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ABSTRACT

The ability to predict the patients with long-term length of stay (LOS) can aid a hospital’s admission 
management, maintain effective resource utilization and provide a high quality of inpatient care. 
Hospital discharge data from the Rhode Island Department of Health from the time period between 
2010 to 2013 reveals that inpatients with long-term stays, i.e. two weeks or more, costs about six 
times more than those with short stays while only accounting for 4.7% of the inpatients. With the 
imbalance in the distribution of long-stay patients and short-stay patients, predicting long-term LOS 
patients becomes an imbalanced classification problem. Sampling methods—balancing the data before 
fitting it to a traditional classification model—offer a simple approach to the problem. In this work, 
the authors propose a new resampling method called RUBIES which provides superior predictive 
ability when compared to other commonly used sampling techniques.
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INTRODUCTION

Predicting a patient’s length of stay (LOS) in a hospital setting has been widely researched (Panchami 
& Radhika, 2008; Walczak, Pofahl & Scorpio, 1998; Liu et al., 2010, Azari, Janeja, & Mohseni, 2012; 
Morton et al., 2014; Pendharkar & Khurana, 2014; Gentimis et al., 2017; Turgeman, May & Sciulli, 
2017; Rojas et al., 2018; Yakovlev et al., 2018). Accurately predicting an individual’s LOS can have a 
huge impact on a healthcare provider’s ability to care for that individual by allowing them to properly 
prepare and manage resources. A hospital’s productivity requires a delicate balance of maintaining 
enough staffing and resources without being overly equipped or wasteful. Key to maintaining this 
balance is the ability to accurately anticipate a patient’s care requirements, a core aspect of which is 
each individual’s LOS (Gustafson, 1968).

Of particular interest, though more difficult to predict, are long-term LOS. Several studies have 
shown that long-term LOS are associated with poor patient satisfaction (Farley et al., 2009, Kainzinger 
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et al., 2009; Yankovic & Green, 2011; Eggers et al., 2013). The billing structure within hospitals also 
results in little economic gain from long-term LOS—the majority of overhead and indirect costs are 
incurred within the first few days of stay. Consequently, long-term LOS often results in losses for 
hospitals in the form of so-called “opportunity costs” when new patients are unable to be admitted 
due to capacity constraints (Taheri, Butz & Greenfield, 2000). Hence, accurately predicting long-term 
LOS would allow hospitals to better anticipate bed availability and the associated costs.

In this study, the authors focus on the prediction of these long-term LOS at the time of admission 
in Rhode Island hospitals through discharge data obtained from the Rhode Island Department of 
Health over the time period of 2010 to 2013. Long-term LOS generally makes up a small percentage 
of patients, and as a result can be viewed as rare events. As such, their accurate prediction requires 
the use of resampling methods when training a model to account for imbalanced data. Working with 
data containing imbalanced events is an important area of research, with applications and challenges 
that extend beyond LOS datasets (Krawczyk, 2016; He & Garcia, 2009; Fernández, García & Herrera, 
2011; Sun, Wong & Kamel, 2009; Visa & Ralescu, 2005). This work proposes a new resampling 
method called Randomly Under-sampled Bag-boosting for Imbalanced-Event Samples (RUBIES) that 
combines under-sampling, bagging and boosting. This study compares this algorithm’s performance 
to four widely used methods: over-sampling, under-sampling, Random Over-Sampling Examples 
(ROSE), and Synthetic Minority Over-Sampling Technique (SMOTE). Specifically, the comparison 
will be made when they are combined with three commonly used classification models: random 
forests, decision trees, and Adaboost.

BACKGROUND

Critical to the prediction of long-term LOS is the handling of the imbalanced data concern. For this 
reason, the majority of this section is devoted to a discussion of resampling techniques. The tree-
based classification models that were used to compare the authors’ proposed resampling method’s 
performance are also discussed.

