
DOI: 10.4018/IJRSDA.2019070104

International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 3 • July-September 2019

﻿
Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

49

Analyzing Evolution Patterns of
Object-Oriented Metrics:
A Case Study on Android Software
Ruchika Malhotra, Delhi Technological University, New Delhi, India

Megha Khanna, Sri Guru Gobind Singh College of Commerce, University of Delhi, New Delhi, India

ABSTRACT

Software evolution is mandatory to keep it useful and functional. However, the quality of the evolving
software may degrade due to improper incorporation of changes. Quality can be monitored by analyzing
the trends of software metrics extracted from source code as these metrics represent the structural
characteristics of a software such as size, coupling, inheritance etc. An analysis of these metric trends
will give insight to software practitioners regarding effects of software evolution on its internal
structure. Thus, this study analyzes the trends of 14 object-oriented (OO) metrics in a widely used
mobile operating system software, Android. The study groups the OO metrics into four dimensions and
analyzes the trends of these metrics over five versions of Android software (4.0.2-4.3.1). The results
of the study indicate certain interesting patterns for the evaluated dimensions, which can be helpful
to software practitioners for outlining specific maintenance decisions to improve software quality.

Keywords
Android, Cohesion, Coupling, Inheritance, Metric Trends, Object-Oriented Metrics, Size, Software Evolution

1. INTRODUCTION

Software has revolutionized all aspects of our life. However, once operational, it needs constant
upgrade and change in order to maintain its usefulness. There could be various reasons for a software
to evolve which includes change in requirements, rectification of existing errors or technological
advancement in the software’s environment (Malhotra and Khanna, 2017). A prime concern of
software developers is effective software design so that changes in a software do not result in its poor
quality. Thus, we need to constantly monitor software quality, in order to ensure successful software
products with satisfied customers.

An efficient method to predict software quality is to use various metrics extracted from source
code. These metrics depict various characteristics of a class in an OO software such as its reusability,
its dependence on other classes, its cohesiveness, size, etc. The metrics are a representative of a
software’s internal structure. Though, previous literature studies (Elish and Al-Khiaty, 2013; Lu et
al., 2012; Malhotra and Khanna, 2017) have successfully established a number of software quality
prediction models with the help of these software metrics, there have been few studies which analyze
the trends of these metrics in an evolving software. There is an urgent need to analyze the trends
of these metrics as they will be helpful to software practitioners in: a) understanding the effects of
evolution on the software’s quality; b) assessing a software’s internal structure and taking proper
corrective actions to avoid its degradation; and c) planning and allocation of proper resources during

This article published as an Open Access Article distributed under the terms of the Creative Commons Attribution License (http://cre-
ativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium, provided the author of the

original work and original publication source are properly credited.

International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 3 • July-September 2019

50

maintenance. Simply, prediction of problematic parts does not lead to software quality improvement.
The essence of analyzing metrics values is to outline a systematic plan which strengthens a software’s
internal structure and prevents its degeneration.

This study assesses the trends depicted by 14 OO metrics in five application packages of a popular
mobile operating system (OS), Android. We have chosen Android OS for evaluation as the software is
open-source in nature and there has been a steep rise in its demand since its launch. The classes from
five application packages of Android software namely Gallery2, Email, Contacts, Calendar and MMS
were analyzed over five versions (4.0.2, 4.0.4, 4.1.2, 4.2.2 and 4.3.1). The 14 investigated OO metrics
were categorized in four dimensions according the OO characteristic they represent. These dimensions
include coupling, cohesion, size and inheritance. For each of the four dimensions, we examined the
trends of OO metrics. In order to examine the trends, we extracted the classes which were common
to each of the five investigated versions of the software. These common classes were then divided
into two categories i.e. changed classes (CC) and unchanged classes (UCC) on the basis of whether
a class had undergone change in any of the five investigated versions or not. The characteristics of
both categories of classes were examined to ascertain generalized trends. Furthermore, the actually
changed classes in each consecutive version were also observed on the basis of change in its metric
values along each dimension. The change in metric values were divided into three categories viz.
“Constant”, “Increasing,” and “Decreasing.”

The trends observed give insight into software evolution process and can be used by software
practitioners for improved software design. These can help in effective maintenance activities and
development of better-quality software products.

The current study is organized in nine sections. Section 2 states related literature studies. Section
3 and 4 discusses the various metrics investigated in this work and the hypothesis investigated by
the authors with respect to metric trends. Section 5 states the process of collecting metric data
from the source code. Section 6 discusses the trends of OO metrics and evaluates the acceptance
or rejection of the investigated hypothesis. A comparison of the obtained results with the literature
studies is presented in Section 7. The threats of the study are mentioned in Section 8 and the results
are summarized in Section 9.

2. RELATED WORK

Various studies in literature have developed successful models to predict software change (Elish and
Al-Khiaty, 2013; Lu et al., 2012; Malhotra and Khanna, 2017) and maintainability effort (Fioravanti
and Nesi, 2001; Thamburaj and Aloysius, 2017) by using OO metrics as predictors. Although, these
studies evaluate the quality of the software on the basis of OO metrics, they do not analyze the trends
of these metrics over various versions of a software.

Counsell et al. (2006) interpreted the utility and significance of three cohesion metrics. In order
to do so they validated the metrics obtained from three C++ software systems. Nasseri et al. (2008)
investigated seven open-source software systems to assess the patterns depicted by four inheritance
metrics. Their study concluded that software systems tend to increase in size by adding a greater
number of new classes i.e. “breadth-wise” rather than adding classes somewhere in the inheritance
hierarchy i.e. “depth-wise”. A study by Mubarak et al. (2010) evaluated the relationship between two
coupling metrics i.e. “fan-in” and “fan-out” using five open source software systems. They found a
correlation between these metrics in majority of the investigated systems.

A study by Lee et al. (2007) rigorously analyzed the evolution of an open source system,
JFreeChart. Their study confirmed gradual increase in the number of classes in majority of the
releases. However, this increase in number of classes was found correlated with coupling metrics, and
not cohesion metrics. A study by Alenezi and Zarour (2015) evaluated the “modularity” evolution of
two open-source software systems by analyzing OO metrics corresponding to coupling, cohesion and
complexity. They found that the modularity of the investigated systems did not improve with time.

