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ABSTRACT

Human African trypanosomiasis (HAT) is a vector-borne sleeping sickness parasitic disease spread 
through the bite of infected tsetse flies (Glossina genus), which is highly populated in rural Africa. 
The present study constructed quantitative structure-activity relationship (QSAR) models based on 
quantum chemical electronic descriptors to bring out the extent to which the electronic factor of the 
selected compounds affects the HAT activity. Theoretical prediction of toxicity (pIC50) of the series 
of heterocyclic scaffolds consisting 32 pyridyl benzamide derivatives towards HAT is investigated by 
considering all possible combinations of electrophilicity index (ω) and the square of electrophilicity 
index (ω2) as descriptors in the studied models along with other descriptors previously used by Masand 
et al. A multiple linear regression (MLR) analysis is conducted to develop the models. Further, in 
order to obtain the variable selection on the overall data set having diverse functional groups, the 
analysis using sum of ranking differences methodology with ties is carried out.
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INTRODUCTION

Human African trypanosomiasis, commonly known as sleeping sickness is an endemic disease in 
the sub-Saharan African countries caused by two forms of the Trypanosoma brucei parasite, namely, 
Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense (Sykes et al., 2012;Ferrins et 
al., 2014). According to the World Health Organisation, 98% of the reported cases are caused by the 
former species resulting in a more severe form of the disease-causing chronic infection, the symptoms 
of which mainly remain hidden until the central nervous system is seriously affected. Trypanosoma 
brucei rhodesiense, on the other hand, accounts for the remaining 2%, causing acute infection and 
showing symptoms in the early stages of the disease. This vector-borne disease is known to be 
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transmitted by the bite of the infected tsetse fly and is very rarely identified in its first stage where drug 
administration is easier and less toxic compared to those required in the most commonly identifiable 
second stage (Barrett et al., 2011;Simarro et al., 2012;Seixas et al., 2013;Carvalho et al., 2014).

High-throughput screening i.e., Alamar Blue based, 384-well HTS assay was applied by Sykes 
et al. (2012) to screen a huge dataset of 87,296 compounds against T. brucei where unfortunately 
pyridyl benzamide derivatives were excluded by the selection criteria. Later, Ferrins et al. (2014) 
showed the HAT activity of the aforementioned class of compounds suggesting their ability to treat 
the disease in its second stage. However, the search for experimental targets for such studies still 
possesses substantial challenges. This is where computational drug design and statistical approaches 
like quantitative structure-activity relationships (QSARs) come in handy as computational resources 
are easy to work with, cheaper and faster than conducting actual experiments. QSAR provides a 
statistical approach in understanding the correlation between structural features of a certain class of 
compounds and the biological behaviour exhibited by them.

Quantitative structure-activity relationships (QSARs) are of paramount importance which pay 
attention to the theoretical toxicity predictions in the highly complicated field of pharmaceutical 
sciences due to their potential in the assessment of various biological activities (e.g., drug activity, 
toxicity, etc.) and physicochemical features of bioactive molecules by evading the time consuming 
and cost-effective experiments. It is a very interesting aspect that molecular descriptors or chemical 
attributes are the fingerprints of the molecular or chemical structures and thus the choice of appropriate 
descriptors for a particular biological property/activity/toxicity has become quite a challenging task. 
Cheminformatics is the initial step in such studies that efficiently utilizes computer information 
techniques in the field of chemistry to search, extract and process relevant information of chemical 
compounds from huge databases. In cheminformatics analysis, machine learning techniques are also 
used in QSAR studies for chemical feature extraction and selection in multiple levels, characterization 
of the compounds by substructure fragments as well as a selection of the chemical descriptors. These 
approaches have wide applications in the chemical industry in modeling physicochemical properties 
of chemical compounds, performing virtual screening in pharmaceutical studies, and to predict 
pharmacodynamic and pharmacokinetic properties in computational drug designing. The field of 
cheminformatics specializes in handling huge datasets, performing direct data to knowledge mapping 
and thus allows an easy transition from quantum chemistry to biological activity. It can provide 
information that may be used in medicine, biology, and physics. Various forms of machine-readable 
information are included in chemical databases which may be used in clinical purposes. There are 
some limitations of cheminformatics when used in stereoisomers and analyzing tautomers.

