
DOI: 10.4018/IJRSDA.2019040103

International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 2 • April-June 2019

﻿
Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

34

Detection of Shotgun Surgery and
Message Chain Code Smells using
Machine Learning Techniques
Thirupathi Guggulothu, University of Hyderabad, Hyderabad, India

Salman Abdul Moiz, University of Hyderabad, Hyderabad, India

ABSTRACT

Code smell is an inherent property of software that results in design problems which makes the software
hard to extend, understand, and maintain. In the literature, several tools are used to detect code smell
that are informally defined or subjective in nature due to varying results of the code smell. To resolve
this, machine leaning (ML) techniques are proposed and learn to distinguish the characteristics of
smelly and non-smelly code elements (classes or methods). However, the dataset constructed by the
ML techniques are based on the tools and manually validated code smell samples. In this article,
instead of using tools and manual validation, the authors considered detection rules for identifying
the smell then applied unsupervised learning for validation to construct two smell datasets. Then,
applied classification algorithms are used on the datasets to detect the code smells. The researchers
found that all algorithms have achieved high performance in terms of accuracy, F-measure and area
under ROC, yet the tree-based classifiers are performing better than other classifiers.

Keywords
Code Smells, Machine Learning, Software Refactoring, Stratified Sampling, Supervised Learning

INTRODUCTION

Code smells or bad code smells refers to an anomaly in the source code that may result in deeper
problems which makes software difficult to understand, evolve, and maintain. According to (Booch,
2006) smell is a kind of structure in the code that shows a violation of basic design principles such as
Abstraction, Hierarchy, Encapsulation, Modularity, and Modifiability. Even if the design principles
are known to the developers due to inexperience, the competition that is in the market and deadline
pressure are leading to violation of these principles. Fowler et al. (Fowler, 1999) have defined 22
informal code smells which are removed through refactoring techniques. These techniques are used
to enhance the internal structure of the code without varying the external behaviour and to improve
the quality of the software. The (Opdyke, 1992) authors have defined 72 refactoring techniques.

There are various methods and tools available in the literature to detect the code smells. Each
technique and tool produces different (Fontana, 2012). Bowes et al. (Bowes, 2013), compared two
code smell detection tools on message chaining and shown disparity of results between them. The
three main reasons for varying results are: 1) The code smells can be subjectively interpreted by the
developers, and hence detected in different ways. 2) Agreement between the detectors is low, i.e.,
different tools or rules detect a different type of smell for different code elements. 3) The threshold
value for identifying the smell can vary for the detectors.

This article published as an Open Access Article distributed under the terms of the Creative Commons Attribution License (http://cre-
ativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium, provided the author of the

original work and original publication source are properly credited.

International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 2 • April-June 2019

35

To address the above limitations, in particular the subjective nature, Fontana et al. (Fontana,
2016) proposed a machine learning (ML) technique to detect four code smells (Long Method, Data
Class, Feature Envy, Large Class) with the help of 32 classification techniques. The authors have
built 4 datasets, one for each smell. These datasets have been prepared based on the tools and manual
labelling process. Tools are used to identify whether the code elements (instances) are smelly or
not. But the tools may produce some false positive instances so, the authors manually validated
the instances to avoid the biasness. In this paper, instead of using tools and manual validation, the
authors have prepared two new method level code smell datasets of Fowler et al. (Fowler, 1999) from
the literature; based on the detection rules and unsupervised learning i.e., clustering to validate the
instances as smelly or not.

In the proposed work, an attempt is made to detect two code smells namely Shotgun surgery
and Message chaining with supervised learning techniques. It is an application of machine learning
(ML) classification approach used for code smell detection. It uses known data to determine how
the new instances should be classified into binary classification i.e., based on the metrics used for a
particular method, the ML approach helps in classifying a method to be prone to code smell or not. In
this paper, the dataset instances are methods of 74 heterogeneous java systems. The metrics of object-
oriented systems have been computed on method instances, which are the features or attributes of the
dataset. For each smell, one dataset is prepared by using detection rules from the literature (Ferme,
2013). The researchers applied a random stratified sampling on the method instances to balance the
datasets. Sample instances of the dataset are validated through unsupervised learning and added to the
training dataset. Then applied some known classification algorithms on the trained datasets to detect
the code smells, by using 10-fold cross validation method. To evaluate those algorithms, standard
metric measures such as F-score, accuracy and the area under the ROC are used. The experimented
algorithms have achieved high performance in both the smells.