International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 3 • July-September 2019

51

They further extended their study to include two other open-source projects and found similar results
with respect to modularity (Alenezi and Zarour, 2016). However, on the other hand, they found that
the defect density showed improvement in the investigated systems with time.

A study by Saini et al. (2018) investigated whether there is any difference between the quality of
cloned methods and non-cloned methods by validating 3562 open-source projects developed in Java
language. The quality was assessed by evaluating the values of 27 software metrics pertaining to the
categories of size, documentation and modularity. Their results show that when controlling for size,
there was no statistically significant difference between the quality of cloned and non-cloned methods
in majority of the observed metrics. Kaur (2015) analyzed the maintenance activity of a reusable
software component, which is open-source is nature. They specifically assessed two software metrics
namely, Depth of Inheritance Tree (DIT) and Class to Leaf Depth (CLD). They found that during
maintenance activity, it is likely that new classes are added at shallow levels, however, classes may be
removed from any level in the inheritance hierarchy including deep levels. Singh and Bhattacherjee
(2014) assessed four complexity metrics including Weighted Methods per Class (WMC) in 38 versions
of JFreeChart. They concluded that increase in complexity decreases the understandability of the
software. Alenezi and Almustafa (2015) assessed the complexity evolution for five open-source
projects by analyzing line of code (LOC) and cyclomatic complexity (CC) metrics over ten releases
of the software systems. They confirmed that software evolution has led to increase in complexity
of the observed systems.

As indicated above, there are very few studies which have analyzed metric trends. Thus, it is
important to conduct more such studies to validate previous findings and understand the structure of
an evolving software. Moreover, majority of these studies have focused on only one dimension i.e.
either inheritance or complexity or cohesion or any other. Therefore, an extensive study which covers
metrics belonging to multiple dimensions is crucial to understand their effect on each other and on
software evolution. The current study evaluates 14 metrics belonging to four different dimensions and
uses Android, a popular open-source software for validation. Furthermore, we compare our results
with previous studies to strengthen the obtained conclusions.

3. OO METRICS ANALYZED IN THE STUDY

The various metrics investigated in the study corresponding to the dimensions they address are stated
in Table 1. These OO metrics have been commonly used by various researchers in the software
engineering community. The definitions of these metrics are stated in Table 1 (https://www.spinellis.
gr/sw/ckjm/doc/metric.html).

4. HYPOTHESIS

For each of the four dimensions, the authors formulate a set of hypotheses, which are assessed by
analyzing the trends of the metrics mentioned in Table 1.

A. 	 Hypothesis for Size Metrics
◦◦ H1 (WMC): The number of methods in a class increases as the software system evolves.

(Null Hypothesis: The number of methods in a class decreases as the software system evolves.)
◦◦ H2 (NPM): The number of public methods in a class increases as the software system evolves.

(Null Hypothesis: The number of public methods in a class decreases as the software system
evolves.)

◦◦ H3 (AMC): In an evolving software system, there is an increase in average method size of
a class.

International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 3 • July-September 2019

52

(Null Hypothesis: In an evolving software system, the average method size of a class will
remain constant.)

◦◦ H4 (LOC): The LOC of a class increases as the software system evolves.
(Null Hypothesis: The LOC of a class decreases as the software system evolves.)

B. 	 Hypothesis for Cohesion Metrics

As the software evolves, classes should be designed in a manner to increase their cohesiveness.
A lower value of LCOM and LCOM3 indicates better cohesiveness. On the contrary, a higher value
of CAM represents a more cohesive class. A strong overlap among attribute types and method
parameters is an indication of strong cohesion. If CAM is low, methods may be coupled to each other
via attributes resulting in complex class design.

•	 H5 (LCOM): The LCOM values of a class decrease as the software system evolves.
(Null Hypothesis: The LCOM values of a class increase as the software system evolve.)

Table 1. OO metrics

Attribute Metric with Definition

Size

Weighted Methods per Class (WMC) is the sum of all method complexities. A complexity value of 1
is allocated to each method, thus it is a representative of number of a class’s methods (Chidamber and

Kemerer, 1994).

Number of Public Method (NPM) counts all public methods of a class.

Average Method Complexity (AMC) computes the average number of java binary codes as a
representative of method size.

Lines Of Code (LOC) counts the number of lines in java binary code of a class.

Cohesion

Lack of Cohesion in methods (LCOM) represents a count of pairs of methods of a specific class that
do not share any of the class’s members and are hence not related (Chidamber and Kemerer, 1994).

Cohesion among methods (CAM) of a class estimates the connectivity amongst class methods on the
basis of their parameter list. A summation of different parameter types used by all methods of a class is
divided by the product of total count of methods of a class and the total number of different parameter

types.

LCOM3 (Henderson-Sellers 1998) is computed as defined in Equation 1.﻿

(())) / ()1 1
1v
v m m
ji

v
λ − −

=∑ (1)

m: No. of methods, v: No. of attributes; λ(v): No. of methods that access variable v.

Coupling

Coupling between objects (CBO) represents the number of coupled classes to a specific class
(Chidamber and Kemerer, 1994). It is the sum of both afferent couplings (Ca), which represents the

count of classes using a specific class (fan-in) and efferent coupling (Ce), which represents the classes
which are used by a specific class (fan-out) (Martin, 2002). Afferent coupling can also be termed as

export coupling and Efferent coupling as import coupling.

Response For a Class (RFC) estimates the number of methods which respond if a specific class
receives a message (Chidamber and Kemerer, 1994).

Inheritance

Depth of Inheritance Tree (DIT) represents the level of the class in the inheritance tree (Chidamber and
Kemerer, 1994).

Number of Children (NOC) counts the number of immediate subclasses (Chidamber and Kemerer,
1994).

Measure of functional Abstraction (MFA) is computed as the ratio of inherited methods to the total
number of accessible methods of a class.

