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ABSTRACT

Code smell is an inherent property of software that results in design problems which makes the software 
hard to extend, understand, and maintain. In the literature, several tools are used to detect code smell 
that are informally defined or subjective in nature due to varying results of the code smell. To resolve 
this, machine leaning (ML) techniques are proposed and learn to distinguish the characteristics of 
smelly and non-smelly code elements (classes or methods). However, the dataset constructed by the 
ML techniques are based on the tools and manually validated code smell samples. In this article, 
instead of using tools and manual validation, the authors considered detection rules for identifying 
the smell then applied unsupervised learning for validation to construct two smell datasets. Then, 
applied classification algorithms are used on the datasets to detect the code smells. The researchers 
found that all algorithms have achieved high performance in terms of accuracy, F-measure and area 
under ROC, yet the tree-based classifiers are performing better than other classifiers.
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INTRODUCTION

Code smells or bad code smells refers to an anomaly in the source code that may result in deeper 
problems which makes software difficult to understand, evolve, and maintain. According to (Booch, 
2006) smell is a kind of structure in the code that shows a violation of basic design principles such as 
Abstraction, Hierarchy, Encapsulation, Modularity, and Modifiability. Even if the design principles 
are known to the developers due to inexperience, the competition that is in the market and deadline 
pressure are leading to violation of these principles. Fowler et al. (Fowler, 1999) have defined 22 
informal code smells which are removed through refactoring techniques. These techniques are used 
to enhance the internal structure of the code without varying the external behaviour and to improve 
the quality of the software. The (Opdyke, 1992) authors have defined 72 refactoring techniques.

There are various methods and tools available in the literature to detect the code smells. Each 
technique and tool produces different (Fontana, 2012). Bowes et al. (Bowes, 2013), compared two 
code smell detection tools on message chaining and shown disparity of results between them. The 
three main reasons for varying results are: 1) The code smells can be subjectively interpreted by the 
developers, and hence detected in different ways. 2) Agreement between the detectors is low, i.e., 
different tools or rules detect a different type of smell for different code elements. 3) The threshold 
value for identifying the smell can vary for the detectors.
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To address the above limitations, in particular the subjective nature, Fontana et al. (Fontana, 
2016) proposed a machine learning (ML) technique to detect four code smells (Long Method, Data 
Class, Feature Envy, Large Class) with the help of 32 classification techniques. The authors have 
built 4 datasets, one for each smell. These datasets have been prepared based on the tools and manual 
labelling process. Tools are used to identify whether the code elements (instances) are smelly or 
not. But the tools may produce some false positive instances so, the authors manually validated 
the instances to avoid the biasness. In this paper, instead of using tools and manual validation, the 
authors have prepared two new method level code smell datasets of Fowler et al. (Fowler, 1999) from 
the literature; based on the detection rules and unsupervised learning i.e., clustering to validate the 
instances as smelly or not.

In the proposed work, an attempt is made to detect two code smells namely Shotgun surgery 
and Message chaining with supervised learning techniques. It is an application of machine learning 
(ML) classification approach used for code smell detection. It uses known data to determine how 
the new instances should be classified into binary classification i.e., based on the metrics used for a 
particular method, the ML approach helps in classifying a method to be prone to code smell or not. In 
this paper, the dataset instances are methods of 74 heterogeneous java systems. The metrics of object-
oriented systems have been computed on method instances, which are the features or attributes of the 
dataset. For each smell, one dataset is prepared by using detection rules from the literature (Ferme, 
2013). The researchers applied a random stratified sampling on the method instances to balance the 
datasets. Sample instances of the dataset are validated through unsupervised learning and added to the 
training dataset. Then applied some known classification algorithms on the trained datasets to detect 
the code smells, by using 10-fold cross validation method. To evaluate those algorithms, standard 
metric measures such as F-score, accuracy and the area under the ROC are used. The experimented 
algorithms have achieved high performance in both the smells.

The paper is been arranged as follows; The second section, introduces a work related to detection 
of code smells; The third section, defines two proposed approaches of code smell detections; The fourth 
section, detecting code smells using ML approach; The fifth section, presents experimental results; 
The sixth section, presents the code smell detection rules; and the final section, gives conclusion 
and future directions.