In this present study, we have explored the effect of the electronic atmosphere of 32 pyridyl 
benzamide derivatives on its HAT activity against T. brucei. The dataset is taken from a study 
performed by Masand et al. (2016) where they had screened a large pool of descriptors via objective 
and subjective feature selection and created multiple QSAR models by randomly splitting the datasets 
into training and prediction sets. Here we have incorporated global electrophilicity index (ω) and 
the square of electrophilicity index (ω2) as electronic descriptors by replacing those used by Masand 
et al. one or two at a time to obtain all possible combinations of QSAR models. Multiple linear 
regression (MLR) method is employed to construct the models, followed by comparing them using 
the Sum of Ranking Differences (SRDs) technique described by K. Héberger (2010; Kollár-Hunek 
and Héberger, 2013).

THEORETICAL BACKGROUND

The electronic parameter of any drug brings out information about the polarising effect of any 
electronegative center present in the molecule on its binding pattern with the protein (DNA). Thus 
including the electronic parameters in simulating these types of bonding mechanisms is of utmost 
importance. Global electrophilicity index (ω) can be computed within the domain of conceptual 
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density functional theory (CDFT) (Hohenberg and Kohn, 1964;Kohn and Sham, 1965) using quantum 
chemical properties of a molecule like chemical hardness (η) (Chattaraj and Parr, 1993; Pearson, 
1997) and chemical potential (µ) employing Parr’s definition (Parr and Yang, 1989) as:

ω
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2
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Parr also established a quantum chemical relation between chemical potential (µ) and 
electronegativity (χ) (Pauling, 1960; Sen and Jorgenson, 1987) using Iczkowski and Margrave’s 
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and η was defined by Parr and Pearson (1983) as the second order variation of E with respect to N:
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By applying finite difference approximation (Parr and Yang, 1989), µ and η can be expressed in 
terms of ionization potential (IP) and electron affinity (EA) at fixed v r�( )  as:

µ
IP EA

= −
+( )
2

	 (4)

η = −IP EA 	 (5)

We have applied Koopmans’ theorem for closed-shell molecules so as to avoid calculating EN, 
EN+1 and EN-1 to get IP and EA and hence cutting down computational cost in the process:

µ
E E
LUMO HOMO=

+

2
	 (6)

η = −E E
LUMO HOMO

  	 (7)

EHOMO and ELUMO being the energies of the highest occupied and lowest unoccupied 
molecular orbitals.
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Electrophilicity index is known to build robust QSAR models with good correlation coefficients 
(R2) in predicting biological activity (Roy et al., 2007) and the toxic behavior (Parthasarathi et al., 
2004) of certain class of molecules.

COMPUTATIONAL DETAILS

Considering the type of elements present in the molecules, the geometry optimization is carried 
out at the Hartree-Fock (Hartree, 1928;1929; Fock, 1930) level along with a polarized split-valence 
6-31G(d) basis set (Petersson et al., 1988) using the Gaussian 09 software (Frisch et al., 2014). 
Frequency analysis is performed at the same level to check whether there is any imaginary frequency 
to confirm that the optimized structures lie at the minima of their respective potential energy surfaces. 
Quantum chemical properties of the system like chemical potential (µ) and hardness (η) are computed 
by employing finite difference approximation and Koopmans’ theorem, and the global electrophilicity 
descriptors ω and ω2 are calculated using Parr’s formula.