International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 3 • July-September 2019

53

•	 H6 (LCOM3): Variable usage in a class (lower LCOM3 values) improves as the software system
evolves.
(Null Hypothesis: The design of the classes deteriorates with respect to variable usage (higher

LCOM3 values) as the software system evolves.)
•	 H7 (CAM): Due to evolution in a software system, cohesion in terms of CAM values increase.

(Null Hypothesis: Due to evolution in a software system, cohesion in terms of CAM values
decreases.)
C. 	 Hypothesis for Coupling Metrics

As the software evolves, the classes should be designed in such a manner that their dependency
on each other i.e. their coupling decreases.

•	 H8 (Ca): A class depicts lower export coupling as the software system evolves.
(Null Hypothesis: A class depicts higher export coupling or no change in its export coupling

values as the software system evolves.)
•	 H9 (Ce): A class depicts lower import coupling as the software system evolves.

(Null Hypothesis: A class depicts higher import coupling or no change in its import coupling
values as the software system evolves.)

•	 H10 (CBO): A class becomes loosely coupled (lower import and export coupling) as the software
system evolves.
(Null Hypothesis: A class becomes tightly coupled (higher import and export coupling) or there

is no change in its coupling values as the software system evolves.
•	 H11 (RFC): A class has lower response set in terms of number of methods (decrease in RFC

values) as the software system evolves.
(Null Hypothesis: A class has higher response set in terms of number of methods (increase in

RFC values) as the software system evolves.
D. 	 Hypothesis for Inheritance Metrics

•	 H12 (DIT): The inheritance hierarchy (DIT value) would increase as the software system evolves.
(Null Hypothesis: The inheritance hierarchy (DIT value) would remain same as the software

system evolves.
•	 H13 (NOC): More subclasses will be extended from previously existing classes (increase in NOC

value), as the software system evolves.
(Null Hypothesis: No new subclasses will be extended from previously existing classes (constant

NOC value), as the software system evolves.
•	 H14 (MFA): A class uses higher number of inherited methods (increase in MFA value) as the

software system evolves.
(Null Hypothesis: The number of inherited methods used by a class remains constant (constant

MFA value) as the software system evolves.

5. EMPIRICAL DATA COLLECTION

The study uses Android OS for empirical validation as it is a popular open-source project which
encapsulates approximately 80% of the mobile OS market. Five versions (4.0.2, 4.0.4, 4.1.2, 4.2.2,
and 4.3.1) of Gallery2, email, contacts, calendar and MMS application packages were collected using
defect collection and reporting system (DCRS) tool (Malhotra et al., 2014). The tool computes OO
metrics with the aid of CKJM tool (http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/metric.html). The change
statistics i.e. number of lines inserted, modified or removed in classes were extracted by assessing
the change logs from GIT repository. We first computed change between two consecutive versions
of an application package. However, in order to analyze trends, we extracted the classes common to
all the five versions of an application package i.e. classes that were existent throughout from version

International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 3 • July-September 2019

54

4.0.2-4.3.1. The number of common classes in each application package and the percentage of changed
classes in consecutive versions of each package for the common classes is mentioned in Table 2. The
table also states the actual number of common classes (“Actual Changed Class”) which changed while
progressing from one version to another. For instance, 90 classes changed out of the common classes
while progressing from version 4.0.2-4.0.4. It should be noted that the actual changed classes are a
cumulative figure computed by analyzing all the five application packages.

6. METRIC TRENDS

The trends of metrics were analyzed for all the four dimensions for all the investigated application
packages of the study. This section states the trends corresponding to each metric dimension.
As discussed in Section 1, the common classes were categorized into CC and UCC. Also, those
classes which actually changed between two specific consecutive versions were identified as having
“Constant”, “Increasing” or “Decreasing” trends in consecutive versions. A class is categorized
as having a “Constant” trend if the value of a specific metric does not change for the class while
transmitting from version A to consecutive version B. A class trend is termed as “Increasing” if the
value of a specific metric increased for the class while transmitting from version A to consecutive
version B. Similarly, a “Decreasing” trend represents the decrease in metric value as compared to the
metric value observed in the version A than the metric value when it was transferred to consecutive
version B.

6.1 Trends of Size Metrics
Four metrics corresponding to class size were analyzed namely WMC, NPM, AMC and LOC.
Figure 1(a) depicts the mean values of these metrics over all the five versions (4.0.2-4.3.1) for CC
and UCC. According to the figure, it may be noted that the CC have higher mean values than UCC.
For instance, in Gallery2, the mean NPM values of CC (13) is greater than that of UCC (5). The
median values depicted in Figure 1(b) also show a similar trend. An exception to these trends was the
E-mail application package. There was not much difference in the mean and median metric values of
WMC, NPM and AMC for the package. Moreover, the difference in AMC values was only visible in
MMS application package. In all the other application packages, there was not much change in the
mean values of the AMC metric for CC and UCC. An analysis of LOC metric values in Figure 1(a)
indicates a difference of 10%-70% in the mean LOC values of CC and UCC.

We also observe the trend frequency of the four observed size metrics for all the actual changed
classes (refer Table 1) in consecutive versions. The number of classes depicting “constant” (Const.),
“increasing” (Inc.) and “decreasing” (Dec.) trends is depicted in Table 3. A prominent trend for the

Table 2. Dataset details

Application
package

No. of
common
classes

Percentage Change (%)

4.0.2-4.0.4 4.0.4-4.1.2 4.1.2-4.2.2 4.2.2- 4.3.1

Gallery2 184 15.2 35.3 34.8 27.7

Email 465 4.1 73.5 65.6 1.5

Contacts 156 5.1 42.3 10.9 8.3

Calendar 74 29.7 60.8 16.2 55.4

MMS 191 6.8 35.6 52.4 7.8

Actual Changed Classes 90 431 496 127

International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 3 • July-September 2019

55

LOC metric was increase in class size as 47% (4.0.2-4.0.4), 35% (4.0.4-4.1.2) and 41% (4.2.2-4.3.1) of
actual changed classes showed an “increasing” trend. Though, only 16% classes showed an “increasing”
trend in 4.1.2-4.2.2. This was because in 50 common classes, the added and deleted number of lines
were same, leading to no change in class size. The next popular trend for LOC metric was “constant”
followed by the “decreasing” trend. An increase in class size, may not always lead to increase in number
of class methods (WMC) and in number of public methods (NPM). Thus, most classes depicted a

Figure 1. Mean and median values of size metrics

International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 3 • July-September 2019

56

“constant” trend for WMC and NPM. However, apart from version 4.1.2-4.2.2, 23%-39% of classes
depicted an “increasing” trend for these metrics. It may be noted that 97%-99% of classes depicted
a constant trend for AMC metric. Thus, according to the above discussion, hypothesis H1, H2 and
H4 are accepted and H3 is rejected. The authors accept hypothesis H1 and H2, as “increasing” is the
most common trend after “constant” and every change might not result in change of NPM or WMC.