The paper is been arranged as follows; The second section, introduces a work related to detection
of code smells; The third section, defines two proposed approaches of code smell detections; The fourth
section, detecting code smells using ML approach; The fifth section, presents experimental results;
The sixth section, presents the code smell detection rules; and the final section, gives conclusion
and future directions.

RELATED WORK

According to (Kessentini, 2014) approaches of code smell detection are classified into 7 categories (i.e.,
cooperative-based approaches, visualization-based approaches, search-based approaches, probabilistic
approaches, metric-based approaches, symptoms based approaches, and manual approaches). In the
manual approach developers and maintainers follow different reading guidelines to detect smells.
As it requires human involvement, it consumes more time for large systems. In the metric-based
approach, smell detection is based on source code metrics. Symptoms based approach uses different
notations to detect smells. But the problem with this approach is, it requires analysis to convert
symptoms or notations into detection algorithms. Probabilistic approach is based on applying fuzzy
logic rules to detect smells. The visualization approach uses semi-automated processes to detect and
visualize the smells with the integration of human capabilities. But the problem with this approach
is that, it requires human effort, with increase in large systems. The search-based approach applies
different algorithms to detect the smells. Most of the techniques use ML approaches. The success
of this approach depends upon the training datasets. The cooperative approach performs different
activities in a cooperative way.

Fontana et al. (2015) proposed a detection strategy for the code smells. The authors have derived
metric thresholds to detect code smells, from a benchmark of 74 java software systems.

Fontana et al. (2016) experimented and compared the supervised ML algorithms to detect the
code smells. The authors have used 74 java systems to prepare the training dataset which are manually

International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 2 • April-June 2019

36

validated instances. Then used 16 different classification algorithms and in addition to it, boosting
techniques are applied on 4 code smells viz., Long Method, Data Class, Feature Envy, and Large Class.

In this proposed approach an attempt is made to detect two additional code smells called shotgun
surgery and message chaining through ML classification techniques. In Fontana et al. (Fontana F. A.,
2016) advisors (Tools) are used to identify whether the class is smelly or not, but the authors have
considered the tools to be subjective to errors and not biased. So, they went for manual validation on
the instances. But in the proposed approach, the researchers have used the code smell deterministic
rules from literature (Fontana F. A., 2015) to identify whether the class is smelly or not and instead of
manual validation unsupervised learning is used. In the proposed work, the training dataset size is larger
than the previous work. A large dataset would generalize the instances effectively. In both proposed
and previous work, the tree based classifiers are giving better performance than other classifiers.

CODE SMELL BASICS

In this work, the researchers have considered two code smells among 22 code smells identified by
Fowler et al. (Fowler, 1999), to experiment on the smell detection approach. The reason for choosing
these two code smells is to cover potential problems related to object-oriented quality dimension
called coupling. Coupling is the relational strength between entities of the systems. High coupling
may negatively impact the software quality dimension. In Table 1, the researchers have outlined
the selected code smells and reported the smell definitions. There are usually two levels of affected
entities in the code smell i.e., class level and method level and each code smell affect either an intra
or inter class. Intra class means code smell affecting a single entity in the source code and inter class
means code smell affecting more than one entity in the source code. In this paper, work is carried
out on method level smells.

Shotgun surgery says, to introduce a small new change, a developer has to change many classes
and methods, and most of the time writes duplicated code, which violates the “Don’t Repeat Yourself”
principle.

The message chaining, code smell refer to a particular class or method which has high coupling
with other classes or methods in chain-like delegations, i.e., methods that contain long sequences of
method calls to get data from other classes.

CODE SMELL DETECTION USING MACHINE LEARNING APPROACH

The application of ML classification approach is to detect the code smell using known data to
determine how the new data must be classified into a binary classification (code is smelly or not),
Figure 1 describes the flow of activities in the proposed approach to detect code smells.

The summary of the flow chart will be described here. Following sections will give a detailed
explanation of one each activities of the researchers approach during the code smell detection.

Table 1. Selected fowler code smell

Name of Code Smell Affected Entities Intra / Inter Impacted on Object
Oriented Quality

Dimensions

Shotgun Surgery Method Inter class Coupling

Message chaining Method Inter class Coupling

International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 2 • April-June 2019

37

•	 A collection of 74 heterogeneous java systems are been collected and considered as input instances
(methods) for creation of the dataset.

