
International Journal of People-Oriented Programming
Volume 6 • Issue 2 • July-December 2017

﻿
Copyright © 2017, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

51

Objects First With Java:
A Practical Introduction Using
BlueJ (5th Edition)

Reviewed by Steve Goschnick, School of Design, Swinburne University of Technology, Melbourne, Australia

Objects First with Java: A Practical Introduction Using BlueJ (5th Edition)
David Barnes & Michael Kölling
(c) 2012 by Pearson Education, Inc.
546 pp.
$17.99
ISBN 978-0-13-283554-1

This is a book specifically for teaching Java that would be suitable to students in either:
the middle to upper end of high school, or even a first-year university or college course.
It is also about teaching object-oriented programming (OOP), with a leaning towards
software engineering by way of introducing several analysis and design methods, and
the unit testing of code. It takes a considerably different approach to teaching it than
most textbooks on Java that I’ve encountered, of which I’ve probably evaluated at least
a dozen of the main players in the past for various teaching assignments. (n.b. I’ve
built two subjects from zero on Java and OOP: one for 2nd year university students
of Information Systems, and a much earlier course in 1998 for 3rd year Computer
Science & Software Engineering students. I’ve also developed and taught two days
short courses on the subject, both to Apple University Consortium conference goers
and to all-comers).

Apart from the different approach to teaching Java and OOP the book is also
unique in being intertwined with a Java IDE (Integrated Development Environment)
called BlueJ, designed for teaching OOP - so this review must also include something
of BlueJ too. Indeed, BlueJ precedes the book - which has now been used for over
15 years across Editions to teach students around the planet. My previous encounter
with BlueJ was way back in 1998/9, when I used it to try and teach Java to my own

Book Review

International Journal of People-Oriented Programming
Volume 6 • Issue 2 • July-December 2017

52

two eldest children (then both pre-teen). More interesting and substantial, is advice
in the Foreword to the book, by none other than James Gosling the creator of Java.
He laments that his own daughter and her middle school classmates had struggled
through a Java course using a commercial IDE. He finishes his Foreword with “I wish
it (BlueJ + book) had been around for my daughter last year (at her school). Maybe
next year …”

Imagine my delight when I first fired up my Raspberry Pi and discovered BlueJ as
one of the pre-installed IDEs along with the full version of Java 8 onboard. BlueJ has
come a long way since my first encounter with it. It is now a full-blown IDE - these
sorts of resources on the Raspberry Pi underline just what extraordinary value the Pi
is as a computer for teaching. (See: Figure 1 - a medium-sized Java project I imported
and continue to develop, without any hit-a-brick-wall incidents). Furthermore, the
book has an active community forum for teachers at: http://blueroom.buej.org

Unlike many textbooks on the Java language, the chapters in this book are sequenced
on software concepts, rather than by Java language concepts. It is peppered with many
projects - 24 of them - which have been worked into a project-based approach to the
subject. The book design is based on what the authors call a project-driven approach
to learning the Java language and OOP. The projects each start out relatively simple,
but always arrive at a practical solution to the problems posed earlier on. Furthermore,
most of the projects can be extended in a number of directions, should the student
wish to go well beyond the structure that the pre-existing code provides. Some of the
projects could be quite useful to a student of coding beyond the class room, such as an
.mp3 music playing app. Many of the projects parallel topics I’ve set my own students
upon in the past, not just in Java subjects, but in information modelling subjects too,

Figure 1. Visual diagram of classes in the associated BlueJ IDE on a Raspberry Pi

International Journal of People-Oriented Programming
Volume 6 • Issue 2 • July-December 2017

53

including: ticket-machines, online auctions, tech-support systems, a drawing program,
cinema/movie booking system, and so on.

As the student (or teams of students - as there is support for teams via BlueJ)
advances through the chapters, the projects gain in complexity, facilitating the learning
of new language concepts, but also revisiting language constructs and their earlier
usage. This approach further familiarises the student with each concept and reinforces
the learning. This is a contextual approach with respect to the projects, unpacking the
various language constructs as needed to solve a newly encountered logical situation
or cul-de-sac.