Resampling Techniques
Approaches in dealing with imbalanced data can be grouped into two categories: algorithmic-level 
approaches and data-level approaches. In algorithmic-level approaches, the imbalanced data is kept 
unchanged and classical classification models that work with balanced data are modified to work with 
imbalanced data. In data-level approaches, the aim is to balance the data before applying conventional 
classification models.

Many algorithmic-level approaches have been proposed. In the case of support vector machines 
(SVM), Veropoulos et al. (1999) modified traditional SVM by implementing two cost parameters 
within the objective functions. Imam et al. (2006) modified SVM further by reducing the bias 
toward the majority class by adjusting the decision boundary. Wu et al. (2003) proposed another 
modification to SVM by extending the boundary region of the classes through the use of conformally 
transformed kernels. Other modifications and extensions of SVM can be found in the works of 
Batuwita et al. (2013), Cortes and Vapnik (1995), and Boser et al. (1992). Researchers have explored 
the modification of other classification methods as well. Maalouf et al. (2011) suggested the use of 
logistic regression through the implementation of the truncated Newton method in prior correction 
logistic regression with the addition of a regularization term. The use of deep neural networks has 
been explored by Wang et al. (2017), who proposed a new loss function for use while training the 
network. The performance of convolution neural networks has also been explored for imbalanced 
data in the work of Buda et al. (2017).

In general, data-level approaches can be grouped into two classes: under-sampling (in which 
the majority class is under-sampled, reducing its presence in the training dataset) and over-sampling 
(in which the minority class is over-sampled, increasing its presence). The simplest under-sampling 
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method is random under-sampling (RUS), in which the majority observations are randomly 
selected from the majority class to balance with the minority class. While maybe suffering from the 
disadvantage of removing important observations in the majority, the clear advantage of RUS is its 
fast running time as it results in a much smaller dataset. A modification of under-sampling removes 
noisy data points in the majority class through the use of Tomek Links (Elhassan et al., 2016), but 
impacts running time.

As for over-sampling techniques, observations must be added to the minority class to balance 
with the majority class. These added observations could be either the same minority observations, 
through the random over-sampling (ROS) technique, or artificially created observations. One of the 
most influential techniques to synthetically create observations is Synthetic Minority Over-Sampling 
Technique (SMOTE) developed by Chawla et al. (2002). This method uses linear interpolation to 
create new observations for the minority class. In SMOTE, new observations are created from a 
point, say A, by selecting random points lying on the lines connecting A with its neighbors. Han et 
al. (2005) proposed the modification Border-SMOTE, where SMOTE is applied only in the border 
region between two classes. Alternatively, the Random Over-Sampling Examples (ROSE) technique 
proposed by Menardi et al. (2012) uses the kernel density to generate new minority observations. 
There also exist several cluster-based techniques such as Cluster-Based Oversampling (CBO) by Jo 
and Japkowicz (2004) or the DBSMOTE algorithm which uses DBSCAN clustering proposed by 
Bunkhumpornpat et al. (2012).

Despite all of these advancements—due to their simplicity in idea and computation—RUS and 
ROS remain two of the most widely-used resampling methods. Consequently, the authors chose to 
focus on these methods, as well as the popular methods SMOTE and ROSE, for comparison.

Classification Models
The three classifiers chosen for this study to apply resampling methods for comparison are decision 
tree, random forest and Adaboost, which are all tree-based models. Tree-based models were chosen 
due to their versatility in working with categorical variables without encoding them and their proven 
effectiveness in working with imbalanced data (Chen, 2004; Cieslak, 2008). The Rhode Island hospital 
discharge data contains several variables with a large number of categories (for example, admitting 
diagnosis has 6641 categories). As a result, using distanced-based models such as support vector 
machines or neural networks would be too computationally expensive. These three tree-based models 
consisting of decision trees, random forests, and Adaboost are briefly discussed below in more detail.

Decision Tree
Decision tree structures a flow chart where at each node of the flow chart the incoming data is 
partitioned into multiple subsets based on a splitting rule. There are several criteria that can be used 
to decide both the splitting variable and the value at which the variable splits, including criteria about 
information (entropy) gain, Gini Index and logworth values.