•	 From the given 74 systems, metrics extraction was done from all the levels such as Project,
Package, Class and Method. These metrics become features to the dataset.

•	 For the binary classification of code smells, class variables are considered. To assign class variable
(smelly or not) the researchers chosen code smell rules from the literature.

•	 The above steps result in a dataset which is imbalanced. The researchers applied a random
stratified sampling on the method instances to balance the datasets.

•	 Sample instances of the dataset are validated through unsupervised learning and added to the
training dataset.

•	 Known supervised classification algorithms are applied on the training dataset.
•	 Among the supervised classification algorithms, J48 and JRIP produces human readable code

smell rules.

Collection of Java Software Systems
In order to prepare code smell classification dataset, java software systems are collected from (Fontana
F. A., 2016). The author has provided a collection of 74 java systems with the compiled version,
collected from (Tempero, Anslow, Dietrich et al., 2010). The 74 systems are having different sizes
and various application domains. Table 2 reports, the characteristics of all 74 projects. The data
selected are large enough to experiment on the ML algorithms. The large dataset would lead to more
generalized ML algorithm results. The number of instances (methods) create the dataset.

Extracting All Code Level Metrics
The metrics of source code are used to identify the problems and even used to improve the quality of
the software system. The various types of metrics used to measure source code properties are coupling,
encapsulation, cohesion, complexity, size and inheritance. Software quality dimensions cover different
aspects of the source code. Usually, metrics are categorized into three: Process, Resource, and Product.

1. 	 Process Metrics: These are the metrics used to measure the effectiveness and efficiency of
various process. Process metrics are related to function points, percentage of defective detection,
defective density etc.

Figure 1. Flow of activities to detect the code smells

International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 2 • April-June 2019

38

2. 	 Resource Metrics: These are the metrics used to measure the quantity of cost, defects,
productivity, schedule and estimation of various project deliverables and resources. Resource
metrics are also related to schedule, cost, productivity and number of developers.

3. 	 Product Metrics: These are the metrics used to measure the internal structure of software.
Product metrics are related to software quality dimensions like coupling, encapsulation, cohesion,
complexity, size and inheritance.

In this paper, the researchers particularly focused on product metrics because, software refactoring
changes the internal structure of the software. As mentioned in the above definition, product metrics
measures the internal structure of software. The six object oriented software quality dimensions
are related to code-smell characteristics. In appendix section, Figure 7 listed the metrics which are
categorized into quality dimensions and with their abbreviations. Each dimension is related to few
metrics list which are mentioned below, that are independent variable of the dataset:

•	 Size: The size of the system depends upon number of packages, number of classes, number
of methods, and number of lines of code and so on. Larger the system, the more difficult it
is to manage. Size related metrics are LOC, LOCNAMM, NOM, NOPK, NOCS, NOA, and
NOMNAMM.

•	 Complexity: It is measured based on the level of difficulty in understanding the structure of the
class (Bansiya, Jagdish and Davis, Carl G., 2002). As the complexity of the class increases, it
would be hard to understand it. Complexity related metrics are CYCLO, WMC, WMCNAMM,
AMW, MAXNESTING, WOC, CLNAMM, NOP, NOAV, ATLD, NOLV, and AMWNAMM.

•	 Cohesion: It is used to measure the strength of relatedness among methods and attributes in a
class (Balmas, Francoise and Bergel, Alexandre and Denier, Simon and Ducasse, Stephane and
Laval, Jannik and Mordal-Manet, Karine and Abdeen, Hani and Bellingard, Fabrice, 2010).
Cohesion metrics are LCOM5, TCC.

•	 Coupling: It is used to measure the strength of dependence among the objects in a design.
Therefore, the stronger the coupling between the objects, the more difficult to change, understand,
and correct. Coupling related metrics are FANOUT, ATFD, FDP, RFC, CBO, CFNAMM, CINT,
CDISP, CC, and CM.

•	 Encapsulation: It is defined as binding of data and behavior within a single block called class.
Without encapsulation in classes an unauthorized person can able to access it directly. The metrics
related to encapsulation are LAA, NOAM, and NOPA.

•	 Inheritance: Is-a relationship between classes is measured by inheritance. That means acquiring
the properties of one class to another class. The level of nested classes depends upon the
relationship related to the inheritance hierarchy. As the complexity of the hierarchy increases
understanding it become difficult, because of the inherited methods and attributes from the
ancestor classes. Inheritance related metrics are DIT, NOI, NOC, NMO, NIM, and NOII.