QSAR analysis for human African trypanosomiasis (HAT) healing activity of a set of pyridyl 
benzamides is performed against T. brucei using MLR technique in Origin 6.0 (Deschenes and David 
A. Vanden BoutUniversity of Texas, 2000). Sum of ranking differences (SRD) (Héberger, 2010;Kollár-
Hunek and Héberger, 2013) is employed to compare the developed models using Comparison of 
Ranks by Random Numbers (CRRN) technique.

RESULTS AND DISCUSSION

Computer-aided molecular design and drug design utilize cheminformatics techniques like pattern 
recognition and data visualization to look for molecules with specific biological properties. Our in 
silico investigation allows prediction of biological activity in terms of electronic descriptors like 
electrophilicity (ω) and its square (ω2) coupled with other descriptors like GATS8c, RDF40p and 
RDF55s within the domain of cheminformatics. Three-parameter QSAR analysis is performed in this 
dataset of 32 pyridyl benzamide derivatives taken from a study carried out by Masand et al. (2016) 
in the domain of cheminformatics. The dataset contains diverse substituents like methyl, fluoride, 
chloride, bromide, cyanide, methoxy, amino, etc. at different positions of the aromatic rings (Figure 
1 and Table 1). The optimized geometries of a few of the compounds from the dataset are depicted 

in Figure 2 as representative cases. The descriptors used in the aforementioned study were calculated 
using PaDEL 2.21 and were carefully sorted out using objective and subjective feature selection in 
QSARINS-Chem 2.2.1, taking into consideration various constitutional, 1D, 2D and 3D structural 
features. Out of the four models used in that work, we have considered models 1.1 and 1.2 for our study:

Figure 1. The structural skeletons for the compounds in the dataset. Substituents R1 and R2 are tabulated in Table 1.
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Table 1. Experimental pIC50, ω, ω2 along with the substituents for all the compounds in the dataset are presented 
corresponding to the structural skeletons in Figure 1

Sl. No. R1 R2 Expt. pIC50 ω ω2

1 H 2-Me 5.5190 0.37 0.14

2 4-CN 2-Me 5.6380 0.60 0.36

3 4-Me 2-Me 5.6780 0.36 0.13

4 4-Cl 2-Me 5.6780 0.44 0.19

5 4-Br 2-Me 5.7450 0.44 0.19

6 4-F 2-Me 6.2920 0.43 0.18

7 4-C≡CPh 2-Me 5.7700 0.47 0.22

8 4-C≡CCH2-iPr 2-Me 5.9590 0.40 0.16

9 4-Ph 2-Me 5.6990 0.40 0.16

10 5-OMe 2-Me 5.4200 0.35 0.12

11 6-CH=CH(CH2)2CH3 2-Me 5.2220 0.31 0.10

12 6-NH2 2-Me 5.3370 0.30 0.09

13 H H 5.0420 0.40 0.16

14 H 2-Et 5.5620 0.36 0.13

15 H 2-Me, 3-F 6.0510 0.41 0.17

16 H 3-F 5.1350 0.46 0.21

17 H 2-Me, 3-Cl 6.2010 0.40 0.16

18 H 2-Me, 3-Br 5.2440 0.41 0.16

19 H 2,3-diMe 5.4560 0.34 0.11

20 H 2-Me, 4-F 5.7210 0.38 0.15

21 H 2-Me, 4-Cl 5.9590 0.43 0.19

22 H 2-Me, 4-Br 5.9590 0.44 0.19

23 H 2,4-diMe 6.0090 0.36 0.13

24 H 3-F, 4-F 6.3870 0.47 0.22

25 4-Me 3-F 6.0810 0.48 0.23

26 4-Me 3-F, 4-F 6.0460 0.46 0.21

27 4-Cl 3-F 6.3280 0.53 0.28

28 4-Cl 3-F, 4-F 6.2760 0.54 0.30

29 4-F 3-F 7.0000 0.52 0.27

30 4-F 3-F, 4-F 6.7210 0.53 0.29

31 5-OMe 3-F 5.6380 0.43 0.19

32 5-OMe 4-F 5.5850 0.39 0.15
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pIC50 = 4.8523(±0.3676) − 0.9802 (± 0.4082)*GATS8c + 0.1240(±0.0734)*RDF40p +	  
0.0552(±0.0099)*RDF55s	 (1.1)