RELATED WORK

According to (Kessentini, 2014) approaches of code smell detection are classified into 7 categories (i.e., 
cooperative-based approaches, visualization-based approaches, search-based approaches, probabilistic 
approaches, metric-based approaches, symptoms based approaches, and manual approaches). In the 
manual approach developers and maintainers follow different reading guidelines to detect smells. 
As it requires human involvement, it consumes more time for large systems. In the metric-based 
approach, smell detection is based on source code metrics. Symptoms based approach uses different 
notations to detect smells. But the problem with this approach is, it requires analysis to convert 
symptoms or notations into detection algorithms. Probabilistic approach is based on applying fuzzy 
logic rules to detect smells. The visualization approach uses semi-automated processes to detect and 
visualize the smells with the integration of human capabilities. But the problem with this approach 
is that, it requires human effort, with increase in large systems. The search-based approach applies 
different algorithms to detect the smells. Most of the techniques use ML approaches. The success 
of this approach depends upon the training datasets. The cooperative approach performs different 
activities in a cooperative way.

Fontana et al. (2015) proposed a detection strategy for the code smells. The authors have derived 
metric thresholds to detect code smells, from a benchmark of 74 java software systems.

Fontana et al. (2016) experimented and compared the supervised ML algorithms to detect the 
code smells. The authors have used 74 java systems to prepare the training dataset which are manually 
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validated instances. Then used 16 different classification algorithms and in addition to it, boosting 
techniques are applied on 4 code smells viz., Long Method, Data Class, Feature Envy, and Large Class.

In this proposed approach an attempt is made to detect two additional code smells called shotgun 
surgery and message chaining through ML classification techniques. In Fontana et al. (Fontana F. A., 
2016) advisors (Tools) are used to identify whether the class is smelly or not, but the authors have 
considered the tools to be subjective to errors and not biased. So, they went for manual validation on 
the instances. But in the proposed approach, the researchers have used the code smell deterministic 
rules from literature (Fontana F. A., 2015) to identify whether the class is smelly or not and instead of 
manual validation unsupervised learning is used. In the proposed work, the training dataset size is larger 
than the previous work. A large dataset would generalize the instances effectively. In both proposed 
and previous work, the tree based classifiers are giving better performance than other classifiers.

CODE SMELL BASICS

In this work, the researchers have considered two code smells among 22 code smells identified by 
Fowler et al. (Fowler, 1999), to experiment on the smell detection approach. The reason for choosing 
these two code smells is to cover potential problems related to object-oriented quality dimension 
called coupling. Coupling is the relational strength between entities of the systems. High coupling 
may negatively impact the software quality dimension. In Table 1, the researchers have outlined 
the selected code smells and reported the smell definitions. There are usually two levels of affected 
entities in the code smell i.e., class level and method level and each code smell affect either an intra 
or inter class. Intra class means code smell affecting a single entity in the source code and inter class 
means code smell affecting more than one entity in the source code. In this paper, work is carried 
out on method level smells.

Shotgun surgery says, to introduce a small new change, a developer has to change many classes 
and methods, and most of the time writes duplicated code, which violates the “Don’t Repeat Yourself” 
principle.

The message chaining, code smell refer to a particular class or method which has high coupling 
with other classes or methods in chain-like delegations, i.e., methods that contain long sequences of 
method calls to get data from other classes.

CODE SMELL DETECTION USING MACHINE LEARNING APPROACH

The application of ML classification approach is to detect the code smell using known data to 
determine how the new data must be classified into a binary classification (code is smelly or not), 
Figure 1 describes the flow of activities in the proposed approach to detect code smells.

The summary of the flow chart will be described here. Following sections will give a detailed 
explanation of one each activities of the researchers approach during the code smell detection.

Table 1. Selected fowler code smell

Name of Code Smell Affected Entities Intra / Inter Impacted on Object 
Oriented Quality 

Dimensions

Shotgun Surgery Method Inter class Coupling

Message chaining Method Inter class Coupling
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•	 A collection of 74 heterogeneous java systems are been collected and considered as input instances 
(methods) for creation of the dataset.

