
DOI: 10.4018/IJRSDA.2019010103

International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 1 • January-March 2019

﻿
Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

43

Conditioned Slicing of 
Interprocedural Programs
Madhusmita Sahu, National Institute of Technology, Odisha, India 

ABSTRACT

Program slicing is a technique to decompose programs depending on control flow and data flow 
amongst several lines of code in a program. Conditioned slicing is a generalization of static slicing 
and dynamic slicing. A variable, the desired program point, and a condition of interest form a slicing 
criterion for conditioned slicing. This paper proposes an approach to calculate conditioned slices 
for programs containing multiple procedures. The approach is termed Node-Marking Conditioned 
Slicing (NMCS) algorithm. In this approach, first and foremost step is to build an intermediate 
symbolization of a given program code and the next step is to develop an algorithm for finding out 
conditioned slices. The dependence graph, termed System Dependence Graph (SDG), is used to 
symbolize intermediate presentation. After constructing SDG, the NMCS algorithm chooses nodes 
that satisfy a given condition by the process of marking and unmarking. The algorithm also finds out 
conditioned slices for every variable at every statement during the process. NMCS algorithm employs 
a stack to save call context of a method. Few edges in SDG are labeled to identify the statement that 
calls a method. The proposed algorithm is implemented, and its performance is tested with several 
case study projects.

Keywords
Conditioned Slice, Dynamic Slice, Program Slicing, Static Slice, System Dependence Graph

Note: This is an extended version of the paper published in Proceedings of 3rd International 
Conference on Computational Intelligence in Data Mining (ICCIDM 2016), Bhubaneswar, 2016 
(Sahu et al., 2016).

1. INTRODUCTION

Program slicing is a decomposition technique utilized to decompose programs depending on control 
flow and data flow amongst several lines of code in a program code. It is a kind of program analysis 
technique. It takes out statements related to computation of a variable’s value at a specified point in 
program. The pulled out statements, containing assignment and predicate statements, constitute a 
program slice. These statements may affect or be affected by value of variable v at program location 
l. A slice is computed by employing a slicing criterion. The tuple < l, v > is regarded as a slicing 
criterion. The slice may be static or dynamic according to input to program code. It is said to be static 
when it extracts all statements from a program code w.r.t. a slicing criterion regardless input to program 
(Weiser, 1981). On the other hand, it is said to be dynamic when all statements from a program are 
extracted w.r.t. a slicing criterion for a specific input to program code (Korel & Laski, 1988).

Program slices are computed in two steps. The first and foremost step is concerned with the 
construction of an intermediate symbolization of program code. In next step, an algorithm is applied 

This article published as an Open Access Article distributed under the terms of the Creative Commons Attribution License (http://cre-
ativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium, provided the author of the 

original work and original publication source are properly credited.



International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 1 • January-March 2019

44

to that intermediate representation to find out slices. Program slicing has been employed in many 
areas of software engineering like debugging, software maintenance, testing, functional cohesion, 
software refactoring, software quality assurance, etc.

Conditioned slicing is a generalization of static slicing and dynamic slicing (Canfora et al., 1998). 
A conditioned slice is in the form of a tuple <Pr,lc,q>, where Pr is a condition, lc is a required statement 
in program code and t is a variable. Conditioned slicing puts away those chunks of original program 
that cannot affect variables at required statement upon satisfaction of conditions. A conditioned slice 
is computed in two steps: first, the program is simplified with respect to condition provided in slicing 
criterion. Thus, statements, not satisfying given condition, are removed. Then, a slice is computed on 
the reduced program. The reduced program is referred to as a conditioned program. More details on 
conditioned slicing can be obtained in (Canfora et al., 1998; Cheda et al., 2008; Danicic et al., 2000; 
(Danicic et al., 2004; Fox et al., 2004; Harman et al., 2001; Hierons et al., 2002).

Motivation
Static slicing does not take into account the information about execution state of the program code. 
Thus, static slices are constructed irrespective of the input to the program code. Dynamic slicing 
utilizes the complete information about execution behavior of the program. Thus, dynamic slices are 
dependent on input to program code. There must be a slicing technique that preserves the execution 
behavior of the program and is independent of input to the program. Conditioned slicing solves 
this problem by computing the slices at a particular program point for a variable with respect to a 
condition. Nowadays, most of the programs are interprocedural in nature. There is hardly any work 
done on conditioned slicing of interprocedural programs. This paper demonstrates a technique to 
find out conditioned slices of programs containing multiple procedures.

Objectives
The objective of this work is to propose an algorithm to determine conditioned slices of interprocedural 
programs using an intermediate representation, a dependence graph. The authors also aim at computing 
slice time for various programs of different lines of code.

The structure of the rest of paper is done as per following ways. Section 2 delivers some 
background details of the proposed technique. In Section 3, literature survey is discussed. In Section 4, 
the proposed approach, i.e., Node-Marking Conditioned Slicing (NMCS) algorithm for interprocedural 
programs is discussed. Section 5 outlines complexity analysis of NMCS algorithm. In Section 6, the 
correctness of NMCS algorithm is established. Section 7 provides the implementation and experimental 
results of the proposed technique. Section 8 provides conclusions and future works.

2. BACKGROUND

This section discusses some basic concepts required to understand the proposed work.