Let me hark back to the ‘object-first’ approach in this book. Most authors of Java
language focused textbooks do either: objects-first (or early in the proceedings), or
objects-last (or much later in the proceedings). There is even one such book author
(Cay Horstmann) who refuses to bet either way, and has two books selling in parallel:
one with objects-first, the other with objects-last! The traditional objects-last approach
typically concentrates on the language constructs (the so-called imperative language
features of Java), before getting to the OOP part proper. The OOP paradigm effectively
rescued the imperative languages from their earlier ineffectiveness in dealing with
the complexities of modern software projects. The OOP paradigm first came to
the mainstream, when most programmers were faced with GUIs (Graphical User
Interfaces), around the mid-1990s. Hence, these objects-last books are typically fairly
dull for the student, as they deal with character-based interfaces from the pioneering
days of computing, sometimes for hundreds of pages before getting to a GUI interface
and or to substantial coverage of programmed objects.

Alternatively, the objects-first books often tend to introduce the main GUI classes
within Java very early on, as the preeminent objects within the code libraries that are
included with the language compiler. That approach unfortunately involves complex
languages features such as: abstract classes, class interfaces, event adapters and so
on, quite early on in the book. This tends to loose a large number of students, before
they have had a chance to gauge whether or not, they have an aptitude for coding.

This book does things much differently. It starts with Objects and Classes from the
very first page, and it does so without the need to go anywhere near the GUI classes in
Java - although it does cover those later in the book. It can do this because of BlueJ. In
BlueJ the student defines a class and creates/instantiates an object of that class, using
visual diagrams (simplified UML class diagrams), without the need to write any code
first up. The book begins with some existing example code. The student is guided
through a few mouse clicks to create an instance of a class and then interacts with the
methods and data of that object. The student sees what a programmed object is, how
its methods work, and then looks at the code that did it. Every single program created
or edited in BlueJ is object-oriented with a graphical representation of the classes
involved, GUI or no GUI. For example, when I imported my code in Figure 1 into
BlueJ, (which was created in a different IDE on a desktop computer), the BlueJ IDE
created the necessary diagrams for all the classes and packages of classes involved - of
course I dragged the boxes around a bit to increase the aesthetics. Although BlueJ is

International Journal of People-Oriented Programming
Volume 6 • Issue 2 • July-December 2017

54

an IDE designed and has evolved as a teaching tool (See the history of it in an earlier
IJPOP paper by Michael Kölling (2015), it is not a toy IDE, but is a fully-functioning
tool that can be used for developing significantly sized projects. E.g. some of my
projects now in BlueJ have well over 50,000 lines of Java. Beyond this book review,
I’ve encountered no significant issue while importing these medium-sized projects
into BlueJ, nor while enhancing the code within it. (One minor issue: the code line
numbers down the lefthand side, only allow room for 3 digits, so for single files with
more than 999 lines of code, I can’t see the fourth digit.)

Back to it as a teaching book: the exercises are interspersed across a given chapter,
rather than just those at the end. This places a given exercise in the best possible
context of the material covered to date. By the time the student has advanced to the end
of Chapter 5, most of the Java language features have been covered more than once.

As mentioned earlier, a software engineering theme also runs through the book,
but particularly from Chapter 6 onward. In fact, as the authors suggest, the second half
of the book can be used for a second, more advanced Java-oriented course. Chapter
6 is about designing classes, which includes concepts of coupling and cohesion - two
metrics used to measure the quality of OOP code. It also covers the refactoring of
code, otherwise known as repurposing or improving existing code.

Chapter 7 is about testing and debugging your programs, something that grows in
importance as the size of a code base grows. Chapters 8 and 9 are about improving the
design of programs through the OOP paradigms other two key concepts of inheritance and
polymorphism, and Java-specific related issues. Chapter 10 is about abstract classes and
interfaces (the class kind, not the UI kind). Chapter 11 is about graphical user interfaces (the
UI kind, not the class kind) - using the Swing class library - including Layout Managers for
dealing with the widely variant screen sizes on modern devices, from phone and tablet sized
screens to those large wall-mounted flat ones. Chapter 12 is about error handling, including
defensive programming techniques and exception handling, and some related topics.

Chapters 13 is an introduction to Analysis and Design of a software system,
drawing upon an example of what one might do, if you start with just natural language
descriptions of some future desired system. Rather than starting with an existing set
of classes to be examined, understood and enhanced, this chapter is about starting
with a significant problem and no code whatsoever, to a non-trivial problem that is
not yet fully described. It introduces system analysis using the Noun-Verb Method to
identify candidate class names, and some of their method calls needed too. It then calls
upon the CRC Cards Method to identify the functionality needed by such classes and
the relationships between those classes, and it uses Scenarios to further extract the
needed functionality of the overall software system being envisaged, or the iterated
vision (surely thats an oxymoron?).