Furthermore, we also conducted Wilcoxon signed rank test at 𝛼 = 0.05 with the mean size metric
values i.e. WMC, NPM, AMC and LOC (of all the five application packages) of CC and UCC to
ascertain if CC exhibit higher values for size metrics. The p-value of the test was computed as 0.001
indicating significant differences between mean size metric values of CC and UCC. Wilcoxon test
results pointed out that larger size metrics are exhibited by CC classes.

6.1.1 Observations Corresponding to Size Metrics

•	 The mean class size in terms of LOC, NPM and WMC is much higher for CC as compared to UCC.
This indicates that classes tend to increase in size in terms of LOC, number of total methods and
number of public methods. However, the average method size of each class does not vary much
due to evolution. These trends indicate that additional functionality or correction of errors lead
to a greater number of lines of code and more number of methods of a class, specifically public
methods as there is high difference in mean values of WMC and NPM. However, in general the
size of methods of a class do not vary much.

•	 It was also observed that during evolution, the most common trend was increase in class size.
Thus, we observe that in very few cases, the class size decreases during evolution. This may
indicate that though new functionality is added in terms of methods or lines of code, it is rare
that the evolution leads to decrease in class size.

•	 Since, in majority of cases the AMC metric exhibited constant trend for changed classes, it may
be deciphered that the added lines of code generally lead to creation of new methods. It is rare
that the size of an already existing class method would increase.

6.2 Trends of Cohesion Metrics
In order to analyze the cohesive characteristics of the classes, the mean (Figure 2), median (Table 4),
minimum and maximum values of three metrics namely LCOM, LCOM3 and CAM were examined
over all the five versions of the application packages. A lower value for LCOM and LCOM3 is desired
but for CAM a higher value is desired. It was observed from Figure 2(a) that the UCC exhibited
better cohesiveness as compared to the CC using LCOM values. As shown in the figure, for calendar
application package, the mean value of LCOM for UCC was 24. However, the mean LCOM value
for CC was found to be 296. Similarly, as depicted in Table 5, there was a large difference in the
median LCOM values of UCC (10) for the Calendar application package as compared to the LCOM

Table 3. Version specific size metric trends

Size
Metrics

4.0.2-4.0.4 4.0.4-4.1.2 4.1.2-4.2.2 4.2.2-4.3.1

Const. Inc. Dec. Const. Inc. Dec. Const. Inc. Dec. Const. Inc. Dec.

WMC 51 35 4 266 112 53 417 66 13 70 42 15

NPM 59 28 3 288 100 43 426 54 16 84 33 10

AMC 89 0 1 419 5 7 487 2 7 125 1 1

LOC 40 42 8 217 152 62 399 80 17 54 52 21

International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 3 • July-September 2019

57

values of CC (66). However, the LCOM metric does not have a fixed scale, as the maximum value
that can be attained by the metric is dependent on the number of pairs of methods. Thus, in order to
actually conclude that the LCOM value is low and a class is cohesive, we have to take into account the
number of method pairs. For instance, an LCOM value of 2 when the number of method pairs is 4 is
different from an LCOM value is 2 and the number of method pairs is 50. The class is more cohesive
in the latter case. Thus, we analyse the LCOM3 and CAM metrics for a better evaluation of cohesion
of classes as the LCOM metric has been criticized in literature (Counsell et al. 2006; Gupta 1997).

The LCOM3 metric computes the cohesiveness of a class by taking into account the effective
use of various class variables. According to LCOM3 values depicted in Figure 2(b), the CC obtained
a lower mean value as compared to the UCC. For instance, the CC obtained a mean LCOM3 value
of 1.25, while the UCC obtained a mean LCOM3 metric of 1.67 for MMS application package. A
similar trend observed by analysing the median values (Table 4). This indicates lower cohesiveness
of the UCC when evaluated using the LCOM3 metric. On the contrary, the definition of CAM metric
indicates computation of a class’s cohesiveness by evaluating the types of method parameters. A CAM
value nearer to 1 is preferred for a well-designed cohesive class. According to the values depicted
in Figure 2(b), the mean values of CAM metric is higher for UCC as compared to the CC. For the
Email application package, the CC exhibit a mean CAM value of 0.4 as compared to the mean CAM
value of 0.6 for UCC group. A similar trend can be observed from the median values of CAM metric
(Table 4). This indicates higher cohesiveness of the UCC, when evaluated by using the CAM metric.
These observations lead to a very interesting pattern. The CC are more cohesive than UCC category,
when we compute cohesion according to effective use of various class attributes. However, the CC
classes exhibit a lower cohesion when the types of parameters used in the method is evaluated. Thus,
the CC were better designed with respect to variable usage but poorly designed with respect to types
of parameters when compared with the UCC.

We also observed the minimum values obtained by the LCOM3 metric which were all in the
range of 1.01-1.07 in all the application packages of the Android software. A value of 1.01 or more
indicates extremely deficient cohesive nature of a class. Such classes should be redesigned as it
indicates ineffective variable usage. Also, classes were observed with an LCOM3 value of 2. Again,
such poorly designed classes should be restructured to improve their cohesiveness.