2.1. System Dependence Graph (SDG)
Several researchers have contributed towards the area of program slicing. For a given slicing criterion, 
a slice can be determined manually for a simple program with less complexity. But, with increasing 
size and complexity of the programs, automatic slice computation is of

greatest importance. Current automated slicing techniques require that the information available 
in a program source code be first transformed into some intermediate representation and then the 
slicing technique be applied. The different types of program representations include control flow 
graph (CFG), program dependence graph (PDG), system dependence graph (SDG). Details of 
program representations can be discovered in (Binkley & Gallagher, 1996; Horwitz et al., 1990; 
Mohapatra, 2005).



International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 1 • January-March 2019

45

3. LITERATURE SURVEY

The technique used by Weiser involved solving data flow equations, and the slice was called static 
backward slice (Weiser, 1981). Ottenstein and Ottenstein developed program dependence graph (PDG) 
for intraprocedural programs and computed the slice by traversing backward on the PDG (Ottenstein 
& Ottenstein, 1984). Horwitz et al. worked out System Dependence Graph (SDG) to symbolize 
interprocedural program source codes and recommended a two-phase algorithm to calculate slices 
(Horwitz et al., 1990). The technique of dynamic slicing was first developed by Korel and Laski 
(Korel & Laski, 1988). Silva performed a survey on some work done on program slicing (Silva, 2012). 
He reported various features and applications of each technique using examples and established the 
relations between them.

Canfora et al. brought in the concept of conditioned slicing and developed a general framework, 
employing subsume relation, for program slicing models that were based on deleting statements 
(Canfora et al., 1998). A conditioned program slicer, ConSIT, was originated by Danicic et al. 
(Danicic et al., 2000). Fox et al. put in theory, design, implementation and utility of ConSIT system 
(Fox et al., 2004). Lucia discussed different slicing methods that were based on deleting statements 
together with their applications to software engineering (Lucia, 2001). Harman et al. introduced the 
pre/post conditioned slicing method that could be employed for program analysis regarding pre- and 
post- conditions (Harman et al., 2001). Hierons et al. discussed utility of conditioned slicing to aid 
partition testing (Hierons et al., 2002). Danicic et al. proposed an approach to compute executable 
union slices using conditioned slicing (Danicic et al., 2004). Cheda et al. demonstrated a technique 
for calculating conditioned slices that were to be employed to first-order functional logic languages 
(Cheda et al., 2008).

All the works (Canfora et al., 1998; Cheda et al., 2008; Danicic et al., 2000; Danicic et al., 
2004; Fox et al., 2004; Harman et al., 2001; Hierons et al., 2002) are concerned with computation of 
conditioned slices for intraprocedural programs i.e. for programs containing only a single procedure. 
The interprocedural aspects have not been taken into consideration by them. The work accomplished 
for calculating conditioned slices for interprocedural programs i.e. for programs containing multiple 
procedures is also limited. Nowadays, most of the programs contain multiple procedures. So, there 
is a requirement to find out conditioned slices for programs containing multiple procedures. Sahu 
et al. proposed an approach to find out conditioned slices for interprocedural programs (Sahu et al., 
2016). They had not performed any experimental results analysis and did not take any case studies to 
test their approach. This paper proposes a method to find out conditioned slices for interprocedural 
programs along with experimental result analysis. In the absence of any existing related work, the 
proposed method cannot be compared with any existing work. Table 1 summarizes various slicing 
approaches developed by different researchers.

4. NODE-MARKING CONDITIONED SLICING (NMCS) ALGORITHM

In this section, an algorithm termed Node-Marking Conditioned Slicing (NMCS) algorithm is 
proposed for computing conditioned slices of a given problem along with the construction of system 
dependence graph (SDG).

Conditioned slices can efficiently be calculated by employing a system dependence graph (SDG) 
as the intermediate program symbolization. Construction of SDG is comprised of the following steps:

1. 	 Constructing Procedure Dependence Graph (PDG) for each method in a class.
2. 	 Constructing System Dependence Graph (SDG) by combining all PDGs.

The algorithm for constructing SDG is provided in Algorithm 1. This paper uses the terms node 
and vertex interchangeably.



International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 1 • January-March 2019

46

Algorithm 1: SDG Construction Algorithm Input: A program P.
Output: The corresponding SDG. Procedure ConstructPDG()

For start of a method do Make method entry node. 
End For 
For every executable statement in the program code P do Make a 
vertex in the graph. 
End For 
For all nodes created do 
If vertex e is under scope of node d then
Insert a control dependence edge from d to e, d → e. End If
If vertex d controls execution of vertex e, then
Insert a control dependence edge from d to e, d → e. End If
If vertex d defines a variable t and vertex e utilizes t, then 
Insert a data dependence edge from d to e, d → e.
End If End For 
End Procedure 
Procedure ConstructSDG()
For all methods in a class do Call ConstructPDG.
End For 
For every parameter present in method call Create an actual-in 

Table 1. Comparison of various slicing approaches at a glance

Sl. 
No.

Year Author(s) Computed 
static slice?

Computed 
dynamic 

slice?

Computed 
conditioned 

slice?

Computed 
Intraprocedural 

slice?

Computed 
Interprocedural 

slice?

Considered 
Object- 

Oriented 
Features?