The object oriented metrics (product) are grouped into four categories called class, method,
package and project (LAB.(n.d)). Their corresponding few metrics are listed below, in the Table 3.
These metric levels follow the containment relation, i.e., class is present in a package, method is

Table 2. Summary of 74 projects

Number of Projects Number of Lines
in All Projects

Number of
Packages in All

projects

Number of Classes
in All Projects

Number of Methods
in All Projects

74 6,785,568 3420 56,225 4,15,995

International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 2 • April-June 2019

39

present in a class etc. There are usually two levels of affected entities in the code smell i.e., class
level and method level. In this paper, researchers are working on method level smells. The method
level smells, not only includes method level metrics, but also includes class, package and project
level metrics in the dataset as an independent variable.

Rules for Smell Detection
The supervised classification algorithm needs a training dataset which consists of instances (methods
or classes), features (all level metrics) and class labels (code smells). In the dataset preparation, the
class label should specify whether a method or a class instance is affected by the code smell or not. The
data of 74 systems are large enough and heterogeneous. Hence, it is difficult to assign class labels for
such large dataset and requires massive human intervention. This gave way to create a dataset, using
sampling approach. The simplest method of sampling method is random sampling. Even, random
sampling gives less code smells in this domain, i.e., the selected instances are less affected by the
code smells in the training dataset. Here in this case, the researchers assigned class label instances
with the help of detection rules proposed in the literature (Ferme, 2013). The researchers labelled 1
as an affected instance and 0 as an unaffected instance. The detection approach, composed of binary
logical conditions (AND, OR). Figure 2 and Figure 3 shows, shotgun surgery and message chaining
detection rules respectively. These rules will help to detect whether the method instances are smelly
or not. The reason for choosing these detection rules is that, the threshold of the metrics are derived
from a benchmark of selected 74 software system (Fontana F. A., 2015). The metrics CC, CM, and
FANOUT are used to identify the characteristics of the shotgun surgery smell. Similarly, MaMCL,
NMCS, and MeMCL are used to identify the characteristics of the message chaining smell. The
computation of these metrics are defined in (Ferme, 2013). The outcome of this step results in a dataset.

Unsupervised Learning
The researchers have applied unsupervised learning (clustering) on the entire method level dataset
to know the number of clusters that can be formed. In this work, the method instances can be either
smelly or not. So, the two clusters are considered to be binary classifiers. The algorithm used for
clustering is k-means. The method instances which are affected (positive) by the above rules are
compared with the formed clusters to validate the instances. If the instance produces same cluster as
it’s label then it is considered else discarded for training dataset.

Table 3.Object oriented metrics

Project Level Metrics Package Level Metrics Class Level Metrics Method Level Metrics

NOPK, NOCS, NOI,﻿
NOMNAMM, LOC etc.

NOCS, NOMNAMM,﻿
NOI, LOC, NOM etc.

NOII, NOAM, NOCS﻿
NMO, ATFD etc.

CYCLO, NOP, NMCS﻿
LOC, LAA etc

Figure 2. Shotgun surgery detection strategy

International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 2 • April-June 2019

40

Stratified Random Sampling on Datasets
Table 4 reports, the results after applying detection rules on the entire Qualitus Corpus dataset.

It can be observed from Table 4 that the number of negatively affected instances are more when
compared to positively affected instances. Using of open source system, resulted in increase of negative
instances. Open source systems are used to produce the source code with poor quality (Stamelos,
2002). The recent study indicates that the open source systems and commercial systems are having
almost the same code quality (Spinellis, 2008). From the observation it was found that when compared
to commercial systems, pure open sources are giving better software structures (Spinellis, 2008;
Capra, 2011). The Qualitas Corpus (Tempero, Anslow, Dietrich et al., 2010) has both “pure open
source” and “open source” systems where there is a commercial participation. Thus, it is observed
that affected smells (i.e., positive instances) detected using open source systems are less. This leads
to highly imbalanced datasets (He, 2009). To balance the dataset, the researchers have used stratified
random sampling approach which is organized as follows:

•	 For each project, group the negative instances for the dataset.
•	 Randomly, sample the negative instances of each group until approximately the double of the

positive instances are obtained.
•	 For positive instances, unsupervised learning (clustering) is used for validation.
•	 The obtained positive and negative instances are placed in the training dataset.

An overview of the procedure is shown in Figure 4. This covers different domain instances
having different characteristics.