•	 From the given 74 systems, metrics extraction was done from all the levels such as Project, 
Package, Class and Method. These metrics become features to the dataset.

•	 For the binary classification of code smells, class variables are considered. To assign class variable 
(smelly or not) the researchers chosen code smell rules from the literature.

•	 The above steps result in a dataset which is imbalanced. The researchers applied a random 
stratified sampling on the method instances to balance the datasets.

•	 Sample instances of the dataset are validated through unsupervised learning and added to the 
training dataset.

•	 Known supervised classification algorithms are applied on the training dataset.
•	 Among the supervised classification algorithms, J48 and JRIP produces human readable code 

smell rules.

Collection of Java Software Systems
In order to prepare code smell classification dataset, java software systems are collected from (Fontana 
F. A., 2016). The author has provided a collection of 74 java systems with the compiled version, 
collected from (Tempero, Anslow, Dietrich et al., 2010). The 74 systems are having different sizes 
and various application domains. Table 2 reports, the characteristics of all 74 projects. The data 
selected are large enough to experiment on the ML algorithms. The large dataset would lead to more 
generalized ML algorithm results. The number of instances (methods) create the dataset.

Extracting All Code Level Metrics
The metrics of source code are used to identify the problems and even used to improve the quality of 
the software system. The various types of metrics used to measure source code properties are coupling, 
encapsulation, cohesion, complexity, size and inheritance. Software quality dimensions cover different 
aspects of the source code. Usually, metrics are categorized into three: Process, Resource, and Product.

1. 	 Process Metrics: These are the metrics used to measure the effectiveness and efficiency of 
various process. Process metrics are related to function points, percentage of defective detection, 
defective density etc.

Figure 1. Flow of activities to detect the code smells
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2. 	 Resource Metrics: These are the metrics used to measure the quantity of cost, defects, 
productivity, schedule and estimation of various project deliverables and resources. Resource 
metrics are also related to schedule, cost, productivity and number of developers.

3. 	 Product Metrics: These are the metrics used to measure the internal structure of software. 
Product metrics are related to software quality dimensions like coupling, encapsulation, cohesion, 
complexity, size and inheritance.

In this paper, the researchers particularly focused on product metrics because, software refactoring 
changes the internal structure of the software. As mentioned in the above definition, product metrics 
measures the internal structure of software. The six object oriented software quality dimensions 
are related to code-smell characteristics. In appendix section, Figure 7 listed the metrics which are 
categorized into quality dimensions and with their abbreviations. Each dimension is related to few 
metrics list which are mentioned below, that are independent variable of the dataset:

•	 Size: The size of the system depends upon number of packages, number of classes, number 
of methods, and number of lines of code and so on. Larger the system, the more difficult it 
is to manage. Size related metrics are LOC, LOCNAMM, NOM, NOPK, NOCS, NOA, and 
NOMNAMM.

•	 Complexity: It is measured based on the level of difficulty in understanding the structure of the 
class (Bansiya, Jagdish and Davis, Carl G., 2002). As the complexity of the class increases, it 
would be hard to understand it. Complexity related metrics are CYCLO, WMC, WMCNAMM, 
AMW, MAXNESTING, WOC, CLNAMM, NOP, NOAV, ATLD, NOLV, and AMWNAMM.

•	 Cohesion: It is used to measure the strength of relatedness among methods and attributes in a 
class (Balmas, Francoise and Bergel, Alexandre and Denier, Simon and Ducasse, Stephane and 
Laval, Jannik and Mordal-Manet, Karine and Abdeen, Hani and Bellingard, Fabrice, 2010). 
Cohesion metrics are LCOM5, TCC.

•	 Coupling: It is used to measure the strength of dependence among the objects in a design. 
Therefore, the stronger the coupling between the objects, the more difficult to change, understand, 
and correct. Coupling related metrics are FANOUT, ATFD, FDP, RFC, CBO, CFNAMM, CINT, 
CDISP, CC, and CM.

•	 Encapsulation: It is defined as binding of data and behavior within a single block called class. 
Without encapsulation in classes an unauthorized person can able to access it directly. The metrics 
related to encapsulation are LAA, NOAM, and NOPA.