The final nodes—where the splitting stops—are called the leaves and are used for prediction. The 
tree is usually fully grown to obtain the most complicated tree and may be pruned down to a simpler 
tree to avoid overfitting issues. Proposed by Breiman (1984), Decision Tree or CART (Classification 
and Regression Tree) can be used with both categorical targets (classification tree) and continuous 
targets (regression tree). Note that for this study, a classification tree was used, as the goal is to predict 
long-term versus short-term LOS.

Random Forest
Random Forest is an ensemble classification model that combines the results of multiple other 
classifiers (Breiman, 1984). In Random Forest, a set of decision trees is built on a subset of the 
original data. However, unlike in decision trees, at each split of a tree only a subset of randomly 
selected variables is considered for the split. Random Forest then makes a prediction by taking the 



International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 3 • July-September 2019

35

majority vote among the entire set of trees. For instance, if two out of three trees of a random forest 
predict long-term LOS, then the random forest will also predict a long-term LOS. The two main 
hyper-parameters (unknown quantities that are determined by the users) of random forest are the 
number of trees and the number of variables considered for splitting at each node, which impact the 
runtime and performance of the model.

Adaboost
Adaboost, or Adaptive Boosting, is a boosting method which is designed to improve the performance 
of a poor-performing classifier, or “weak” classifier (Freund, 1999). Adaboost contains a sequence of 
classifiers where each classifier in the sequence is trained on “weighted” observations. The weights 
are initially set to be equal among observations and then updated based on the classifier’s prediction 
error for each observation, with larger errors leading to larger weights. The idea of boosting is that 
each iteration of the classifier in the boosting sequence focuses more on learning observations that 
were “difficult” to learn in the previous classifier. The final prediction of Adaboost is a weighted vote 
from all of the classifiers in the sequence with higher-performed classifiers having greater weights.

PROPOSED RESAMPLING METHOD

Description of the Algorithm
This work proposes a new method for dealing with imbalanced data. The method uses the ideas of 
under-sampling, bagging and boosting, and hence is called Randomly Under-sampled Bag-boosting 
for Imbalanced-Event Samples (RUBIES). Bagging is the approach where a model (for example, a 
decision tree) is run repeatedly with bootstrapped samples and then the results combined, which in 
the case of a tree, would be by voting (choosing the most frequent outcome for a given input). This 
new proposed algorithm first uses bagging and under-sampling techniques to train the sample model 
(base-model) on multiple under-sampled datasets. It then ensembles this set of base-models into a 
new model by majority voting. Finally, the algorithm uses this newly obtained model to update the 
weights of the majority observations so that observations with higher weights, i.e. higher predicting 
error, will be more likely to appear in the next round of under-sampling, which is the concept behind 
the boosting technique.

The RUBIES algorithm is as follows:

Step 0: Decide the base-model, B . We under-sample the data and train several classifiers on this 
balanced data. B  is the classifier that performs the best. In our implementation, out of the 
decision tree, Adaboost and random forest. The random forest performs the best, so it is selected 
to be the base-model.

Step 1: Set i = 1 .
Step 2: Train untrained instances of B  in k  under-sampled data and ensemble these k  classifiers 

by majority voting to obtain B
i

Step 3: Perform B
i
 on the dataset of the majority class only to obtain predicted probabilities for all 

majority observations, normalize these predicted probability (divide by their summations) to 
obtain the weights W

i
 for the majority class. Also obtain voting power a

i
, which is the out-of-

bag (OOB) error of B
i
.

Step 4: Let i i= +1  and repeat Step 2 to Step 4, noticing that the k  under-sampled data are under-
sampled with the weights W

i
.

Step 5: Stop when i  equals a predetermined value N .
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Step 6: Use B
1
, �B

2
…B

N
 with their corresponding voting power a

1
, �a
2
…a

N
 to vote for the final 

prediction.

Note that the choice of k  and N  will impact the performance of RUBIES. Larger values will 
cause an increase in computation time, while small values may not capture enough of the majority 
data. The authors recommend a value for k  proportional to the portion of the dataset corresponding 
to the minority class. Generally, a value between 20-25 is recommended for N .