EXPERIMENTATION AND RESULTS

Experimental Setup
Researchers have used the application of supervised learning for the experiments and selected six
known classification algorithms such as Bayesian networks, support vector machines, K-nearest
neighbours, rule learner, decision trees, ensemble method (Random forest) and WEK (Hall, 2009)
tool to provide the implementations of the selected algorithms. In general, tree based classifiers

Figure 3. Message chain detection strategy

Table 4. Detection strategies of two smells on entire dataset

Code Smells Method Instances Positive Instances Negative Instances

Shotgun surgery 415995 600 415395

Message chaining 415995 673 415321

International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 2 • April-June 2019

41

are performing better than the other classifiers in (Fontana F. A., 2016) detecting the code smells.
Following steps gives a short description of the selected algorithms:

1. 	 J48 (C4.5) algorithm (Quinlan, 1993): Decision tree tries to recursively partition the dataset
into subsets by evaluating the normalized information gain (difference in entropy) resulting from
choosing an attribute for splitting the data. The attribute with the highest information gain is used
for every step. The training process stops when the resulting nodes contain instances of single
classes or no such attribute that can be found with information gain. The authors have used the
default parameters supported by WEKA which are given below.
1. 	 Criterion: It defines the function to measure the quality of split. J48 support Entropy

(measure the level of impurity) for information gain.
2. 	 minNumObj: Minimum number of instances required to split the internal nodes. By default,

the value is 2.
3. 	 Confidence vector: The parameter altered to test the effectiveness of post-pruning was

labelled by WEKA as the confidence factor. It builds a full tree and then work back from
the leaves, applying a statistical test at each stage. By default, the value is 0.25.

2. 	 Random Forest (Breiman, 2001): It generates different decision trees based on randomly selected
attributes and instances. These trees become a forest called “random forest tree”. It conducts
voting on all the instances to decide the class instance based on polling result. The default random
forest tree parameters in WEKA are as follows:
1. 	 maxDepth: It indicates how deep the tree can be. The deeper the tree, the more splits it

has, and captures more information about the data. By default, the value is 0 (unlimited)
means the nodes are expanded until all leaves are pure or until all leaves contain less than
minimum number of instances.

2. 	 numTrees: The number of trees to be generated. By default the value is set to 10.
3. 	 minFeatues: The number of attributes to be used in random selection is 7.

3. 	 JRip (Cohen, 1995): It implements a propositional rule learner based on association rules. It is
used to extract human understandable rules for code smells.

Figure 4.

International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 2 • April-June 2019

42

4. 	 Naive Bayes (John, 1995): It is a supervised classification algorithm based on the assumption
that occurrence of certain attribute is independent of occurrence of other attribute.

5. 	 Sequential minimal optimization (SMO) (Platt, 1998): It is restricted to binary class. To apply
support vector machine the researchers should implement the SMO algorithm in order to train
the instances.

6. 	 K-nearest neighbours (k=2) (Ah, 1991): The learning is also known as “instance based”
learning. It is based on similarity (distance) calculation between instances. In the classes – to -
cluster evaluation, the researchers verified that the number of clusters are 2 in both the datasets.
The error rate was minimal for 2 clusters, when compared to others.

Researchers used the cross validation (10-fold) technique to evaluate predictive models to find
the best algorithms for the experimentation. They have applied three standard performance measures
for ML algorithms.

•	 Accuracy is the percentage of correct prediction. It is insufficient to select a model when, the
positive and negative instances are imbalanced, but this will never occur in this approach. As
the researchers have balanced two datasets with stratified random sampling.

•	 F-Measure is the 2 * ((precision * recall) / (precision + recall)) i.e., harmonic mean of precision
and recall.

•	 Area under ROC allows visualizing the performances of the classifier across all possible
classification thresholds, thus helping to choose a threshold that approximately balances sensitivity
and specificity.

Dataset Results
After applying stratified random sampling, the researchers have obtained two training datasets (one
for each code smell) which are specified in Table 5. In Table 4, 600 positive instances are detected by
the shotgun surgery rule. On applying unsupervised learning on the obtained instances, 141 instances
belong to other cluster. So, researchers removed those instances and added remaining instances to
the training dataset of shotgun surgery which are reported in Table 5. Similarly, among 673 positive
instances detected by message chaining rule, 190 instances belong to other cluster are removed and
remaining are added to the training dataset and reported in Table 5. From the table, it can be observed
that the datasets are well balanced in terms of positive and negative instances. The supervised learning
will take these datasets as input and trains the ML algorithms.