•	 Inheritance: Is-a relationship between classes is measured by inheritance. That means acquiring 
the properties of one class to another class. The level of nested classes depends upon the 
relationship related to the inheritance hierarchy. As the complexity of the hierarchy increases 
understanding it become difficult, because of the inherited methods and attributes from the 
ancestor classes. Inheritance related metrics are DIT, NOI, NOC, NMO, NIM, and NOII.

The object oriented metrics (product) are grouped into four categories called class, method, 
package and project (LAB.(n.d)). Their corresponding few metrics are listed below, in the Table 3. 
These metric levels follow the containment relation, i.e., class is present in a package, method is 

Table 2. Summary of 74 projects

Number of Projects Number of Lines 
in All Projects

Number of 
Packages in All 

projects

Number of Classes 
in All Projects

Number of Methods 
in All Projects

74 6,785,568 3420 56,225 4,15,995
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present in a class etc. There are usually two levels of affected entities in the code smell i.e., class 
level and method level. In this paper, researchers are working on method level smells. The method 
level smells, not only includes method level metrics, but also includes class, package and project 
level metrics in the dataset as an independent variable.

Rules for Smell Detection
The supervised classification algorithm needs a training dataset which consists of instances (methods 
or classes), features (all level metrics) and class labels (code smells). In the dataset preparation, the 
class label should specify whether a method or a class instance is affected by the code smell or not. The 
data of 74 systems are large enough and heterogeneous. Hence, it is difficult to assign class labels for 
such large dataset and requires massive human intervention. This gave way to create a dataset, using 
sampling approach. The simplest method of sampling method is random sampling. Even, random 
sampling gives less code smells in this domain, i.e., the selected instances are less affected by the 
code smells in the training dataset. Here in this case, the researchers assigned class label instances 
with the help of detection rules proposed in the literature (Ferme, 2013). The researchers labelled 1 
as an affected instance and 0 as an unaffected instance. The detection approach, composed of binary 
logical conditions (AND, OR). Figure 2 and Figure 3 shows, shotgun surgery and message chaining 
detection rules respectively. These rules will help to detect whether the method instances are smelly 
or not. The reason for choosing these detection rules is that, the threshold of the metrics are derived 
from a benchmark of selected 74 software system (Fontana F. A., 2015). The metrics CC, CM, and 
FANOUT are used to identify the characteristics of the shotgun surgery smell. Similarly, MaMCL, 
NMCS, and MeMCL are used to identify the characteristics of the message chaining smell. The 
computation of these metrics are defined in (Ferme, 2013). The outcome of this step results in a dataset.

Unsupervised Learning
The researchers have applied unsupervised learning (clustering) on the entire method level dataset 
to know the number of clusters that can be formed. In this work, the method instances can be either 
smelly or not. So, the two clusters are considered to be binary classifiers. The algorithm used for 
clustering is k-means. The method instances which are affected (positive) by the above rules are 
compared with the formed clusters to validate the instances. If the instance produces same cluster as 
it’s label then it is considered else discarded for training dataset.

Table 3.Object oriented metrics

Project Level Metrics Package Level Metrics Class Level Metrics Method Level Metrics

NOPK, NOCS, NOI,﻿
NOMNAMM, LOC etc.

NOCS, NOMNAMM,﻿
NOI, LOC, NOM etc.

NOII, NOAM, NOCS﻿
NMO, ATFD etc.

CYCLO, NOP, NMCS﻿
LOC, LAA etc

Figure 2. Shotgun surgery detection strategy
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Stratified Random Sampling on Datasets
Table 4 reports, the results after applying detection rules on the entire Qualitus Corpus dataset.

It can be observed from Table 4 that the number of negatively affected instances are more when 
compared to positively affected instances. Using of open source system, resulted in increase of negative 
instances. Open source systems are used to produce the source code with poor quality (Stamelos, 
2002). The recent study indicates that the open source systems and commercial systems are having 
almost the same code quality (Spinellis, 2008). From the observation it was found that when compared 
to commercial systems, pure open sources are giving better software structures (Spinellis, 2008; 
Capra, 2011). The Qualitas Corpus (Tempero, Anslow, Dietrich et al., 2010) has both “pure open 
source” and “open source” systems where there is a commercial participation. Thus, it is observed 
that affected smells (i.e., positive instances) detected using open source systems are less. This leads 
to highly imbalanced datasets (He, 2009). To balance the dataset, the researchers have used stratified 
random sampling approach which is organized as follows:

•	 For each project, group the negative instances for the dataset.
•	 Randomly, sample the negative instances of each group until approximately the double of the 

positive instances are obtained.
•	 For positive instances, unsupervised learning (clustering) is used for validation.
•	 The obtained positive and negative instances are placed in the training dataset.