1 1981 Weiser (1981) Yes No No Yes No No

2 1984 Ottenstein and 
Ottenstein (1984)

Yes No No Yes No No

3 1988 Korel and Laski 
(1988)

No Yes No Yes No No

4 1990 Horwitz et al. (1990) Yes No No No Yes No

5 1996 Larsen and Harrold 
(1996)

No Yes No No Yes Yes

6 1998 Canfora et al. (1998) No No Yes Yes No No

7 2000 Danicic et al. (2000) No No Yes Yes No No

8 2001 Harman et al. (2001) No No Yes Yes No No

9 2002 Hierons et al. (2002) No No Yes Yes No No

10 2004 Danicic et al. (2004) No No Yes Yes No No

11 2004 Fox et al. (2004) No No Yes Yes No No

12 2005 Mohapatra (2005) No Yes No No Yes Yes

13 2006 Mohapatra et al. 
(2006)

No Yes No No Yes Yes

14 2007 Sahu and Mohapatra 
(2007)

No Yes No No Yes Yes

15 2008 Cheda et al. (2008) No No Yes Yes No No

16 2012 Ray et al. (2012) No Yes No No Yes Yes

17 2013 Ray et al. (2013) No Yes No No Yes Yes

18 2014 Singh et al. (2014) No Yes No No Yes Yes

19 2015 Munjal et al. (2015) No Yes No No Yes Yes

20 2015 Sahu et al. (2015) No Yes No No Yes Yes

21 2017 Proposed approach No No Yes No Yes No



International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 1 • January-March 2019

47

parameter vertex. 
End For 
For every parameter present in method definition Create a formal-
in parameter vertex.
End For 
For every parameter in method call that is modified inside the 
method Create an actual-out parameter vertex.
End For 
For every actual-out parameter vertex 
Create corresponding formal-out parameter node. End For
If a method is called vertex d and vertex e defins that method, 
then Insert a call edge from d to e, d → e.
Label the edge d → e with d. End If
If vertex e returns a value to call vertex d, then Insert a data 
dependence edge from e to d, e → d.
Label the edge e → d with d. End If
If vertex e is actual-in and vertex f is formal-in parameter 
vertices for a call vertex d, then Insert a parameter-in edge from 
e to f, e → f.
Label the edge e → f with d. End If
If vertex e is actual-out and vertex f is formal-out parameter 
vertices for a call vertex d, then
Insert a parameter-out edge from f to e, f → e. Label the edge f → 
e with d.
End If 
If a path exists from actual-in vertex d to corresponding actual-
out vertex e, then Insert summary edge from d to e, d → e.
End If 
If a path exists from actual-in vertex d to corresponding call 
vertex e, then Insert summary edge from d to e, d → e.
End If End For 
End Procedure

An example Java program is depicted in Figure 1. The program is adopted from (Canfora et al., 
1998). The program in (Canfora et al., 1998) is written in C. The program used in this paper is written 
in simple Java and it does not take the object-oriented features into account. Static slice for slicing 
criterion <30, sint> of example program depicted in Figure 1 is comprised of statements numbered 
2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 21, 22, 23, 25, 27, 28, 30. These statements are also 
depicted in rectangular boxes in Figure 1 (b). Dynamic slice for slicing criterion <{c = 3, x = { 8, -3, 
11}}, 30, sint> of example program depicted in Figure 1 is comprised of statements numbered 2, 3, 
4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 17, 19, 21, 22, 23, 25, 27, 28, 30. These statements are also depicted 
in rectangular boxes in Figure 2 (a).

Algorithm 1 is used to construct SDG for example program code. Vertices that satisfy specified 
condition are marked and conditioned slices are calculated throughout marking process by NMCS 
algorithm. Corresponding to a method call, the label of the call edge is recorded in a variable, CSe. 
A stack, SCC, is maintained to record calling context. When a parameter-in edge is passed through, 
label of that edge is pushed onto stack, and when a parameter-out edge is passed through, stack is 
popped. The popped item of stack is compared with CSe for equality and conditioned slice is modified 
if both are equal.

Let cond_slice(u) symbolizes conditioned slice for slicing criterion <Pr, lc, q>, for Pr being 
a condition, q being a variable and lc being the statement corresponding to vertex w. Let s1, s2, …, 



International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 1 • January-March 2019

48

sk indicate all predecessor vertices of w in dependence graph that are marked. So, conditioned slice 
for slicing criterion <Pr, lc, q> is provided as cond_slice(u) = {u, s1, s2,…, sk} U cond_slice(s1) U 
cond_slice(s2) U… U cond_slice(sk)

Algorithm 2 presents the proposed NMCS algorithm in pseudocode form. Table 2 depicts the 
notations used in Algorithm 2.

Algorithm 2: Node-Marking Conditioned Slicing (NMCS) Algorithm Input: SDG of program 
P and the slicing criterion <Pr,lc,q>.

Output: List of nodes contained in the required conditioned slice.
1. 	 Set Marked=φ. //Initially unmark all nodes.
2. 	 Set cond_slice(w)= φ.
3. 	 Check the program P for condition Pr.
4. 	 For each statement satisfying condition, Pr, do

(a) 	 Marked=Marked U {w}. //Mark node w.
(b) 	 Update cond_slice(w)={w, s1, s2, …, sk} U cond_slice(s1) U cond_slice(s2) U… U 

cond_slice(sk).