A detailed diagram demonstrating the steps of the RUBIES algorithm on a simple example with 
k = 4�and N = 2  can be found in Figure 1.

Data and Variable Selection
The dataset used in this paper was Rhode Island Hospital Discharge Data obtained from the Center 
for Health Data & Analysis and Public Health Informatics at the Rhode Island Department of Health 
(2014) and consisted of hospital discharge data for the years 2010 to 2013 from 14 Rhode Island 
hospitals. The dataset contained 539,395 observations of 134 variables. Missing entries in the data 
were handled by imputing either the mean of the corresponding variable (for numeric variables) or 
the mode of the corresponding variable (for categorical variables). Looking at the dataset, the authors 
chose to define long-term LOS as a LOS of 14 days or more. This definition for long-term LOS 
consisted of 4.7% of the observations in the dataset.

As this study desires to develop an accurate predictor for long-term LOS immediately upon 
admittance to the hospital, these 134 variables were reduced to only those observed at the time of 
admittance for the patients. This resulted in 20 variables for consideration. An initial exploration of 
these variables displayed differences in LOS trends. The distribution of age is shown in Figure 2, split 
by long/short term LOS. Clearly, there is an increase in long-term LOS above an age of approximately 
50, as well as a significant drop between the ages of approximately 20 to 50. Figure 3 explores the 
impact of patient sex. While short term shows a larger number of female patients, interestingly long-
term LOS is balanced between both sexes. To more formerly rank variable importance, the mean of 
each variable’s importance in thirteen random forest models trained on under-sampled datasets was 
computed. The largest importance score amongst the 20 variables was then used to normalize all 
scores, resulting in the most important variable having a score of 1 while a variable with no importance 
having a score of 0. The results for all 20 variables are shown in Figure 4.

Looking at Figure 4, it can be seen that the most important variable is diag_adm, which is the 
diagnosis information of the patient at the time of admittance. Conversely, b_wt, which represented 
birth weight has a score of 0 and hence was removed from the analysis. All other variables were 
retained, resulting in a final set of 19 variables used for prediction. Detailed descriptions of the 19 
variables retained for this study can be found in the Appendix.

Computational Results
In this section, the results of computing three predictive models (decision tree, random forest and 
Adaboost) on six datasets (the original imbalanced data, RUS data, ROS data, balanced data using 
SMOTE technique, balanced data using ROSE technique, and finally balanced data using our proposed 
RUBIES algorithm) are reported and discussed. First, the metrics used to evaluate the performance 
of each model-resampling method combination are explained.

Model Evaluation Metrics
Using misclassification rate or overall accuracy to measure the classification quality of models can be 
misleading when working with imbalanced data. A trivial model that predicts that all observations are 
in majority class would give a very high overall accuracy, despite misclassifying all observations in 
the minority class. It has been observed that the true positive rate, or sensitivity, of a classical model 
applied to an imbalanced dataset is usually very low and models that improve the sensitivity, given by
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Figure 1. Diagram demonstrating RUBIES algorithm for a simple example where k = 4�and N = 2 , where m m
n1

, ,…  

represent observations from the majority class, p p
i in1
, ,…  represent the predicted probabilities for these observations based 

on model i .
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Figure 2. Age distribution of the long-term LOS patients versus short-term LOS patients

Figure 3. Distribution of Male and Female toward long-term LOS and short-term LOS patients
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This study seeks models that can improve the sensitivity while not significantly reducing the 
specificity. Thus, this study uses the average of these two quantities as the main evaluation metric of 
these models, called balanced accuracy, which is given by

1

2

TP

TP FN

TN

TN FP+
+

+











.	

By using this measure, the accuracy is now symmetric with respect to both classes (Brodersen 
et al., 2010). Table 1 shows the Confusion Matrix.