An overview of the procedure is shown in Figure 4. This covers different domain instances 
having different characteristics.

EXPERIMENTATION AND RESULTS

Experimental Setup
Researchers have used the application of supervised learning for the experiments and selected six 
known classification algorithms such as Bayesian networks, support vector machines, K-nearest 
neighbours, rule learner, decision trees, ensemble method (Random forest) and WEK (Hall, 2009) 
tool to provide the implementations of the selected algorithms. In general, tree based classifiers 

Figure 3. Message chain detection strategy

Table 4. Detection strategies of two smells on entire dataset

Code Smells Method Instances Positive Instances Negative Instances

Shotgun surgery 415995 600 415395

Message chaining 415995 673 415321
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are performing better than the other classifiers in (Fontana F. A., 2016) detecting the code smells. 
Following steps gives a short description of the selected algorithms:

1. 	 J48 (C4.5) algorithm (Quinlan, 1993): Decision tree tries to recursively partition the dataset 
into subsets by evaluating the normalized information gain (difference in entropy) resulting from 
choosing an attribute for splitting the data. The attribute with the highest information gain is used 
for every step. The training process stops when the resulting nodes contain instances of single 
classes or no such attribute that can be found with information gain. The authors have used the 
default parameters supported by WEKA which are given below.
1. 	 Criterion: It defines the function to measure the quality of split. J48 support Entropy 

(measure the level of impurity) for information gain.
2. 	 minNumObj: Minimum number of instances required to split the internal nodes. By default, 

the value is 2.
3. 	 Confidence vector: The parameter altered to test the effectiveness of post-pruning was 

labelled by WEKA as the confidence factor. It builds a full tree and then work back from 
the leaves, applying a statistical test at each stage. By default, the value is 0.25.

2. 	 Random Forest (Breiman, 2001): It generates different decision trees based on randomly selected 
attributes and instances. These trees become a forest called “random forest tree”. It conducts 
voting on all the instances to decide the class instance based on polling result. The default random 
forest tree parameters in WEKA are as follows:
1. 	 maxDepth: It indicates how deep the tree can be. The deeper the tree, the more splits it 

has, and captures more information about the data. By default, the value is 0 (unlimited) 
means the nodes are expanded until all leaves are pure or until all leaves contain less than 
minimum number of instances.

2. 	 numTrees: The number of trees to be generated. By default the value is set to 10.
3. 	 minFeatues: The number of attributes to be used in random selection is 7.

3. 	 JRip (Cohen, 1995): It implements a propositional rule learner based on association rules. It is 
used to extract human understandable rules for code smells.

Figure 4. 
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4. 	 Naive Bayes (John, 1995): It is a supervised classification algorithm based on the assumption 
that occurrence of certain attribute is independent of occurrence of other attribute.

5. 	 Sequential minimal optimization (SMO) (Platt, 1998): It is restricted to binary class. To apply 
support vector machine the researchers should implement the SMO algorithm in order to train 
the instances.

6. 	 K-nearest neighbours (k=2) (Ah, 1991): The learning is also known as “instance based” 
learning. It is based on similarity (distance) calculation between instances. In the classes – to - 
cluster evaluation, the researchers verified that the number of clusters are 2 in both the datasets. 
The error rate was minimal for 2 clusters, when compared to others.

Researchers used the cross validation (10-fold) technique to evaluate predictive models to find 
the best algorithms for the experimentation. They have applied three standard performance measures 
for ML algorithms.

•	 Accuracy is the percentage of correct prediction. It is insufficient to select a model when, the 
positive and negative instances are imbalanced, but this will never occur in this approach. As 
the researchers have balanced two datasets with stratified random sampling.