Figure 1. (a) An Example Java Program (b) Static w.r.t slicing criterion <30, sint> of example program depicted in Figure 1



International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 1 • January-March 2019

49

(c) 	 If w is a method call vertex then
i. 	 panodeM=f(M, panode).
ii. 	 MeM=g(M, Me).
iii. 	 pfnodeM=h(M, pfnode).
iv. 	 Marked=Marked U {w}. //Mark node w.
v. 	 Marked=Marked U panodeM. //Mark associated actual parameter nodes.
vi. 	 Marked=Marked U {MeM}. //Mark corresponding method entry node.

Figure 2. (a) Dynamic slice with respect to slicing criterion <{n=3,x={8,-3,11}},30,sint> of example program code depicted in Figure 
1 (b) Conditioned slice for slicing criterion <{test(x)! = 0}, 30, sint> of example program code depicted in Figure 1



International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 1 • January-March 2019

50

vii. 	Marked=Marked U pfnodeM. //Mark associated formal parameter nodes.
viii. 	 Set CSe=w. //Set call site to current call method u.

(d) 	 If w is a new operator vertex then
i. 	 panodeM=f(M, panode).
ii. 	 MeM=g(M, Me).
iii. 	 pfnodeM=h(M, pfnode).
iv. 	 Marked=Marked U {w}. //Mark node w.
v. 	 Marked=Marked U panodeM. //Mark associated actual parameter nodes.
vi. 	 Marked=Marked U { MeM }. //Mark corresponding constructor entry node.
vii. 	Marked=Marked U pfnodeM. //Mark associated formal parameter nodes.
viii. 	 Set CSe=w. //Set call site to current call method w.

(e) 	 If (w,z) is a parameter-in edge then
i. 	 Call SCC.push(Label(w,z)). // Push label of edge (w,z) onto stack SCC.

(f) 	 If (w,z) is a parameter-out edge then
i. 	 While SCC is not empty do
A. 	 p=SCC.pop(). //p is the popped item
B. 	 If p=CSe then
a. 	 Modify cond_slice(z)={z} U cond_slice(w).

Table 2. Notations used in Algorithm 2

Notation Meaning

Pr A condition

w A node in SDG corresponding to a statement s in program P that satisfies condition Pr.

cond_slice(w) Conditioned slice corresponding to node w.

s1,s2,…,sk Predecessor nodes of w in SDG that are marked.

U Set Union Operator.﻿
Example: If X and Y are two sets (or lists), then X U Y combines all the elements of set (or list) all 
the elements of set (or list) Y with set X (or list).

Label(i,j) Label of edge (i,j).

Marked Worklist containing all marked nodes.

panode Worklist containing actual-in and actual-out parameter vertices associated with a method call or 
constructor call node.

pfnode Worklist containing formal-in and formal-out parameter nodes belonging to an entry node of a 
method corresponding to a method call or constructor call.

Me Worklist containing all method entry nodes corresponding to method call, constructor call.

MeM Worklist containing method entry node of a method M.

CSe Call site variable for edge e.

SCC Stack to keep track of call context.

panodeM Worklist containing actual parameter nodes associated with a method M corresponding to method 
call, constructor call.

pfnodeM Worklist containing formal parameter nodes associated with a method M.

f Function that extracts actual-in and actual-out parameter vertices associated with call of a method 
M.

g Function that extracts formal-in and formal-out parameter nodes belonging to a method M.

h Function that extracts method entry node of a method M.



International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 1 • January-March 2019

51

(g) 	 If a vertex w returns a value to a vertex z that is a method call vertex then
i. 	 While SCC is not empty do
A. 	 p=SCC.pop().//p is the popped item
B. 	 If p=CSe then
a. 	 Modify cond_slice(z)=cond_slice(z) U cond_slice(w).

5. 	 For a given slicing command <Pr,lc,q> do
(a) 	 Seek out cond_slice(w) for variable q.
(b) 	 Display cond_slice(w).

4.1. Working of NMCS Algorithm
An example is employed to explain working of NMCS algorithm. The example Java code depicted 
in Figure 1 is considered here. Figure 3 depicts its SDG.

All nodes of SDG are first unmarked and cond_slice=φ is set for each node u of SDG that 
satisfies the condition Pr. Let the slicing criterion be <{test(x)!=0}, 30, sint>. The NMCS algorithm 
first marks nodes 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 2, 3, 4, 23, 24, 27, 28, 6, 7, 8, 9, 
29, 6, 7, 8, 30, 31 in order since these vertices satisfy the given condition. Actual parameter vertices 
associated with a calling method and formal parameter vertices associated with corresponding called 
method are also marked. During the marking process, conditioned slice for every node in SDG that 
are marked is also found out.

When node 22, which is a method call node, is marked, CSe=22 according to Step 4(c)(viii). 
When node a1_in is marked, it is found that the edge (22→a1_in, 2→f1_in) is a parameter-in edge. 
According to Step 4(e)(i), the label of the edge (22→a1_in, 2→f1_in), which is 22, is pushed onto 
the stack SCC. When node 4 is marked, it is found that node 4 returns value true to the method call 
node 22. Thus, according to Step 4(g), the stack SCC is repeatedly popped and checked to see if the 
popped item is equal to CSe. It is seen that the popped item is p=22 and p=CSe. Then, cond_slice(22) 
is updated as cond_slice(22) U cond_slice(4).