pIC50 = 6.4521(±1.2282) − 3.1455 (±2.3630)*E1s + 0.0545(±0.0492)*RDF40m + 	
0.0489(±0.0111)*RDF55s	 (1.2)

where, Geary autocorrelation of lag-8/weighted by atomic charges, Radial distribution function-040/
weighted by relative polarizabilities and Radial distribution function-055/weighted by relative 
I-state are abbreviated as GATS8c, RDF40p, and RDF55s respectively. E1 and RDF40m refer to 1st 
component accessibility directional WHIM index/weighted by relative I-state, and Radial distribution 
function - 040/weighted by relative mass.

As mentioned above, these descriptors were selected by screening a pool of descriptors generated 
using PaDEL 2.21. However, this descriptor calculator does not evaluate the electrophilicity index 
of a compound, which has been proven to be an effective quantum chemical descriptor in predicting 
toxicity (Parthasarathi et al., 2004) and biological activities (Roy et al., 2007). Thus, exploring the 
electronic environment of the chemical compounds in this regard makes sense. The electronic aspect 
of the compounds is taken care of in this study in the form of global electrophilicity index (ω) and 
its square (ω2). These descriptors could have been used in addition to the ones used by Masand et al. 
to obtain QSAR models with better predictive ability, but in that case, over-fitting would have been 
a high possibility. To avoid that, we have developed separate models by replacing each of the above 
descriptors (in model 1.1 and 1.2) once with ω and again with ω2, followed by replacing two of them 
with both ω and ω2. All such possible combinations are done for models 1.1 and 1.2.

Now the division of set in our study is done by distributing the compounds in three sets (A, B 
and C, provided in Table 2) among which two of them are combined to form the training sets and the 
remaining is the test set. Thus, there are three such cases, viz., Case 1 contains set A as test and sets 

Figure 2. Geometries of a few representative compounds from the dataset provided in Table 1 optimized at the HF/6-31G(d) level 
of theory
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B & C as training, Case 2 contains set B as test and A & C as training, and Case 3 contains the only 
remaining combination i.e., set C as test and A & B as training. The division of the dataset into 3 
subsets is, however, not done randomly. Rather, the pIC50 values are used as a guide in this regard. The 
division is done in such a way to keep the average value of pIC50 of the compounds almost similar in 
each set. The QSAR models are built by simple multiple linear regression (MLR) technique where the 
coefficient of regression (R2) and the standard deviation (SD) bring out their predictive ability (Table 
3). For relatively small datasets, models built on the entire undivided datasets are required to compare 
and assess the ones built after dividing the dataset into training and test sets (Masand et al., 2015).

Table 2. Division of 32 compounds taken for this study into three sets A, B and C. The numbers correspond to the compound 
numbers as presented in Table 1

Set A Set B Set C

Compound numbersa

29 30 24

28 6 27

17 25 15

8 23 26

21 22 7

9 20 5

3 4 2

14 32 31

1 19 10

11 18 12

16 13
aas represented inTable 1

Table 3. R2 and SD values obtained from MLR analysis on the undivided as well as three combinations of the divided dataset 
on 21 different QSAR models
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As we can see from the R2 and SD values provided in Table 3, the models with the descriptor 
combinations 1, 3, 4, 6, 7 and 10 show good correlation coefficients (R2). For the rest of the models, 
the R2 values lie below the threshold 0.6 which are statistically not relevant. Model 9 as reported 
in the study by Masand et al., was based on multiple random divisions of the dataset. Here in this 
carefully sorted dataset splitting based on pIC50 values does not produce good correlation coefficients. 
However, in certain cases, the R2 value does reach close to 0.6 e.g., for the combinations 13, 14, 16, 
and 17. The model containing the combination of GATS8c, RDF40p, and RDF55s as descriptors 
for the undivided dataset shows excellent R2, and it is noted that removing RDF55s from the models 
drastically worsens the predictive ability of the models highlighting its importance. The efficiency 
with which a QSAR model predicts is reflected in the correlation coefficient between experimental 
and calculated activity (here pIC50) of compounds that were not used for model development (i.e., 
the test set). The correlation between the calculated and experimental pIC50 values for model number 
1 for all cases are depicted in Figure 3.