•	 F-Measure is the 2 * ((precision * recall) / (precision + recall)) i.e., harmonic mean of precision 
and recall.

•	 Area under ROC allows visualizing the performances of the classifier across all possible 
classification thresholds, thus helping to choose a threshold that approximately balances sensitivity 
and specificity.

Dataset Results
After applying stratified random sampling, the researchers have obtained two training datasets (one 
for each code smell) which are specified in Table 5. In Table 4, 600 positive instances are detected by 
the shotgun surgery rule. On applying unsupervised learning on the obtained instances, 141 instances 
belong to other cluster. So, researchers removed those instances and added remaining instances to 
the training dataset of shotgun surgery which are reported in Table 5. Similarly, among 673 positive 
instances detected by message chaining rule, 190 instances belong to other cluster are removed and 
remaining are added to the training dataset and reported in Table 5. From the table, it can be observed 
that the datasets are well balanced in terms of positive and negative instances. The supervised learning 
will take these datasets as input and trains the ML algorithms.

Algorithms Results
The results of the proposed method of two code smell (Shotgun Surgery, Message Chaining) datasets 
with 10-fold cross validation and performance metrics are shown in Table 6 and Table 7, respectively.

It can be observed from Table 6 report, J48 and JRip both gives 100 percentage accuracy. These 
two algorithms have given the best performance when compared to other algorithms, while the 
worst performance is shown by Naive Bayes based on F-measure and accuracy performance metrics. 
According to the area under the ROC metric, the best performance got from J48, JRip and Random 
Forest. The worst performance got from K-nearest neighbors (K = 1).

Table 5. Training datasets of two smells

Training Dataset Method Instances Positive Instances Negative Instances

Shotgun surgery 1717 459 1258

Message chaining 1889 483 1406
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It can be observed from the Table 7 report that, JRip gives the best performance, while the worst 
performance is achieved by Naive Bayes based on F-measure and accuracy performance metrics. 
According to the area under the ROC metric, best performance is obtained by JRip, while the worst 
performance is seen in K-nearest neighbours (K=1).

Classifiers Comparison with ROC Curve
ROC curve is generally used to visualize the binary classifiers performance over all possible thresholds, 
and AUC (arguably) is used to show the advisable way of summarizing the performance into a single 
value. ROC curve is a 2D graph in which, specificity (false positive rate) is plotted on x-axis and 
sensitivity (true negative) is plotted on y-axis. The area under the ROC curve ranges between 0 and 
1. The common rule to evaluate the classification algorithm performance is to find the area under 
the ROC (A-ROC) (Fawcett, 2006).

•	 If A-ROC < 0.5 means, something wrong;
•	 If A-ROC=0.5 means, it is not a good prediction;
•	 If 0.5 < A-ROC < 0.6 means, it is a poor prediction;
•	 If 0.6 < A-ROC < 0.7 means, it is a fair prediction;
•	 If 0.7 < A-ROC < 0.8 means, it is an acceptable prediction;

Table 6. Shotgun surgery cross validation results

10-Fold Cross Validation

Classifier
True 

Positive 
Rate

False 
Positive 

Rate
Precision Recall Accuracy F-Measure

Area 
Under 
ROC

J48 100 0 100 100 100 100 1.00

JRip 100 0 100 100 100 100 1.00

Random 
Forest 99.9 0 99.9 99.9 99.8 99.9 1.00

SMO 94.5 0.074 94.6 94.5 94.4 94.5 0.93

KNN(k=2) 87.5 0.264 87.2 87.5 87.4 86.9 0.92

Naive Bayes 86.8 0.210 86.8 86.8 86.8 86.8 0.93

Table 7. Message chaining cross validation results

10-Fold Cross Validation

Classifier True 
Positive 

Rate

False 
Positive 

Rate

Precision Recall Accuracy F-Measure Area 
Under 
ROC

J48 99.6 0.005 99.6 99.6 99.6 99.6 0.99

JRip 99.6 0.001 99.6 99.6 99.5 99.6 0.99

Random 
Forest

99.5 0.002 99.5 99.5 99.5 99.5 0.99

SMO 99.4 0.002 99.4 99.4 99.4 99.4 0.99

KNN(k=2) 96.1 0.073 96.1 96.1 96.1 96.1 0.98

Naive Bayes 95.1 0.017 95.9 95.1 95.1 95.3 0.98
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•	 If 0.8 < A-ROC < 0.9 means, it is an excellent prediction;
•	 If A-ROC >= 0.9 means, it is an outstanding prediction;
•	 If A-ROC = 1 means, it is a perfect prediction.