Algorithms Results
The results of the proposed method of two code smell (Shotgun Surgery, Message Chaining) datasets
with 10-fold cross validation and performance metrics are shown in Table 6 and Table 7, respectively.

It can be observed from Table 6 report, J48 and JRip both gives 100 percentage accuracy. These
two algorithms have given the best performance when compared to other algorithms, while the
worst performance is shown by Naive Bayes based on F-measure and accuracy performance metrics.
According to the area under the ROC metric, the best performance got from J48, JRip and Random
Forest. The worst performance got from K-nearest neighbors (K = 1).

Table 5. Training datasets of two smells

Training Dataset Method Instances Positive Instances Negative Instances

Shotgun surgery 1717 459 1258

Message chaining 1889 483 1406

International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 2 • April-June 2019

43

It can be observed from the Table 7 report that, JRip gives the best performance, while the worst
performance is achieved by Naive Bayes based on F-measure and accuracy performance metrics.
According to the area under the ROC metric, best performance is obtained by JRip, while the worst
performance is seen in K-nearest neighbours (K=1).

Classifiers Comparison with ROC Curve
ROC curve is generally used to visualize the binary classifiers performance over all possible thresholds,
and AUC (arguably) is used to show the advisable way of summarizing the performance into a single
value. ROC curve is a 2D graph in which, specificity (false positive rate) is plotted on x-axis and
sensitivity (true negative) is plotted on y-axis. The area under the ROC curve ranges between 0 and
1. The common rule to evaluate the classification algorithm performance is to find the area under
the ROC (A-ROC) (Fawcett, 2006).

•	 If A-ROC < 0.5 means, something wrong;
•	 If A-ROC=0.5 means, it is not a good prediction;
•	 If 0.5 < A-ROC < 0.6 means, it is a poor prediction;
•	 If 0.6 < A-ROC < 0.7 means, it is a fair prediction;
•	 If 0.7 < A-ROC < 0.8 means, it is an acceptable prediction;

Table 6. Shotgun surgery cross validation results

10-Fold Cross Validation

Classifier
True

Positive
Rate

False
Positive

Rate
Precision Recall Accuracy F-Measure

Area
Under
ROC

J48 100 0 100 100 100 100 1.00

JRip 100 0 100 100 100 100 1.00

Random
Forest 99.9 0 99.9 99.9 99.8 99.9 1.00

SMO 94.5 0.074 94.6 94.5 94.4 94.5 0.93

KNN(k=2) 87.5 0.264 87.2 87.5 87.4 86.9 0.92

Naive Bayes 86.8 0.210 86.8 86.8 86.8 86.8 0.93

Table 7. Message chaining cross validation results

10-Fold Cross Validation

Classifier True
Positive

Rate

False
Positive

Rate

Precision Recall Accuracy F-Measure Area
Under
ROC

J48 99.6 0.005 99.6 99.6 99.6 99.6 0.99

JRip 99.6 0.001 99.6 99.6 99.5 99.6 0.99

Random
Forest

99.5 0.002 99.5 99.5 99.5 99.5 0.99

SMO 99.4 0.002 99.4 99.4 99.4 99.4 0.99

KNN(k=2) 96.1 0.073 96.1 96.1 96.1 96.1 0.98

Naive Bayes 95.1 0.017 95.9 95.1 95.1 95.3 0.98

International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 2 • April-June 2019

44

•	 If 0.8 < A-ROC < 0.9 means, it is an excellent prediction;
•	 If A-ROC >= 0.9 means, it is an outstanding prediction;
•	 If A-ROC = 1 means, it is a perfect prediction.

Table 6 and Table 7 reports that the result obtained for different classifiers can be compared
with the help of area under ROC curve on two smells shown in Figure 5 and Figure 6, respectively.

It can be observed from the Figure 5 and Figure 6 that, all the classifiers of the two smells in
area under ROC curve are getting close to value 1 and from these observations, it can be said that
the experimental results have achieved high performance under ROC metric.

CODE SMELL DETECTION RULES

The algorithms J48 and JRip gives the human readable detection rules for the shotgun surgery and
the message chaining.

Shotgun Surgery
For shotgun surgery, J48 produces decision tree, which can be expressed in terms of logical conditions
(AND, OR).
(CC_method > 4) AND (FANOUT_method > 2)

The rule detects shotgun surgery, if the method has more than four classes, call the method and
the method is subjected to being changed. These two conditions are included in the shotgun surgery
definition.

