were present in the best LDA model. Thus, 
the RF model with only 8 descriptors was finally chosen as the optimal RF model. The default RF 

Figure 2. Y-randomization test results for the developed LDA model

Figure 1. ROC (using 10-fold cross-validation) plots for the best LDA model
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parameters of QSAR-Co were chosen, and a 10-fold cross-validation procedure performed to assess 
the internal predictability of the model. The resultant statistical parameters of the derived model are 
provided in Table 5, and as typically anticipated the overall statistical prediction quality of the RF model 
was found to be superior to that of the LDA model. However, the LDA model has better sensitivity 
values (i.e., less false negatives) for both training and test sets when compared to the RF model and 
thus are better at predicting positives or toxic nanoparticles, while the RF model has better precision 
value (i.e., less false positives) and thus is better in predicting negatives or non-toxic nanoparticles. 
Thus, employing both models would be always beneficial to perform consensus predictions for query 
or newly designed nanoparticles. Further, Figure 3 shows the plots of the corresponding ROC curves 

for the RF model, and the AUC values (see Table 5) for both the training set (= 0.981) and the test set 
(= 0.961) shows that the model has significant discriminatory power. Please note that since the same 
descriptors (selected in LDA) were used to develop the RF model, thus the results of applicability 
domain using the Standardization approach (as discussed earlier for the LDA model) will remain the 
same. Moreover, the contribution of each descriptor was identified based on the average impurity 
decrease per attribute over the trees (computed by default in the QSAR-Co software) and it was found 
in the following order: SM1_se_Cl > ExposureTime_Ce > Conc. Exposed_Ep > AATS0Z_Ns > 
CrippenMR_Ep > HallKierAlpha_Ce > LogEE_m_Ns > MATS2m_Ns.

Note that all the details relevant to the model development such as input dataset information, 
final models (LDA and RF), results of Y-randomization test and the applicability domain study are 
available at https://osf.io/cbdpx/ (online data repository) as supporting information.

In-Depth Analysis of Predictive Performance of Developed 
Multi-Tasking (Generalized) LDA and RF Models
The authors have performed a detailed analysis of prediction performance of the developed generalized 
LDA and RF models to understand the performance of models with respect to each toxicity endpoint, 
nanoparticles type, experimental protocols, and cell lines employed. Since several experimental 
conditions were involved in the model development, it was really interesting to evaluate and check 
the prediction quality of developed models considering each experimental condition as separate 
case, for instance, to evaluate how the LDA and RF models perform for cytotoxicity endpoint and 
genotoxicity endpoint separately. Similarly, the authors have checked how the models performed for 

Figure 3. ROC (using 10-fold cross-validation) plots for the derived RF model
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different nanoparticle types, experimental protocols, as well as cell lines. The predictive performance 
is simply evaluated by computing the % correct prediction (both positives and negatives combined) 
under each case and reported in Table 6. As observed from the analysis, both the models performed 
efficiently in all the studied cases, since in most cases the percentages of correct predictions were 
higher that 80 – 90%.

continued on following page

Table 6. Predictive performance of the mtk-(generalized) QSAR models (LDA and RF) with respect to toxicity endpoints, 
nanoparticle types, experimental protocols, and cell lines

Cases Studied #Ndata LDA (in %*) RF (in %*)