Similar procedures i.e., Step 4(c)-Step 4(g) are followed for method call vertices 28 and 29. Table 
3 depicts the working of the steps 4(c)-4(g) in Algorithm 2 during marking of method call nodes.

Now, conditioned slice for slicing criterion <{test(x)! = 0}, 30, sint> i.e., for variable sint 
at statement number 30 with condition that test(x) is positive is to be determined. As per NMCS 
algorithm, conditioned slice is calculated as follows:

Figure 3. SDG of program code depicted in Figure 1



International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 1 • January-March 2019

52

cond_slice(30)={30,10,28} U cond_slice(10) U cond_slice(28). cond_
slice(10)={10}.
cond_slice(28)={8, 10, 28, 28→a2_in, 28→a3_in} U cond_slice(8) U 
cond_slice(10) U cond_slice(28→a2_in) U cond_slice(28→a3_in). 
cond_slice(8)={7, 8, 6→f2_in} U cond_slice(6→f2_in) U cond_
slice(7). 
cond_slice(28→a2_in)={28→a2_in, 15, 23, 28} U cond_slice(15) U 
cond_slice(23) U cond_slice(28). 
cond_slice(28→a3_in)={28→a3_in, 17, 25, 28} U cond_slice(17) U 
cond_slice(25) U cond_slice(28).

In this way, evaluating all the expressions recursively, the final conditioned slice at statement 30 
is obtained as the set of statements corresponding to following set of nodes:

{2, 3, 4, 6, 7, 8, 10, 12, 13, 14, 15, 17, 19, 21, 22, 23, 27, 28, 30}	

The bold nodes in Figure 4 represent statements included in conditioned slice. These statements 
are also depicted in rectangular boxes in Figure 2 (b).

Table 4 depicts complete list of cond_slice(u) for each node satisfying condition

Pr=”test(x)!=0”.	

5. COMPLEXITY ANALYSIS

This section discusses space and time complexity of the proposed NMCS algorithm.

5.1. Space complexity
Suppose IP is a program having n statements. A single vertex in the SDG will be used to represent 
each statement. But, the statements representing method invocation and method definition will require 
extra vertices to take care of representing the actual and formal parameters. For such a statement, 
number of additional vertices required is same as number of the actual or formal parameters. Let the 

Table 3. Working of the steps 4(c)-4(g) in Algorithm 2 during marking of method call nodes

Marked 
node

Parameter-in edge Parameter-
out edge

CSe Pushed item Popped item 
(p)

Stack 
content s

Whether 
p=CSe?

Whether 
update 

performed?

22 (22→a1_i n, 
2→f1_in)

- 22 22 - 22 - -

4 - (4→22) 22 - 22 - Yes -

28 (28→a2_i﻿
n, 6→f2_in)

- 28 28 - 28 - -

(28→a3_in, 
6→f3_in)

- 28 28 - 28, 28 - -

8 - (8→28) 28 - 28 28 Yes Yes

28 - 28 - Yes Yes

29 (29→a4_i n, 
6→f2_in)

- 29 29 - 29 - -

(29→a5_i n, 
6→f3_in)

- 29 29 - 29, 29 - -

8 - (8→29) 29 - 29 29 Yes Yes

29 - 29 - Yes Yes



International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 1 • January-March 2019

53

following assumption be taken: the number of parameters in a method invocation is less than m, where 
m is some bounded positive integer. Since, the number of actual or formal parameters in a method 
call is a small bounded positive number, so m must be a small bounded positive number. It can be 
stated that at most m number of nodes in SDG are used to represent each statement of program code 
IP. Thus, space requirement for SDG of a program code IP containing n statements is O(mn2). Since 
m is a small bounded positive number, so, space required for storing the SDG is O(n2). Again, some 
amount of space is required for stack that is employed for keeping track of the calling context. This 
necessitates maximum O(k) space, where k is the number of parameters in a method invocation since 
the stack is used for storing the labels of only parameter-in edges and the stack is popped out when 
parameter-out edges are encountered. Also, some amount of space is needed for storing cond_slice(u) 
for each satisfied statement w of program code IP. This requires maximum O(n) space. So, for n 
statements in program code IP, maximum O(n2) space is needed to store cond_slice(u). Thus, total 

Table 4. List of cond_slice(u) for each node satisfying condition Pr=”test(x)!=0”

w cond_slice(w)

2 2, 10, 12, 13, 14, 19, 21, 22, 27

3 2, 3, 10, 12, 13, 14, 19, 21, 22, 27

4 2, 3, 4, 10, 12, 13, 14, 19, 21, 22, 27

6 2, 3, 4, 6, 10, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 27, 28, 29

7 2, 3, 4, 6, 7, 10, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 27, 28, 29

8 2, 3, 4, 6, 7, 8, 10, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 27, 28, 29