The version specific trends of cohesion metrics are depicted in Table 5. It may be noted that a
change in class may not always lead to change in cohesion metrics. Thus, “constant” trend is observed
in a large number of classes. However, we analyze the “increasing” and “decreasing” trends to evaluate
the hypothesis and observe how cohesion metrics change with evolution. The prominent trends in
cohesion metrics were increase in LCOM values (13%-39%), decrease in LCOM3 values (12%-38%)

Figure 2. Mean values of cohesion metrics

International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 3 • July-September 2019

58

and decrease in CAM values (11%-36%) of classes in various consecutive versions of the investigated
application packages. Thus, hypothesis H6 is accepted, while H5 and H7 are rejected.

6.2.1 Observations Corresponding to Cohesion Metrics

•	 The investigation of mean and median values of the three-cohesion metrics indicate poor
cohesiveness of the CC when cohesion was evaluated using the LCOM metric. However, after
analyzing LCOM3 metric and the CAM metric values, we observe better use of various variables
in CC (low LCOM3 values) but poor use of parameter types (low CAM values) when compared
to UCC.

•	 The analysis of median, minimum and maximum values indicate an LCOM3 value of greater
than one, which represents poor class design with respect to cohesiveness. Certain classes also
exhibited an extremely poor design with an LCOM3 value of 2 indicating compulsive restructuring
of the class due to negligence of its cohesiveness.

•	 Majority of classes which evolved during the investigated versions of the Android software did
not exhibit any change in the values of their cohesion metrics. However, the other trends indicate
changes made to a class during evolution led to decrease in LCOM3 and CAM metric values and
increase in LCOM values in the Android software. This means the classes exhibit better use of
different variables but poor use of parameter types.

6.3 Trends of Coupling Metrics
The coupling dimension was categorized by four metrics viz. CBO, Ca, Ce and RFC. Figure 3
represents the mean values of coupling metrics over all the investigated versions (4.0.2-4.3.1) of the
Android software. We also analyzed the median values (Table 6), the minimum and the maximum
values of the coupling metrics obtained by classes over all the five versions for both CC and UCC.
After analyzing Figure 3, it was observed that the mean values of coupling metrics are higher for CC
as compared to UCC in most of the cases. For instance, the mean CBO values of CC in Gallery2,
Email, Contacts and Calendar packages was double the mean CBO values of UCC in these application

Table 4. Median values of cohesion metrics

Application
Package LCOM (CC)

LCOM
(UCC)

LCOM3
(CC)

LCOM3
(UCC)

CAM
(CC) CAM (UCC)

Gallery2 78 15 1.1 1.3333 0.2963 0.4643

Email 21 15 1.2 1.3333 0.4 0.5

Contacts 45 10 1.1111 2 0.2716 0.45

Calendar 66 10 1.0909 1.3333 0.2407 0.48

MMS 28 6 1.1429 2 0.325 0.6667

Table 5. Version specific cohesion metric trends

Cohesion
Metrics

4.0.2-4.0.4 4.0.4-4.1.2 4.1.2-4.2.2 4.2.2-4.3.1

Const. Inc. Dec. Const. Inc. Dec. Const. Inc. Dec. Const. Inc. Dec.

LCOM 51 35 4 266 112 53 417 66 13 70 42 15

LCOM3 52 4 34 272 53 106 422 13 61 72 14 41

CAM 49 12 29 246 74 111 415 27 54 65 28 34

International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 3 • July-September 2019

59

packages. Similarly, the median values of CC were also greater than UCC in all the application
packages. A similar trend was shown by the mean values of Ca, Ce and RFC coupling metrics. This
indicates that a class with higher coupling values is prone to change in future versions. However, it may
be noted that median Ca values were same i.e. 0 for both CC and UCC classes in all the application
packages. This trend indicates that there were very few classes with a Ca value, indicating a low
number of classes exhibiting export coupling in the application packages.

The CBO metric depicts a cumulative of Ca and Ce metrics in majority of the cases. In order to
analyse the number of classes which exhibited export or import coupling, we observed the number of
classes for each application package which attained a non-zero value for Ca or Ce metrics in the CC
category. We found a larger number of classes exhibiting a non-zero Ce value than those exhibiting a
non-zero Ca value. This indicates that while evolution, there were more number of classes exhibiting
import coupling as compared to export coupling.

We also assessed classes which exhibited higher Ce values to assess whether they also exhibit
high Ca values and vice versa. We also found that in majority of the cases, classes with highest Ca

Figure 3. Mean values of coupling metrics

Table 6. Median values of coupling metrics

Application
Package CBO (CC) CBO (UCC) Ca (CC) Ca (UCC) Ce (CC) Ce (UCC) RFC (CC) RFC (UCC)

Gallery2 3 2 0 0 1 1 14 7

Email 1 0 0 0 1 0 8 7

Contacts 1 0 0 0 1 0 11 6

Calendar 1 0 0 0 1 0 13 6

MMS 2 1 0 0 1 0 9 5

International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 3 • July-September 2019

60

values have quite low Ce values and vice versa. Only in very few cases, classes with both high Ca
and Ce values were found.

Table 7 states the trends of coupling metrics. According to the table, the majority (76-98%) of
Ca, Ce and CBO metrics exhibited a “constant” trend. However, for the RFC metric apart from the
“constant” trend, the “increasing” trend was quite popular (26-39%) in all the version specific trends
except for versions 4.1.2-4.2.2. It may be noted that change in class may not always lead to change
in RFC values. According to the discussed trends, hypothesis H8, H9, H10, and H11 are rejected.

A Wilcoxon signed rank test was conducted at 𝛼 = 0.05 to test whether all mean coupling metric
values i.e. CBO Ca, Ce and RFC (of all the five application packages) of CC and UCC are different.
The computed p-value of the test was less than 0.001 signifying significant differences between mean
coupling metric values of CC and UCC. The Wilcoxon test results symbolized higher coupling metric
values for CC indicating evolution leads to tightly coupled classes.

6.3.1 Observations Corresponding to Coupling Metrics

•	 The analysis of mean and median of coupling metrics indicates that a class with higher coupling
values is prone to change in future versions as CC exhibited higher coupling metric values.

•	 As number of classes with a non-zero value for Ce metric are higher than a non-zero value for Ca
metric, it indicates that a higher number of classes have a tendency of being dependent on other
classes (import coupling). However, this could be an issue as it leads to decreased maintainability,
understandability and reusability.