Table 6 and Table 7 reports that the result obtained for different classifiers can be compared 
with the help of area under ROC curve on two smells shown in Figure 5 and Figure 6, respectively.

It can be observed from the Figure 5 and Figure 6 that, all the classifiers of the two smells in 
area under ROC curve are getting close to value 1 and from these observations, it can be said that 
the experimental results have achieved high performance under ROC metric.

CODE SMELL DETECTION RULES

The algorithms J48 and JRip gives the human readable detection rules for the shotgun surgery and 
the message chaining.

Shotgun Surgery
For shotgun surgery, J48 produces decision tree, which can be expressed in terms of logical conditions 
(AND, OR).
(CC_method > 4) AND  (FANOUT_method > 2)

The rule detects shotgun surgery, if the method has more than four classes, call the method and 
the method is subjected to being changed. These two conditions are included in the shotgun surgery 
definition.

For shotgun surgery, JRip produces the following rule.
(CC_method  >=  5) AND (FANOUT_method >= 3)

This gives the same rule as J48 algorithm, i.e., both J48 and JRips algorithm gives the same rule 
for shotgun surgery.

Figure 5. Shotgun surgery area under ROC curve
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Message Chaining
For Message chaining, J48 produces decision tree, which can be expressed in terms of logical 
conditions (AND, OR).

(MeMCL_method > 0) AND (MaMCL_method >=3) OR (1)	

(MeMCL_method > 0) AND (NMCS_method > 2) OR	 (2)

(MeMCL_method > 0) AND (NMCS_method <= 2) AND (CINT_method > 5) OR	 (3)

(MeMCL_method > 0) AND (NMCS_method <= 2) AND (MaMCL_method > 2) OR	 (4)

The rules detect message chaining occurances, when at least one of the above four conditions is 
verified. The first, second and fourth rules are partly in the message chaining definition and in the 
third rule, third condition is not linked with the code smell definition.

For the message chaining, JRip produces the following rule.

(NMCS_method >= 3) AND (MaMCL_method >= 3)	

Some parts of the detection rules are placed in the message chaining definition.
In J48, and JRip algorithm, all rules of conditions produced are part of the conceptual definition of 

message chain, except one (CINT_method > 5) condition which is not a part of conceptual definition. 
This is because, there is a noise in the dataset.

Figure 6. Message chaining area under ROC curve
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CONCLUSION AND FUTURE DIRECTIONS

In this paper, the researchers have evaluated and compared both code smell detection (the shotgun 
surgery and the message chaining) datasets with the help of supervised ML techniques. This technique 
is used to evolve a new instance to check whether a particular code smell is correctly classified or 
not. This methodology can be utilized to detect other code smell also.

The researchers used two detection rules from the literature to identify the code smells. These rules 
produce imbalanced dataset. In order to balance the training dataset, researchers have used stratified 
random sampling. Then applied unsupervised learning on the positive instances to remove some of 
the false positive instances. Researchers have considered six known learning algorithms to detect the 
code smells in the dataset. To evaluate the performances of each algorithm 3 standard performance 
measures are used, i.e. F-measure, accuracy and area under the ROC. For shotgun surgery, the best 
performance is shown by J48, JRip algorithms and for the message chaining, the best performance 
is produced by JRip. Both the algorithms J48 and JRip provide the human understandable rules.

To improve the performance, attribute selection algorithm is used in ML. By default, an attribute 
selection is done by random forest algorithm and it is noted that it has performed better than KNN 
and naive bayes algorithm. In future, an attempt can be made to explore the performances of KNN 
and naive bayes with the help of feature selection.
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APPENDIX : SOFTWARE METRICS CATEGORIZED INTO QUALITY DIMENSIONS

Figure 7. Software metrics categorized into quality dimensions
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