10 10

11 10, 11

12 10, 12

13 10, 12, 13

14 10, 14

15 10, 15

16 10, 16

17 10, 17

18 10, 18

19 10, 12, 13, 14, 19, 27

20 10, 12, 13, 14, 19, 20, 27

21 10, 12, 13, 14, 19, 21, 27

22 2, 3, 4, 10, 12, 13, 14, 19, 21, 22, 27

23 2, 3, 4, 10, 12, 13, 14, 15, 19, 21, 22, 23, 27

24 2, 3, 4, 10, 12, 13, 14, 16, 19, 21, 22, 24, 27

27 10, 14, 19, 27

28 2, 3, 4, 6, 7, 8, 10, 12, 13, 14, 15, 17, 19, 21, 22, 23, 27, 28

29 2, 3, 4, 6, 7, 8, 10, 12, 13, 14, 16, 18, 19, 21, 22, 23, 27, 29

30 2, 3, 4, 6, 7, 8, 10, 12, 13, 14, 15, 17, 19, 21, 22, 23, 27, 28, 30

31 2, 3, 4, 6, 7, 8, 10, 12, 13, 14, 16, 18, 19, 21, 22, 23, 27, 29, 31



International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 1 • January-March 2019

54

space required for the NMCS algorithm is O(n2)+O(m). As k is much less than n, the total space 
requirement for NMCS algorithm is O(n2), n being number of statements in program.

5.2. Time complexity
Suppose P is a program code having n statements. The total time complexity of NMCS algorithm is 
due to following components:

•	 Time needed to construct SDG which is O(n2).
•	 Time needed to store required information at each node of SDG, which is O(n).
•	 Time needed to traverse SDG and reach at specified node, which is O(n2).
•	 Time required to perform push and pop operations on stack, which is O(1).
•	 Time needed to seek out data structure cond_slice(u) for obtaining conditioned slice, which is 

O(1) as every node of SDG is annotated with its most recent conditioned slice.

Hence, total time requirement for NMCS algorithm to compute conditioned slice is O(n2).

6. CORRECTNESS PROOF

This section presents correctness proof of NMCS algorithm.
Theorem 1
The conditioned slice computed w.r.t. a given slicing criterion by NMCS algorithm is always 

correct.
Proof
The method of Mathematical induction has been used to establish the correctness of the proposed 

NMCS algorithm. Consider a program P for which NMCS algorithm computes a conditioned slice. 
For a given condition, the conditioned slice w.r.t. first statement that satisfies condition is certainly 
correct. It can also be argued that conditioned slice with respect to second statement satisfying the 
given condition is also correct. Suppose the NMCS algorithm has correctly computed the conditioned 
slices before the statement lc representing the node u that satisfies the given condition. It is only 
required to determine that conditioned slice computed after statement u satisfying given condition is 
correct. Let Pr be the condition, q be the variable used at u and cond_slice(u) be conditioned slice 
w.r.t. slicing criterion

Figure 4. Bold nodes exhibiting conditioned slice for slicing criterion <test(x)!=0,30,sint> of example Java code given in Figure 1



International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 1 • January-March 2019

55

<Pr,lc,q>. It is clear that conditioned slice cond_slice(u) is composed of all those statements by 
which value of variable q has been influenced and the condition Pr has been satisfied. The proposed 
NMCS algorithm has marked all the nodes that satisfies the condition Pr. Let m1, m2, …, mk be the 
marked vertices on which the vertex u is dependent. Then, cond_slice(u)={u} U cond_slice(m1) U 
cond_slice(m2) U … U cond_slice(mk). Since cond_slice(m1), cond_slice(m2), …, cond_slice(mk) 
are all correct conditioned slices, the conditioned slice cond_slice(u) calculated in Step 4(b) of the 
algorithm must also be correct. Thus, the correctness of NMCS algorithm is established. □

7. IMPLEMENTATION

A tool termed Conditioned Slicing Tool (CST) (Figure 5) has been developed to compute the 
conditioned slices. The architecture of CST is given in Figure 3. CST is composed of two components: 
SDG Generator and Slicer. SDG Generator consists of two components: ASM Framework and 
JSDG Framework. ASM is an open source Java bytecode manipulation and analysis framework. It is 
employed to manipulate the existing classes and to generate new classes dynamically. Several packages 
are collected together in ASM for analysis of different tasks. The given Java program is compiled 
using Java compiler, and the generated Java bytecode is given as input to the ASM framework. The 
JSDG framework collects all the information related to a program such as type of statement, type 
of dependency between statements, the number of classes, the number of methods, etc. from ASM 
framework and generates the SDG of program code. The generated SDG is fed to Slicer component. 
The slicing criterion is given to Slicer through a Graphical User Interface (GUI). The Slicer uses 
the SDG and slicing criterion to compute the conditioned slice. The computed slices are fed to GUI 
for display to the user. The different packages used in CST are provided in Table 5. Different codes 
utilized for storing different forms of edges in SDG are provided in Table 6.

7.1. Experimental Results
The CST is applied on various programs given in Table 7 with different slicing criteria for several 
conditions. Since the conditioned slices are computed at different statements of a program, average 
slice computation time is calculated. The details of the outcomes are given in Table 8. The slice 
computation time includes the time to find out the conditioned slice after generating SDG and the 
time to extract slice with respect to a slicing criterion.

It can be observed from Table 8 that the SDG generation time and slice computation time 
increases with the increase of lines of code. Also, the slice computation time increases as the number 
of conditions increases. Figure 6 depicts the SDG generation time and slice computation time for 
the case studies taken.

7.2. Threats to Validity
This section discusses some possible threats to validity of proposed NMCS algorithm.

•	 The presence of recursions, polymorphism, exception handling, etc. are not considered in this 
approach.

•	 This approach also does not consider multithreading programs and distributed programs. Only 
single threaded programs have been considered.