•	 In general, the classes exhibited either high import coupling (a high Ce value) or a high export
coupling characteristic (a high Ca value). It was rare to find a class with high values of both Ca
and Ce. Such classes can be termed as critical classes as changes in them should be carefully
administered as multiple classes can lead to a change in such classes. Moreover, a change in
such a critical class would be propagated to a large number of other classes due to high outgoing
dependency of such a class.

•	 Majority of classes did not exhibit any change in the values of their coupling metrics during
evolution. However, if there was a change in a class, there are higher chances of increasing the
dependency of classes during evolution rather than decreasing their dependencies on other classes.

6.4 Trends of Inheritance Metrics
The inheritance attribute of classes was characterized by three metrics DIT, NOC and MFA. Figure
4 depicts the percentage of classes which used any of the inheritance attribute (i.e. have a non-zero
value) in any of the five investigated versions. According to the figure, all the classes used the DIT
attribute in corresponding application packages as all classes are descendant of the object class (Java

Table 7. Version specific coupling metric trends

Coupling
Metrics

4.0.2-4.0.4 4.0.4-4.1.2 4.1.2-4.2.2 4.2.2-4.3.1

Const. Inc. Dec. Const. Inc. Dec. Const. Inc. Dec. Const. Inc. Dec.

Ca 88 2 0 411 16 4 479 11 6 113 5 9

Ce 82 8 0 379 35 17 471 20 5 104 11 12

CBO 80 10 0 371 42 18 462 27 7 96 15 16

RFC 51 35 4 266 112 53 417 66 13 70 42 15

International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 3 • July-September 2019

61

language). Therefore, we analysed percentage of classes with DIT value greater than 1, to understand
its actual usage. Figure 4 shows that 5%-16% of classes exhibited a DIT value of greater than 1. The
NOC and MFA metrics were rarely used by classes (NOC:4%-13% & MFA: 0%-10%).

We also observed the minimum and maximum values obtained by the DIT, NOC and MFA metrics
in all the datasets. It was found that the maximum values of inheritance metrics are higher for CC as
compared to UCC. The mean and median values of inheritance metrics did not give much information
as in majority of the cases the mean and median values of NOC was 0 and that of DIT was 1.

We analysed the number of classes which depicted a non-zero NOC value and a DIT value >1
for each application package for CC and UCC. The CC exhibited greater NOC and DIT values than
UCC. Also, most of the classes were found having either one or two children, there were very few
cases with classes having three or more children. Similarly, though there were certain number of
classes having DIT value of 1 or 2, there were very few classes with DIT value of three or more. Only
1% of CC classes exhibited a non-zero value for MFA metrics.

According to the trends observed (Table 8) by actual changed classes in consecutive versions,
majority (94-100%) of them did not exhibit any change in inheritance metric values and were
“constant”. Only very few classes (0-0.04%) depicted an “increasing” or “decreasing”. Thus, we
reject hypothesis H12, H13 and H14.

6.4.1 Observation Corresponding to Inheritance Metrics

•	 As the investigated application packages were developed in Java language, all the classes exhibit
a DIT value of greater than one as all classes are derived from the Java object class. However, the
number of classes exhibiting a DIT value of greater than one, a non-zero NOC value and a non-
zero MFA value was very low. This indicates that inheritance is rarely used in the investigated
datasets.

•	 An observation of DIT metric values indicates that there were few classes with DIT values of
2 and 3 and hardly any classes with DIT value of 4 and 5. This indicates that inheritance levels

Figure 4. Classes exhibiting inheritance attributes

International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 3 • July-September 2019

62

don’t go too deep in the investigated datasets. Similarly, an observation of NOC values indicate
few classes with three or more children. Thus, classes in the investigated datasets rarely grow to
large breadths. Generally, they only have one or two children.

•	 An analysis of maximum and minimum values of inheritance metrics indicate higher values
exhibited by CC. This implies classes exhibiting higher inheritance characteristics are more
prone to changes during evolution of the software.

•	 The trends observed by inheritance metrics indicate that 94%-100% of classes exhibited no
change in their DIT and NOC values. Thus, it is rare that a change due to evolution might affect
inheritance attribute of a class.

7. COMPARISON OF RESULTS WITH LITERATURE STUDIES

This section compares the results obtained in the study with the results obtained in existing literature
studies. Table 9 reports the observation obtained from a specific literature study with respect to a
software dimension and our corresponding results.

Table 8. Version specific inheritance metric trends

Inheritance
Metrics

4.0.2-4.0.4 4.0.4-4.1.2 4.1.2-4.2.2 4.2.2-4.3.1

Const. Inc. Dec. Const. Inc. Dec. Const. Inc. Dec. Const. Inc. Dec.

DIT 90 0 0 430 0 1 495 0 1 124 3 0

NOC 90 0 0 423 6 2 493 3 0 120 2 5

MFA 90 0 0 430 0 1 496 0 0 126 1 0

Table 9. Comparison with literature studies

Literature Study Dimension Observation from Literature Study Our Results

Lee et al. (2007) Size Number of classes i.e. the overall size of the
software increases gradually with each release.

We only evaluate the trends of common classes,
the common CC tend to increase in size over
various releases of the software, rather than

decrease.

Singh and
Bhattacherjee (2014)

Size Increase in WMC values as the software
evolves.

Classes tend to increase in size in terms of total
methods (WMC).

Alenezi and
Almustafa (2015)

Size Increase in total LOC values of a software as
it evolves.

Only trends in common classes were assessed.
CC tend to increase in size in terms of LOC.

Alenezi and Zarour
(2015, 2016)

Cohesion Increase in LCOM, LCOM3 and CAM metric
values during evolution.

Higher number of classes with decreasing
LCOM3 and CAM values. The increasing trend
was popular for only the LCOM metric values.

Alenezi and Zarour
(2015, 2016)

Cohesion Modularity measures (also with respect to
cohesion) are not improving with time.

Certain classes were found with alarming
LCOM3 values.

Mubarak et al. (2010) Coupling Presence of “key” classes which exhibit high
fan-in (Ca) and fan-out (Ce).