Entire Dataset 717 89.12 97.21

Nanoparticle Type

SiO2 127 88.98 97.64

TiO2 197 95.43 98.98

ZnO 265 80.75 94.34

Al2O3 18 100.00 100.00

CuO 18 83.33 100.00

Fe2O3 18 100.00 100.00

Fe3O4 74 98.65 100.00

Toxicity Endpoint

Cytotoxicity 702 89.32 97.29

GenoToxicity 15 80.00 93.33

Experimental Protocols

MTS Assay 134 93.28 98.51

AlamarBlue Assay 29 82.76 100.00

MTT reduction assay 378 87.57 95.77

DNA Strand breaks assay 15 80.00 93.33

Natural Red Assay 2 100.00 100.00

Lactate dehydrogenase (LDH) Cytotoxicity Assay 4 75.00 100.00

Neutral Red Uptake (NRU) cytotoxicity assay 60 88.33 100.00

Annexin V/PI Apoptosis Assay 6 100.00 100.00

ATP assay 12 100.00 100.00

CyQUANT LDH Cytotoxicity Assay 5 80.00 100.00

Cell Counting Kit-8 72 93.06 98.61

Cell lines

Human epithelial colorectal adenocarcinoma cells 115 84.35 99.13

Human colon adenocarcinoma cell line HT29 8 62.50 100.00

Human Cerebral Microvascular Endothelial Cell Line 90 95.56 98.89

Adenocarcinoma human alveolar basal epithelial cells 227 89.43 95.15
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CONCLUSION

To summarize the work, we have developed generalized classification-based QSAR models to study 
two toxicity endpoints of our interest, namely, cytotoxicity and genotoxicity for a selected class of 
nanoparticles. The authors would like to emphasize that this is a first attempt of reporting a generalized 
model suitable for predicting both cytotoxicity and genotoxicity of metal oxides nanoparticles with 
the largest number of data points when compared to other reported generalized models developed for 
prediction of either genotoxicity (Halder, Melo, & Cordeiro, 2020) or cytotoxicity (Choi, Ha, Trinh, 
Yoon, & Byun, 2018) endpoints of metal oxide nanoparticles. Here, the generalized or multi-tasking 
(mtk)-QSAR models were developed using the Box-Jenkins moving average approach, which allowed 
the authors to merge the experimental response values that are determined in different experimental/
theoretical conditions against two toxicity endpoints. The developed mtk-QSAR models can predict 
dual toxicity endpoints (with diverse experimental conditions) using a single QSAR model. In the 
present study, the models were developed using two machine learning techniques, i.e., LDA and 
RF. The computed internal (training set) and external (test set) validation metrics showed that the 
developed models have significant discriminatory power and are robust. The applicability domain 
of LDA and RF models were checked using the standardization, and the outliers (in the training set) 
as well as the data points that are outside the applicability domain (in the test set) were reported 
accordingly. Further, the RF model was found superior in overall prediction quality as compared to 
LDA. However as discussed earlier, the LDA model was found to be better at predicting positives 
or toxic nanoparticles, while the RF model was found to be better at predicting negatives or non-
toxic nanoparticles. Thus, keeping both models will provide an opportunity to perform consensus 
predictions, which should significantly improve the quality of predictions. Further, LDA models are 
linear models that are simple to understand and are usually faster in screening large size databases 
as compared to the RF model. Nevertheless, the authors suggest that in a situation when only single 
model predictions are preferred, the RF model will always be the most appropriate choice due to 
superior prediction quality. Finally, the developed mtk-nano-QSAR models can be efficiently utilized 
for predicting the cytotoxicity and genotoxicity of newly designed nanoparticles or to fill the gap of 

Table 6. Continued

Cases Studied #Ndata LDA (in %*) RF (in %*)

Entire Dataset 717 89.12 97.21

Normal human bronchial epithelial cells 74 93.24 98.65

Human mesothelial cell line 8 62.50 75.00

Human neuroblastoma 119 90.76 98.32

Human mammary epithelial cell line 2 100.00 100.00

Diploid human cell line composed of fibroblasts 2 100.00 100.00

HeLA (cervical cancer cells) cell line 2 100.00 100.00

human fetal hepatocyte cell line 12 100.00 100.00

Lung tissue of a male Chinese hamster. 24 79.17 95.83

Murine tumours induced with Abelson leukaemia virus 10 90.00 100.00

human colon cancer cell line SW480 14 92.86 100.00

Human olfactory neurosphere-derived cells 10 70.00 90.00

# Number of datapoints in each case
* % correct predictions (both positives and negatives combined)
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existing nanoparticles. These generalized models will surely assist us to comprehend the impact of 
nanoparticles on human health.
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