•	 The tool CST takes only Java programs. It may not work well for programs written in C, C++, 
C# languages.

•	 The tool CST has been tested on seven moderate sized programs given in Table 4. It may not handle 
very large size industrial projects as the generated SDG will be very large and unmanageable.



International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 1 • January-March 2019

56

8. CONCLUSION AND FUTURE WORKS

This paper has demonstrated a technique to find out conditioned slices for interprocedural programs i.e. 
programs containing multiple procedures. The technique has been termed node-marking conditioned 
slicing (NMCS) algorithm. System dependence graph (SDG) is first constructed. Next, nodes satisfying 
condition, specified in slicing criterion, are marked. The slices are also found out during the marking 
process using marked nodes only. In future, the authors will develop some techniques to calculate 
conditioned slices for large and complex object-oriented software, aspect-oriented software, feature-
oriented software, web-based applications, etc. The authors will also extend this work to find out 
conditioned slices of concurrent and distributed programs.

Figure 5. Architecture of Conditioned Slicing Tool (CST)

Table 5. Packages employed in CST

Package Description

com.asm.internal Stores the internal classes that operate with ASM framework

com.asm.internal.util Stores the utility classes that operate with ASM framework

com.graph Stores the common attributes of a graph and determines the dependencies amongst 
different parts of program

com.graph.element Stores the basic element of a graph

com.graph.internal Stores the internal representation of a graph

com.graph.Iterator Stores the different iterators for different searching algorithm

com.graph.pdg Stores the program dependence graph related information

com.graph.sdg Stores the system dependence graph related information

com.util Stores the common utility classes

com.util.datastructure Stores the common data structure classes



International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 1 • January-March 2019

57

Table 6. Encodings employed for different forms of edges in SDG

Code Edge Type

0 No edge

1 Control dependence edge

2 Data dependence edge

3 Call edge

4 Parameter-in edge

5 Parameter-out edge

6 Summary edge

Table 7. Programs used

Sl. 
No.

Program Name Description

1 SumProd Finds the summation and product of positive and negative integers (Figure 2 (a))

2 FindMax Finds the maximum of three numbers

3 BankApplication Simulates a simple banking application with deposit and withdrawal feature

4 TopologicalSort Performs a topological sort on a directed graph

5 CircularSingleLinkedList Performs creation, insertion, deletion operations on a circular single linked list

6 RedBlackTree Performs creation, insertion, deletion operations on a Red-Black tree

7 ShortestPath Simulates Dijkstra’s algorithm to determine shortest path between two nodes on 
a graph

8 BankingSystem Simulates a simple banking system for transactions on an account

9 Elevator Simulates an elevator system

10 ATMSimulation Simulates an ATM system

Table 8. Average Slice computation time

Sl. 
No.

Program Name Lines of 
Code

Number 
of 

conditions

Number 
of nodes 
in SDG

Number 
of edges in 

SDG

SDG 
generation 
time (ms)

Average Slice 
computation 

time (ms)

1 FindMax 17 1 23 49 127 109

2 SumProd 31 1 37 85 149 124

3 BankApplication 52 2 60 98 173 157

4 TopologicalSort 85 2 94 172 226 195

5 CircularSingleLinkedList 265 3 286 497 770 593

6 RedBlackTree 280 3 315 453 986 823

7 ShortestPath 502 4 573 921 2496 1983

8 BankingSystem 887 5 913 1209 3605 2103

9 Elevator 1089 5 1109 1385 2963 2765

10 ATMSimulation 1283 6 1315 1485 4013 3091



International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 1 • January-March 2019

58

ACKNOWLEDGMENT

Thank you to Durga Prasad Mohapatra for his contribution and help towards the publication of this 
manuscript.

Figure 6. SDG generation time and slice computation time for various case studies



International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 1 • January-March 2019

59

REFERENCES

Binkley, D. W., & Gallagher, K. B. (1996). Program slicing. Advances in Computers, 43, 1–50. doi:10.1016/
S0065-2458(08)60641-5

Canfora, G., Cimitile, A., & De Lucia, A. (1998). Conditioned program slicing. Information and Software 
Technology, 40(11), 595–607. doi:10.1016/S0950-5849(98)00086-X

Cheda, D., & Cavadini, S. (2008). Conditioned Slicing for First-Order Functional Logic Programs. In Proceedings 
of 17th International Workshop on Functional and (Constraint) Logic Programming (WFLP ’08) (pp. 1-14).

Danicic, S., De Lucia, A., & Harman, M. (2004, June). Building executable union slices using conditioned 
slicing. In Proceedings. 12th IEEE International Workshop on Program Comprehension (pp. 89-97). IEEE. 
doi:10.1109/WPC.2004.1311051

Danicic, S., Fox, C., Harman, M., & Hierons, R. M. (2000, October). ConSIT: A conditioned program slicer. In 
IEEE International Conference on Software Maintenance (ICSM’00) (pp. 216-226).

De Lucia, A. (2001). Program slicing: Methods and applications. In Proceedings. First IEEE International 
Workshop on Source Code Analysis and Manipulation 2001 (pp. 142-149). IEEE.