Further, we have employed the sum of ranking differences (SRDs) method as a model-comparison 
tool. In this method, relevant data need to be arranged in a matrix form where the rows and columns 
correspond to objects and variables, respectively. In this study, the objects refer to R2 and SD values 
of the corresponding QSAR models (variables). The results of each model are ranked in increasing 
order, followed by taking a difference between the actual rank of the model results and that of the 

Figure 3. Plots of experimental versus calculated pIC50 along with their respective R2 and SD values for the test sets of model 1
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reference or standard results (ideal). The sum of the absolute values of these differences is known as 
the SRD values which are used to compare the models. In the case where the ideal/reference ranking 
is unknown, the maximum/minimum/average value can be considered as ideal/golden standard 
depending upon the type of the objects. For example, in the present study, the maximum value of 
R2 and minimum of SD are taken as reference/ideal in each row. This technique uses the concept of 
Occam’s razor to evaluate the ranking: lower the value of SRD, better is the model. The graph (Figure 
4) depicts the ranking of all the models used in this study, which also helps understand the extent of 
similarity between models from their relative position.

We have built 21 QSAR models on the undivided set and each of the three cases of divided 
sets as tabulated in Table 3. Thus our input matrix contains 21 columns of variables and 8 numbers 
of row (R2 and SD for cases 1, 2, 3 and the undivided set). The program is so written such that 
if the nR (number of rows) is less than or equal to 8, it uses theoretical discrete distribution for 
the CRRN (Comparison of Ranks by Random Numbers) figure. From the graph, it can be easily 
inferred that the model with descriptors GATS8c, RDF40p and RDF55s having SRD value zero 
is the one with the best predictive ability, followed by models 3, 4, 7 and 6, 10 with SRD values 
of 6.25 and 12.50% respectively.

CONCLUSION

The current theoretical investigation of the QSAR model study is performed considering a dataset 
consisting of 32 pyridyl benzamide derivatives toward HAT activity using all possible combinations of 

Figure 4. Evaluation of choice of descriptors using SRD with ties and subjected to the scaling between 0-100. Maximum R2 and 
minimum SD values are used as golden standards. Scaled SRD values are plotted on the x-axis and left y-axis, the right y-axis 
shows the relative frequencies (black curve).
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electronic factors (ω, ω2) as easily computable descriptors in addition to the other descriptors against 
T. brucei as reported by Masand et al. The inclusion of electronic factors along with the screened 
descriptors on the developed models has a pretty good influence on predicting the biological activity 
of compounds. It is, however, noticed that when RDF55s is replaced with ω or ω2 in model 1.1, the 
correlation coefficient (R2) value decreases by a significant amount suggesting its importance in 
describing the HAT activity. The robustness of the predicted models has been analyzed not only in 
terms of R2 (above the threshold value of 0.6) but also in the SRD-CRRN tool with ties to compare 
the efficacy of the models. CRRN integrated computational tool SRD helps us choose better models 
on the overall prediction of datasets consisting of dissimilar functionalities. The model constituted 
with descriptors GATS8c, RDF40p and RDF55s have the best predictive ability as reflected in the 
SRD graph (SRD value is zero) and models with number 3, 4, 7 and 6, 10 come next to it as the 
second and the third best predictive models having SRD values of 6.25 and 12.50% respectively.
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