This chapter is useful to students in a number of ways:

•	 It introduces some of the methods used in software engineering to nut-out a starting
set of classes and then how to improve upon their design and appropriateness
regarding the functionality needed;

International Journal of People-Oriented Programming
Volume 6 • Issue 2 • July-December 2017

55

•	 It gives them a glimpse to other aspects of information systems beyond just coding
(e.g. some of my best post-graduated Application Analysts/Architects, came my
way as students holding Arts degrees - it would be nice for their current-day
high school student equivalents to be aware of the breadth of careers in ICT, and
chapters like this one help create that awareness);

•	 It would also help them if they have a need to develop a so-called greenfields
application (think novel ‘Startup’ product).

What it doesn’t do is substitute for a real client (beyond oneself/ or the inclusive
team) with existing under-serviced needs, who is most often the source of the
requirements, protocols and procedures that a software system usually addresses. One
can use these (what are often called) bottom-up design methods such as Noun-Verb
analysis, and CRC Cards for greenfield or self-defined projects, but further techniques,
including top-down methods, are also important complementary tools to have, when
dealing with third-party clients. Nonetheless the introduction of other software
engineering topics, such as iterative prototyping (which can lead into a discussion of
Agile development), the inadequacy of the much older waterfall method, and design
patterns - makes this chapter a useful launch into another subject or book, beyond
the topic of Java and OOP.

Chapter 14 is the last. It presents a Case Study which is larger than the other projects
in this book. It doesn’t introduce any new concepts, beyond just being on a larger
scale - like one usually encountered in most commercial or organisational systems.
When I’ve taught such a subject at university level, to either Information System
students, or Software Engineering and Computing students, at least 25 percent of the
assessment is drawn from a substantive project building a real-world application, via
either servicing a real client and their actual needs; or else, me acting like a pseudo-
client online in a moot project manner. This chapter in some small way, substitutes
for such a client. Of course, this book can cater for subjects that are taught with or
without a large project assignment task.

The approach in this book is not how I’ve taught Java in the past, but certainly a
way I’d like to try in the future. With so many users of the book and the companion
web site and the community of users around it, the approach clearly has a lot going
for it, to both the student and the teacher of Java and Object-Oriented Programming.
With respect to the Raspberry Pi, Scratch is currently a popular language choice for
first comers to coding, particularly in the primary school system and lower high school.
However, once you have a cohort of students in the high school system who definitely
have a deeper interest in coding, perhaps even already intent on pursuing a career (or
making a startup product!) in programming, or software engineering, or just in the
Sciences - then Java and OOP represent an excellent language choice. The two big OOP
languages in the commercial world at the moment are Java and C# - both strongly-
typed languages. Having strongly-typed variables in a language, is a feature favoured
by professional software developers, and even more so by their managers and those
people who have to account for the time and money spent on a project (note: Python,

International Journal of People-Oriented Programming
Volume 6 • Issue 2 • July-December 2017

56

popular as it is, is not a strongly-typed language). C# is a Microsoft creation that was
inspired by Java, and so it is relatively easy for a programmer to move between the
two languages. The BlueJ IDE is an excellent teaching vehicle for the Java language
and OOP. Teaching it on the Raspberry Pi, using BlueJ and this book, is probably the
current best path to teaching middle to upper high school students who are destined
for a career somewhere in the software world.

Postscript: There is a more recent 6th Edition of this book. It covers a few
extra features of the Java language. Specifically, some coverage of the Functional
Programming features added to Java in version 8. This edition of the book includes
another Chapter on collections where functional programming constructs can gain
advantage with multi-core processors. The content in a few other chapters is shuffled
about a bit, and some other code is modified with functional programming constructs.
My view on teaching Functional Programming: if you want to teach students new to
programming, functional programming, use a Functional Programming language.

International Journal of People-Oriented Programming
Volume 6 • Issue 2 • July-December 2017

57

REFERENCES

Kölling, M. (2015). Lessons from the Design of Three Educational Programming
Environments International Journal of People-Oriented Programming, 4(1), 5–32.
doi:10.4018/IJPOP.2015010102

http://dx.doi.org/10.4018/IJPOP.2015010102