Fox, C., Danicic, S., Harman, M., & Hierons, R. M. (2004). ConSIT: A fully automated conditioned program 
slicer. Software, Practice & Experience, 34(1), 15–46. doi:10.1002/spe.556

Harman, M., Hierons, R., Fox, C., Danicic, S., & Howroyd, J. (2001, November). Pre/post conditioned slicing. 
In Proceedings of the IEEE International Conference on Software Maintenance (ICSM’01) (p. 138). IEEE 
Computer Society.

Hierons, R., Harman, M., Fox, C., Ouarbya, L., & Daoudi, M. (2002). Conditioned slicing supports partition 
testing. Software Testing, Verification & Reliability, 12(1), 23–28. doi:10.1002/stvr.232

Horwitz, S., Reps, T., & Binkley, D. (1990). Interprocedural slicing using dependence graphs. ACM Transactions 
on Programming Languages and Systems, 12(1), 26–60. doi:10.1145/77606.77608

Korel, B., & Laski, J. (1988). Dynamic program slicing. Information Processing Letters, 29(3), 155–163. 
doi:10.1016/0020-0190(88)90054-3

Larsen, L., & Harrold, M. J. (1996, March). Slicing object-oriented software. In Proceedings of the 18th 
International Conference on Software Engineering 1996 (pp. 495-505). IEEE.

Mohapatra, D. P. (2005). Dynamic Slicing of Object-Oriented Programs [Doctoral dissertation]. Indian Institute 
of Technology, Kharagpur, Kharagpur

Mohapatra, D. P., Kumar, R., Mall, R., Kumar, D. S., & Bhasin, M. (2006). Distributed dynamic slicing of Java 
programs. Journal of Systems and Software, 79(12), 1661–1678. doi:10.1016/j.jss.2006.01.009

Munjal, D., Singh, J., Panda, S., & Mohapatra, D. P. (2015, July). Automated Slicing of Aspect-Oriented 
Programs using Bytecode Analysis. In 2015 IEEE 39th Annual Computer Software and Applications Conference 
(COMPSAC) (Vol. 2, pp. 191-199). IEEE. doi:10.1109/COMPSAC.2015.98

Ottenstein, K. J., & Ottenstein, L. M. (1984, April). The program dependence graph in a software development 
environment. ACM SIGPLAN Notices, 19(5), 177–184. doi:10.1145/390011.808263

Ray, A., Mishra, S., & Mohapatra, D. P. (2012). A Novel Approach for Computing Dynamic Slices of Aspect-
Oriented Programs. International Journal of Computer Information Systems, 5(3), 6–12.

Ray, A., Mishra, S., & Mohapatra, D. P. (2013). An Approach for Computing Dynamic Slice of Concurrent 
Aspect-Oriented Programs. International Journal of Software Engineering and Its Applications, 7(1), 13–32.

Sahu, M., & Mohapatra, D. P. (2007, December). A node-marking technique for dynamic slicing of aspect-
oriented programs. In 10th International Conference on Information Technology (ICIT 2007) (pp. 155-160). 
IEEE. doi:10.1109/ICIT.2007.70

http://dx.doi.org/10.1016/S0065-2458(08)60641-5
http://dx.doi.org/10.1016/S0065-2458(08)60641-5
http://dx.doi.org/10.1016/S0950-5849(98)00086-X
http://dx.doi.org/10.1109/WPC.2004.1311051
http://dx.doi.org/10.1002/spe.556
http://dx.doi.org/10.1002/stvr.232
http://dx.doi.org/10.1145/77606.77608
http://dx.doi.org/10.1016/0020-0190(88)90054-3
http://dx.doi.org/10.1016/j.jss.2006.01.009
http://dx.doi.org/10.1109/COMPSAC.2015.98
http://dx.doi.org/10.1145/390011.808263
http://dx.doi.org/10.1109/ICIT.2007.70


International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 1 • January-March 2019

60

Madhusmita Sahu is an assistant professor of C V Raman Computer Academy, Bhubaneswar. She is pursuing 
her PhD at National Institute of Technology, Rourkela, Odisha, India. Her research interests include software 
engineering, software testing, compiler design, data structures and algorithms.

Sahu, M., & Mohapatra, D. P. (2016). Dynamic slicing of feature-oriented programs. In Proceedings of 3rd 
International Conference on Advanced Computing, Networking and Informatics (pp. 381-388). New Delhi, 
India: Springer. doi:10.1007/978-81-322-2529-4_40

Sahu, M., & Mohapatra, D. P. (2016). Interprocedural Conditioned Slicing. In Proceedings of 3rd International 
Conference on Computational Intelligence in Data Mining (ICCIDM 2016) (pp. 469-479).

Silva, J. (2012). A vocabulary of program slicing-based techniques. ACM Computing Surveys, 44(3), 12. 
doi:10.1145/2187671.2187674

Singh, J., Munjal, D., & Mohapatra, D. P. (2014, December). Context sensitive dynamic slicing of concurrent 
aspect-oriented programs. In 2014 21st Asia-Pacific Software Engineering Conference (APSEC), (Vol. 1, pp. 
167-174). IEEE. doi:10.1109/APSEC.2014.35

Weiser, M. (1981, March). Program slicing. In Proceedings of the 5th international conference on Software 
engineering (pp. 439-449). IEEE Press.

http://dx.doi.org/10.1007/978-81-322-2529-4_40
http://dx.doi.org/10.1145/2187671.2187674
http://dx.doi.org/10.1109/APSEC.2014.35