Confirm the existence of “key” classes. We term
it as “critical” classes. Such classes are very few
in number and need to be administered carefully

during evolution.

Nasseri et al. (2008)
and Kaur (2015)

Inheritance Higher probability that new classes in an
evolving software are added at levels 1 or 2 in

the inheritance hierarchy.

Most of the classes exhibited either a DIT value
of 1 or 2 indicating shallow inheritance levels.

International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 3 • July-September 2019

63

8. THREATS TO VALIDITY

In order to ensure the construct validity, we need to be certain that the selected metrics are accurate
representations of their corresponding concepts (Zhou et al., 2009). Previous research studies (Briand
et al., 1998; Briand et al., 1999) have investigated the accuracy of some of the metrics used in this
study, ensuring construct validity. It may be the case that apart from the effect of the evolution on
software structure, the metric trends may be influenced by developer experience or software domain.
We have not accounted for the confounding effect of these factors. This may be a possible threat to
internal validity. The study also uses Wilcoxon signed rank test, a non-parametric test to statistically
validate the trends of size and coupling metrics. This reinforces the conclusion validity.

The results of the study are extracted by validating the various versions of Android software,
which is a popular open-source operating system. Although, the results may hold valid for a variety
of open-source systems, especially the ones belonging to the operating system domain, there is a
need to further validate these metric trends on open-source systems belonging to other domains. This
is essential to further enhance the external validity of the obtained results. As the study investigates
open-source systems, it aids its replicability.

9. CONCLUSION

This study analyzed the evolution patterns of 14 OO metrics on five application packages of the
Android software. The OO metrics were categorized into four dimensions corresponding to size,
coupling, cohesion and inheritance. The metrics for common classes in five versions (4.0.2, 4.0.4,
4.1.2, 4.2.2, and 4.3.1) of each application package were evaluated and classes in each application
package were categorized as Changed Classes (CC) or Unchanged Classes (UCC). The trends of
actual changed classes between consecutive versions were categorized as “Constant”, “Increasing”
or “Decreasing”. The observations can be summarized as follows:

•	 The CC exhibited higher chances of increase in class size, higher coupling values, better variable
usage, poor use of parameter types and higher inheritance characteristics as compared to UCC.

•	 The most common trend of actual changed classes between consecutive versions was increase
in size metrics (WMC, NPM and LOC), RFC coupling metric and LCOM cohesion metric, no
change in inheritance and other coupling metrics (Ca, Ce, CBO), and decrease in LCOM3 and
CAM cohesion metrics.

•	 It was observed that increase in class size was generally attributed to addition of new methods in
a class. There is a higher probability that an import coupling would lead to increase in coupling
characteristic of a class rather than an export coupling.

•	 Poor design of classes with respect to cohesion is attributed to inadequate use of parameter types.
However, CC exhibited effective usage of class variables.

•	 It was observed that very few classes exhibited the inheritance attribute and classes which used
inheritance, did not exhibit deep inheritance levels or large number of subclasses.

Thus, a class with lower coupling values and higher cohesion values is better so that changes
during software evolution do not lead to excessive deterioration of the class structure. Software
practitioners should also ensure that the size and complexity of a class is manageable so that changes
due to software evolution can be easily incorporated. In future, we would like to explore how change
in metric values affect various software attributes such as maintainability, understandability or fault
density. Furthermore, the observed trends may be evaluated on other open-source software to enhance
the generalizability of the obtained results.

International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 3 • July-September 2019

64

REFERENCES

Alenezi, M., & Almustafa, K. (2015). Empirical analysis of the complexity evolution in open-source software
systems. International Journal of Hybrid Information Technology, 8(2), 257–266. doi:10.14257/ijhit.2015.8.2.24

Alenezi, M., & Zarour, M. (2015). Modularity measurement and evolution in object-oriented open-
source projects. In Proceedings of the International Conference on Engineering & MIS (p. 16). ACM.
doi:10.1145/2832987.2833013

Alenezi, M., & Zarour, M. (2016). Does software structures quality improve over software evolution? Evidences
from open-source projects. International Journal of Computer Science and Information Security, 14, 61–75.

Briand, L. C., Daly, J. W., & Wüst, J. (1998). A unified framework for cohesion measurement in object-oriented
systems. Empirical Software Engineering, 3(1), 65–117. doi:10.1023/A:1009783721306

Briand, L. C., Daly, J. W., & Wust, J. K. (1999). A unified framework for coupling measurement in object-oriented
systems. IEEE Transactions on Software Engineering, 25(1), 91–121. doi:10.1109/32.748920

Chidamber, S. R., & Kemerer, C. F. (1994). A metrics suite for object oriented design. IEEE Transactions on
Software Engineering, 20(6), 476–493. doi:10.1109/32.295895

Counsell, S., Swift, S., & Crampton, J. (2006). The interpretation and utility of three cohesion metrics for
object-oriented design. ACM Transactions on Software Engineering and Methodology, 15(2), 123–149.
doi:10.1145/1131421.1131422

Elish, M. O., & Al‐Rahman Al‐Khiaty, M. (2013). A suite of metrics for quantifying historical changes to
predict future change‐prone classes in object‐oriented software. Journal of Software: Evolution and Process,
25(5), 407–437.

Fioravanti, F., & Nesi, P. (2001). Estimation and prediction metrics for adaptive maintenance effort of object-
oriented systems. IEEE Transactions on Software Engineering, 27(12), 1062–1084. doi:10.1109/32.988708

Gupta, B. S. (1997). A critique of cohesion measures in the object-oriented paradigm [Master’s thesis]. Michigan
Technological University.

Henderson-Sellers, B. (1995). Object-oriented metrics: measures of complexity. Prentice-Hall, Inc.