For shotgun surgery, JRip produces the following rule.
(CC_method >= 5) AND (FANOUT_method >= 3)

This gives the same rule as J48 algorithm, i.e., both J48 and JRips algorithm gives the same rule
for shotgun surgery.

Figure 5. Shotgun surgery area under ROC curve

International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 2 • April-June 2019

45

Message Chaining
For Message chaining, J48 produces decision tree, which can be expressed in terms of logical
conditions (AND, OR).

(MeMCL_method > 0) AND (MaMCL_method >=3) OR (1)	

(MeMCL_method > 0) AND (NMCS_method > 2) OR	 (2)

(MeMCL_method > 0) AND (NMCS_method <= 2) AND (CINT_method > 5) OR	 (3)

(MeMCL_method > 0) AND (NMCS_method <= 2) AND (MaMCL_method > 2) OR	 (4)

The rules detect message chaining occurances, when at least one of the above four conditions is
verified. The first, second and fourth rules are partly in the message chaining definition and in the
third rule, third condition is not linked with the code smell definition.

For the message chaining, JRip produces the following rule.

(NMCS_method >= 3) AND (MaMCL_method >= 3)	

Some parts of the detection rules are placed in the message chaining definition.
In J48, and JRip algorithm, all rules of conditions produced are part of the conceptual definition of

message chain, except one (CINT_method > 5) condition which is not a part of conceptual definition.
This is because, there is a noise in the dataset.

Figure 6. Message chaining area under ROC curve

International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 2 • April-June 2019

46

CONCLUSION AND FUTURE DIRECTIONS

In this paper, the researchers have evaluated and compared both code smell detection (the shotgun
surgery and the message chaining) datasets with the help of supervised ML techniques. This technique
is used to evolve a new instance to check whether a particular code smell is correctly classified or
not. This methodology can be utilized to detect other code smell also.

The researchers used two detection rules from the literature to identify the code smells. These rules
produce imbalanced dataset. In order to balance the training dataset, researchers have used stratified
random sampling. Then applied unsupervised learning on the positive instances to remove some of
the false positive instances. Researchers have considered six known learning algorithms to detect the
code smells in the dataset. To evaluate the performances of each algorithm 3 standard performance
measures are used, i.e. F-measure, accuracy and area under the ROC. For shotgun surgery, the best
performance is shown by J48, JRip algorithms and for the message chaining, the best performance
is produced by JRip. Both the algorithms J48 and JRip provide the human understandable rules.

To improve the performance, attribute selection algorithm is used in ML. By default, an attribute
selection is done by random forest algorithm and it is noted that it has performed better than KNN
and naive bayes algorithm. In future, an attempt can be made to explore the performances of KNN
and naive bayes with the help of feature selection.

International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 2 • April-June 2019

47

REFERENCES

Ah, D. W. (1991). Instance-based learning algorithms. Machine Learning, 6(1), 37–66. doi:10.1007/BF00153759

Balmas, Francoise and Bergel, Alexandre and Denier, Simon and Ducasse, Stephane and Laval, Jannik and Mordal-
Manet, Karine and Abdeen, Hani and Bellingard, Fabrice. (2010). oftware metric for Java and C++ practices.

Bansiya, J., & Davis, C. G. (2002). A hierarchical model for object-oriented design quality assessment. IEEE
Transactions on Software Engineering, 28(1), 4–17. doi:10.1109/32.979986

Booch, G. (2006). Object oriented analysis \& design. Pearson Education India.

Bowes, D. a. (2013). The inconsistent measurement of message chains. In Proceedings of the 2013 4th
International Workshop on Emerging Trends in Software Metrics (WETSoM) (pp. 62--68). IEEE.

Breiman, L. (2001). Random Forest. Machine Learning, 45(1), 5–32. doi:10.1023/A:1010933404324

Capra, E. L., Francalanci, C., Merlo, F., & Rossi-Lamastra, C. (2011). Firms’ involvement in Open Source
projects: A trade-off between software structural quality and popularity. Journal of Systems and Software, 84(1),
144–161. doi:10.1016/j.jss.2010.09.004

Cohen, W. W. (1995). Fast effective rule induction. In Machine Learning Proceedings 1995 (pp. 115–123).
Elsevier. doi:10.1016/B978-1-55860-377-6.50023-2

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874. doi:10.1016/j.
patrec.2005.10.010

Ferme, V. (2013). JCodeOdor: A software quality advisor through design flaws detection [Master’s thesis].
University of Milano-Bicocca, Milano, Italy.