Results
In this section, the model performances at predicting long-term LOS in the Rhode Island hospital 
discharge data using the 19 variables available at the time of admittance are explored. The performances 
of three predictive models (decision tree, random forest and Adaboost) applied to five datasets 
including the original (imbalanced data) and data computed by four resampling methods (random 
under-sampling, random-over sampling, SMOTE and ROSE) in comparison to the proposed method, 
RUBIES, are discussed.

In all four comparison resampling techniques, the data were balanced so that each class accounts 
for approximately 50%. In SMOTE, 5 was chosen as the number of k-nearest neighbors. For the 
decision tree, a binary tree was used (a node can only have two branches) with splitting rules decided 

Figure 4. Variable Importance by Random Forests trained on multiple under-sampled data for the 20 variables observed at the 
time of admittance for patients in the Rhode Island hospital data
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by the Gini Index. This was implemented with the R package “rpart” (Recursive PARTition) for the 
computation (Therneau, 2012). For the random forest, the “ranger” R package was used (Wright, 
2015) and the number of trees was set to 30 and the number of variables at each node set to 5. Finally, 
Adaboost was applied to boost a decision tree using the R package “fastAdaboost” (Chatterjee, 2016). 
Due to the slow-running time of boosting, the number of classifiers in the sequence was set to 7.

When applying RUBIES to resample the hospital data, a value of k = 13  was chosen due to 
4.7% of the data containing the long-term LOS observations. Also, a value of N = 21  was used for 
the number of iterations.

The computation process can be described as follows. First, the original data is partitioned into 
two datasets, training dataset (75%) and testing dataset (25%), ensuring that each maintains the original 
ratio of 4.7% long-term LOS observations. Then, the resampling method is applied to the training 
dataset. Finally, the model is built using the resampled training dataset and is evaluated based on its 
prediction of the testing dataset. The results of each resampling method were grouped by the model 
they were applied to for decision trees, random forest, and Adaboost, and are shown in Figure 5, 
Figure 6, and Figure 7, respectively.

The first observation is that all three models running on the original imbalanced dataset suffered 
from the imbalance issue as they struggled to detect the minority long-term LOS observations. Of 
the three models, Adaboost gave the highest true positive rate of only 1.67%, while the decision tree 
was unable to detect any positive observations and predicted all observations as not long-term LOS. 
This is a common issue of classical predictive models performing on imbalanced data.

This study also observes that RUBIES provides the best balanced accuracy, with its performance 
of 76.7%. While all comparison resampling methods did improve each model’s ability to detect long-
term LOS observations, the effectiveness depends both on the predictive models and the resampling 
method used. Overall, SMOTE appeared to be the least effective resampling technique while RUS, 
although simple, brought the most improvement in balanced accuracy of the comparison methods, 
achieving a balanced accuracy of 75.2% when combined with random forest. In contrast, the decision 
tree combined with SMOTE gave the lowest balanced accuracy of 55.3%.

CONCLUSION

Predicting long-term LOS at the time of admission is an important issue for hospitals, and when 
performed accurately, can aid them in providing better patient care while improving the management 
of resources.

This work studied the performances of multiple classification models at predicting long-term 
LOS from an imbalanced dataset obtained from Rhode Island hospitals, focusing in particular on 
the effectiveness of using resampling techniques to improve the balance accuracy of predicting both 
positive (long-term LOS) and negative (short-term LOS) observations. The computational results 
demonstrated that all of the resampling techniques studied helped improve the overall performances 
of the classification models and that the random forest model combined with the RUS technique was 
the most effective and out-of-the-box combination, giving 75.2% balanced accuracy.

To further improve the performance of the classification models, the authors propose the use of 
the algorithm RUBIES which implements the idea of under-sampling, bagging and boosting with the 

Table 1. Confusion Matrix: TN, FP, FN, TP stands for True Negative, False Positive, False Negative, and True Positive, 
respectively

Predicted Negative Predicted Positive

Actual Negative TN FP

Actual Positive FN TP
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integration of the predictive power of the random forest. The proposed method improved the balanced 
accuracy to 76.7%. Although RUBIES has a longer running time when compared to the combination 
of random forest and RUS, it still runs much faster than other over-sampling type techniques such as 
SMOTE, ROS or ROSE and should be a valuable tool for predicting imbalanced datasets.