Kaur, K. (2015, September). Class inheritance structures and software maintenance activities-an empirical
analysis. In Proceedings of the 2015 1st International Conference on Next Generation Computing Technologies
(NGCT) (pp. 681-685). IEEE. doi:10.1109/NGCT.2015.7375208

Lee, Y., Yang, J., & Chang, K. H. (2007). Metrics and evolution in open source software. In Proceedings
of the Seventh International Conference on Quality Software QSIC’07 (pp. 191-197). IEEE. doi:10.1109/
QSIC.2007.4385495

Lu, H., Zhou, Y., Xu, B., Leung, H., & Chen, L. (2012). The ability of object-oriented metrics to predict change-
proneness: A meta-analysis. Empirical Software Engineering, 17(3), 200–242. doi:10.1007/s10664-011-9170-z

Malhotra, R., & Khanna, M. (2017). An exploratory study for software change prediction in object-oriented
systems using hybridized techniques. Automated Software Engineering, 24(3), 673–717. doi:10.1007/s10515-
016-0203-0

Malhotra, R., Pritam, N., Nagpal, K., & Upmanyu, P. (2014). Defect collection and reporting system for git
based open source software. In Proceedings of the International Conference on Data Mining and Intelligent
Computing (ICDMIC) (pp. 1-7). IEEE. doi:10.1109/ICDMIC.2014.6954234

Martin, R. C. (2002). Agile software development: principles, patterns, and practices. Prentice Hall.

Metrics Tool. (n.d.). Retrieved from http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/metric.html

Mubarak, A., Counsell, S., & Hierons, R. M. (2010). An evolutionary study of fan-in and fan-out metrics in
OSS. In Proceedings of the Fourth International Conference on Research Challenges in Information Science
(RCIS) (pp. 473-482). IEEE. doi:10.1109/RCIS.2010.5507329

http://dx.doi.org/10.14257/ijhit.2015.8.2.24
http://dx.doi.org/10.1145/2832987.2833013
http://dx.doi.org/10.1023/A:1009783721306
http://dx.doi.org/10.1109/32.748920
http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.1145/1131421.1131422
http://dx.doi.org/10.1109/32.988708
http://dx.doi.org/10.1109/NGCT.2015.7375208
http://dx.doi.org/10.1109/QSIC.2007.4385495
http://dx.doi.org/10.1109/QSIC.2007.4385495
http://dx.doi.org/10.1007/s10664-011-9170-z
http://dx.doi.org/10.1007/s10515-016-0203-0
http://dx.doi.org/10.1007/s10515-016-0203-0
http://dx.doi.org/10.1109/ICDMIC.2014.6954234
http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/metric.html
http://dx.doi.org/10.1109/RCIS.2010.5507329

International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 3 • July-September 2019

65

Nasseri, E., Counsell, S., & Shepperd, M. (2008). An empirical study of evolution of inheritance in Java OSS.
In Proceedings of the 19th Australian Conference on Software Engineering ASWEC (pp. 269-278). IEEE.
doi:10.1109/ASWEC.2008.4483215

Saini, V., Sajnani, H., & Lopes, C. (2018). Cloned and non-cloned Java methods: A comparative study. Empirical
Software Engineering, 23(4), 2232–2278. doi:10.1007/s10664-017-9572-7

Singh, V., & Bhattacherjee, V. (2014). A new measure of code complexity during software evolution: A case study.
International Journal of Multimedia & Ubiquitous Engineering, 9(7), 257–266. doi:10.14257/ijmue.2014.9.7.34

Thamburaj, T. F., & Aloysius, A. (2017). Models for Maintenance Effort Prediction with Object-Oriented
Cognitive Complexity Metrics. In Proceedings of the World Congress on Computing and Communication
Technologies (WCCCT) (pp. 191-194). IEEE. doi:10.1109/WCCCT.2016.54

Zhou, Y., Leung, H., & Xu, B. (2009). Examining the potentially confounding effect of class size on the
associations between object-oriented metrics and change-proneness. IEEE Transactions on Software Engineering,
35(5), 607–623. doi:10.1109/TSE.2009.32

http://dx.doi.org/10.1109/ASWEC.2008.4483215
http://dx.doi.org/10.1007/s10664-017-9572-7
http://dx.doi.org/10.14257/ijmue.2014.9.7.34
http://dx.doi.org/10.1109/WCCCT.2016.54
http://dx.doi.org/10.1109/TSE.2009.32

International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 3 • July-September 2019

66

Ruchika Malhotra is an Associate Professor in the discipline of Software Engineering, Department of Computer
Science & Engineering, Delhi Technological University (formerly Delhi College of Engineering), Delhi, India. She is
an Associate Dean in Industrial Research and Development, Delhi Technological University. She has been awarded
prestigious UGC Raman Postdoctoral Fellowship by the Indian government for pursuing postdoctoral research
from the Department of Computer and Information Science, Indiana University-Purdue University Indianapolis
(2014-15), Indianapolis, Indiana, USA. She received her master’s and doctorate degree in software engineering
from the University School of Information Technology, Guru Gobind Singh Indraprastha University, Delhi, India. She
was an Assistant Professor at the University School of Information Technology, Guru Gobind Singh Indraprastha
University, Delhi, India. She has received IBM Faculty Award 2013. She is the recipient of the Commendable
Research Award by the Delhi Technological University for her research in the year 2017 and 2018. She is the
author of book titled “Empirical Research in Software Engineering” published by CRC press and co-author of a
book on Object Oriented Software Engineering published by PHI Learning. Her research interests are in software
testing, improving software quality, statistical and adaptive prediction models, software metrics and the definition
and validation of software metrics. Her h-index is 27 as reported by Google Scholar. She has published more than
165 research papers in international journals and conferences.

Megha Khanna is currently working as an Assistant Professor in Sri Guru Gobind Singh College of Commerce,
University of Delhi. She completed her doctoral degree from Delhi Technological University in 2019 and her
master’s degree in software engineering in 2010 from the University School of Information Technology, Guru
Gobind Singh Indraprastha University, India. She received her graduation degree in Computer Science (Hons.)
in 2007 from Acharya Narendra Dev College, University of Delhi. She is the recipient of Commendable Research
Award by Delhi Technological University for her research in the year 2017 and 2018. She was also awarded the
“Research Incentive” for her research in the year 2018 by the Governing body of Sri Guru Gobind Singh College
of Commerce. Her research interests are in software quality improvement, applications of machine learning
techniques in change prediction, and the definition and validation of software metrics. She has various publications
in international conferences and journals.