Fontana, F. A. (2012). Automatic detection of bad smells in code: An experimental assessment. Journal of
Object Technology, 11, 5–1.

Fontana, F. A. (2015). Automatic metric thresholds derivation for code smell detection. In Proceedings of the 2015
IEEE/ACM 6th International Workshop on Emerging Trends in Software Metrics (WETSoM) (pp. 44-53). IEEE.

Fontana, F. A. (2016). Comparing and experimenting machine learning techniques for code smell detection.
Empirical Software Engineering, 21(3), 1143–1191. doi:10.1007/s10664-015-9378-4

Fowler, M. a. (1999). Refactoring: improving the design of existing code. Addison-Wesley Professional.

Hall, M. a. (2009). The WEKA data mining software: an update. ACM SIGKDD explorations newsletter, 11, 10-18.

He, H. (2009). Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 21(9),
1263–1284. doi:10.1109/TKDE.2008.239

John, G. H. (1995). Estimating continuous distributions in Bayesian classifiers. Morgan Kaufmann Publishers Inc.

Kessentini, W., Kessentini, M., Sahraoui, H., Bechikh, S., & Ouni, A. (2014). A cooperative parallel search-
based software engineering approach for code-smells detection. IEEE Transactions on Software Engineering,
40(9), 841–861. doi:10.1109/TSE.2014.2331057

Machine learning for code smell detection. (n.d.). ESSeRE Lab. Retrieved from http://essere.disco.unimib.it/
wiki/research/mlcsd

Opdyke, W. F. (1992). Refactoring object-oriented frameworks. University of Illinois at Urbana-Champaign, IL.

Platt, J. (1998). Sequential minimal optimization: A fast algorithm for training support vector machine.

Quinlan, J. R. (1993). C4.5: Programs for machine leaning. San Francisco, CA: Morgan Kaufmann Publisher Inc.

Spinellis, D. (2008). A tale of four kernels. In Proceedings of the 30th international conference on Software
engineering (pp. 381--390). ACM.

Stamelos, I., Angelis, L., Oikonomou, A., & Bleris, G. L. (2002). Code quality analysis in open source software
development. Information Systems Journal, 12(1), 43–60. doi:10.1046/j.1365-2575.2002.00117.x

http://dx.doi.org/10.1007/BF00153759
http://dx.doi.org/10.1109/32.979986
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1016/j.jss.2010.09.004
http://dx.doi.org/10.1016/B978-1-55860-377-6.50023-2
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1007/s10664-015-9378-4
http://dx.doi.org/10.1109/TKDE.2008.239
http://dx.doi.org/10.1109/TSE.2014.2331057
http://essere.disco.unimib.it/wiki/research/mlcsd
http://essere.disco.unimib.it/wiki/research/mlcsd
http://dx.doi.org/10.1046/j.1365-2575.2002.00117.x

International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 2 • April-June 2019

48

Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., ... & Noble, J. (2010). The Qualitas Corpus:
A curated collection of Java code for empirical studies. In Proceedings of the 2010 17th Asia Pacific Software
Engineering Conference (APSEC) (pp. 336-345). IEEE. doi:10.1109/APSEC.2010.46

http://dx.doi.org/10.1109/APSEC.2010.46

International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 2 • April-June 2019

49

APPENDIX : SOFTWARE METRICS CATEGORIZED INTO QUALITY DIMENSIONS

Figure 7. Software metrics categorized into quality dimensions

International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 2 • April-June 2019

50

Thirupathi Guggulothu is working as a Research Scholar in the area of software engineering, University of
Hyderabad and has done his post-graduation in the stream of computer science at the University of Hyderabad.
He has worked as a research associate on the project titled “implementation of A5/1 attack” sponsored by DLRL
in the University of Hyderabad. His research interests include software evolution, software maintenance, and
machine learning. He qualified for UGC NET and TS SET in 2017.

Salman Abdul Moiz’s is working as an Associate Professor in the School of Computer & Information Sciences at
the University of Hyderabad. He worked as a Professor & Head of CSE at GITAM University, Hyderabad Campus.
He has previously worked as research scientist at the Centre for Development of Advanced Computing, Bangalore.
He is a member of the IEEE, ACM, IE, and EWB. His research interests include software engineering, software
re-usability, mobile databases, and e-learning.