Figure 5. Performances of RUBIES and Decision Tree model trained on the original and resampled data in predicting long-term 
LOS for the Rhode Island hospital discharge dataset
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Although our procedure produces a higher accuracy in identifying long stay patients and is 
ready to be implemented for any future hospital discharge data, we believe this procedure can still 
be improved. In our model, we manually select all and use most of the variables available at the 
admission. Although it simplifies the process by avoiding the variable selection stages, it may result in 
a more complex model in the end. It is worth looking at the applications of popular variable selection 

Figure 6. Performances of RUBIES and Random Forest model trained on the original and resampled data in predicting long-term 
LOS for the Rhode Island hospital discharge dataset
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techniques for hospital discharge data. One of the first considerations is rough set based variable 
selection techniques, which have shown to be effective for improving performance of predictive 
models (Singh et al., 2016) and can be implemented easily for healthcare (Park, 2013). This serves 
as a starting idea for our next project.

Figure 7. Performances of RUBIES and Adaboost model trained on the original and resampled data in predicting long-term LOS 
for the Rhode Island hospital discharge dataset
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Appendix

Description of variables from discharge data obtained from the Rhode Island Department of Health 
that were included in the final models:

admtype: type of admission, categorized as emergency, urgent, electric, newborn, court committal, 
trauma, or N/A

age: reported age of patient
asource: source of admission, categorized as physician referral, clinic referral, HMO referral, trans-

hospital, trans-nurse facility, trans-healthcare, emergency room, court/law enforcement, or N/A
campus: geographical location of hospital, coded for hospitals with more than one campus
diag_adm: admitting diagnosis, presented as ICD-9-CM codes
er_mode: mode of arrival to emergency room (if applicable), categorized as rescue service/ambulance, 

helicopter, law enforcement or social services, personal or public transport, other, or N/A
ecodepoa: external cause of injury present upon admission
ecodeub92: external cause of injury supplied by hospital, presented as ICD-9-CM codes
ethnic: ethnicity reporting Hispanic, not Hispanic, or not reported
moa: month of admission
pay_ub92: expected source of payment, categorized as Medicare Fee for Service, Medicare Managed 

Care, Medicaid Fee for Service, Rite Care, Out-of state Medicaid Managed Care, Blue Cross, 
Coordinated Health Partners Inc, United Healthcare, Commercial insurance (other than listed), 
Champus, Worker’s Compensation, Other, Self pay, Missing, or Error.

payer: expected source of payment, categorized as Medicare, Medicaid, Worker’s Compensation, Blue 
Cross, Commercial Insurance, Self pay, Other, Champus, United Healthcare, Coordinated Health 
Partners Inc, Rite Care, Neighborhood Health Plan of RI, Insurance error, Missing, or Unknown.

provider: healthcare provider, coded as Newport, St. Joseph Health Services of RI, Memorial, Miriam, 
Rhode Island Hospital, Roger Williams, South County, Kent County, Westerly, Rehab of RI, 
Landmark Medical Center, Women and Infants, Bradley, Butler

pt_state: patient’s state of residency, categorized using state abbreviations, Unknown, or Not Applicable 
(for outside US)

race: patient’s race, categorized as White, Black, Asian, American Indian, Hispanic, Other, Unknown, 
or N/A

raceethn: patient’s race/ethnicity, categorized as White (not Hispanic), Black (not Hispanic), Asian 
not Hispanic), American Indian (not Hispanic), Native Hawaiian (not Hispanic), Other (not 
Hispanic), Hispanic, Unknown, or N/A

service: service, categorized as Pediatrics, Medicine, Cardiology, Psychiatry, Surgery, Ophthalmology, 
ENT, Oral Surgery, Orthopedics, Urology, Gynecology, Abortio, OB – Not Delivered, OB – 
Delivered, Newborn, or Rehabilitation

sex: patient’s sex, categorized as male or female
yoa: year of admission
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