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ABSTRACT

One among a lot of public health concerns in rural and tropical areas is the human intestinal parasite. 
Traditionally, diagnosis of these parasites is by visual analysis of stool specimens, which is usually 
tedious and time-consuming. In this study, the authors combine techniques in the Laplacian pyramid, 
Gabor filter, and wavelet to build a feature vector for the discrimination of intestinal worm in a low-
resolution image captured with mobile devices. The dimension of the feature vector is reduced using 
principal component analysis, and the resultant vector is considered as input to the SVM classifier. 
The proposed framework was applied to the Makerere intestinal dataset. At its preliminary stage, 
the results demonstrate satisfactory classification with an accuracy rate of 65.22% with possible 
extension in future work.
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1. INTRODUCTION

The human intestinal worm is one of the most common infectious diseases in human, which is 
predominant in developing countries possing economic threat to public health (Haque, 2007; Harhay, 
Horton, & Olliaro, 2010). The early detection of these worms among children is vital for the diagnostic 
purpose; nonetheless, most health facilities are less equipped with a sophisticated tool and expect 
skills to manage their outbreak (Garcia, et al., 2017). Conventionally, medical excepts in this field 
use visual analysis based on experience to carry out their diagnostic task (Crowley, Naus, Stewart, 
& Friedman, 2003). Though this approach help with the diagnostic process, it is time-consuming 
and extremely tedious to the extent of possing other health-related hazards (Momcilovic, Cantacessi, 
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Arsic-Arsenijevic, Otranto, & Tasic-Otasevic, 2019; Moody & Chiodini, 2001; Tavares, et al., 2011). 
With the advent of computational tools, several studies are being carried to search for a sustainable 
and cost-effective solution to the diagnostic problem (Weatherall, Greenwood, Chee, & Wasi, 2006). 
In the field of parasitology, concepts of pattern recognitions are employed to diagnose medically 
relevant parasites (Daugschies, Imarom, & Bollwahn, 1999; Sommer, 1996). The concept takes three 
forms, thus, image pre-processing, feature extractions (Gupta & Shanker, 2021; Aggarwal, Mittal, & 
Bali, 2021), and classification (Lim, 1990; Jahne, 2005). Techniques adapting these fundamentals 
concepts in the diagnosis of intestinal worm depending on the characteristic of the dataset are artificial 
neural networks (Yang, Park, Kim, Choi, & Chai, 2001; Goundar, Prakash, Sadal, & Bhardwaj, 
2020), adaptive network-based fuzzy inference system (Dogantekin, Yilmaza, Dogantekin, Avcic, 
& Sengurc, 2008), MultiClass Support Vector Machine classifier (Avci & Varol, 2009; Panda, 2019; 
Goundar, Sam; Bhardwaj, Akashdeep, 2021), active contours (Gupta, Bharadwaj, & Rastogi, 2021) 
and Bayesian classification system (Castañon, Fraga, Fernandez, Gruber, & Costa, 2007). Though 
computational tools are proven to be usual, the story is slightly different with the African context given 
the type of dataset captured from the community. It is well observed that, these types of parasites are 
common in neglected communities where lifestyle and access to health care is poor. Despite these 
conditions, quite a good number of natives have access to smartphones but with poor resolution 
which can be leveraged on to enhance health care. The problem then arises with how to use this low 
resolution images and still provide to some level of precision good health care. This study therefore 
seeks to propose a framework for the automatic diagnosis of human intestinal worms captured with 
a smartphone which poses unique challenges.

2. RELATED WORK

In the past few decades, the automation of an intestinal disease diagnostic tool is being researched 
extensively with a frequent target of perfection. Generally, diagnostic tools are focused on the 
detection of cyst, eggs, and trophozoite of the intestinal parasite (Nkamgang, Tchiotsop, Tchinda, 
& Fotsin, 2018). In the study of Avci & Varol (2009), sixteen eggs of protozoa and helminths 
were classified using multi-class support vector machine. Their proposed framework consists of 
noise reduction, thresholding, contrast enhancement, morphological and logical processes. Image 
features were extracted using the invariant moment. The focus of their work was on the detection 
of human parasite eggs, which yielded a classification rate of 97.70%. The study of Suzuki, Gomes, 
Falcao, Papa, & Hoshino Shimizu (2013) used genetic programming to fuse optimum-path forest 
classifier with a multiple object descriptor. This led to the proposal of an automatic classifier to 
discriminate fifteen protozoan species. An ellipse matching with image foresting transform is 
used for the image segmentation step while the proposed method was weighted with number of 
parasites per species. The model demonstrated an efficiency of 98.19%, specificity of 98.32%, and 
sensitivity of 90.38%. Yang, Park, Kim, Choi, & Chai (2001) also extracted four morphometric 
features as descriptors to classify human helminths based on the morphological characteristics of 
the eggs. An algorithm based on ANN and image processing techniques was then constructed for 
the classification purpose. With these features, two ANN were merged to build a classification 
system. The first network does background removal while the second network classifiers eggs 
by their species with an average classification rate of 86.1% and 90.3% respectively. In Ghazali 
Kamarul, Hadi Raafat, & Mohamed (2013), Trichiris trichura ova and Ascaris lumbricoides ova 
were detected and classified as parasites from human faecal. In their study, they employed contrast 
enhancement techniques, noise reduction and segmentation methods, and other morphological 
processes for the preprocessing phase. Features such as shape, shell, smoothness, and size are 
extracted as input for the classifier to resulting in 94% and 93% success rate for Trichuris trichiura 
and Ascaris lumbricoides respectively. The method of probabilistic neural networks was used by 
Saha, Tchiotsop, Tchinda, Wolf, & Noubom (2015) to recognize the cyst of nine human intestinal 
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helminth parasites. Their study recorded a 100% correct classification rate after training their 
network with an image pixel feature. Dogantekin, Yilmaza, Dogantekin, Avcic, & Sengurc (2008), 
on the other hand also proposed an Adaptive Neuro-Fuzzy Inference System which is moment 
invariant to recognize the eggs of protozoa and helminths. The moment invariant features extracted 
is fed into the network resulting in an average recognition rate of 95%. Finally, in the review of Alva, 
et al. (2017), the morphologic characteristics of parasite eggs stained in a microscopic image was 
extracted. A logistic regression model was used to build four distinct algorithms for the recognition 
of the four eggs in the faecal smears. The results showed 99.10% and 98.29% for sensitivity and 
specificity respectively on Taenia sp. Diphylobotrium latum was recognised with 100% and 98.38% 
while they got 99.15% and 98.18% for Fasciola hepatica. The last worm thus Trichuris trichuria 
recorded 100% and 98.13% in their study. Dataset usually used in this study are captured under 
well-defined condition and precision. However, in the rural setup with less economic benefit such 
conditions are not defined. Nonetheless, with the high penetration of smart phones, they serve as 
a good tool to leverage on them as a capturing device. This in effect introduce challenges such as 
resolution, orientation, precision and among others making recognition harder and an opportunity 
for this study to explore at its primary stage. The paper is organized as follows: in Section 3, we 
present the materials and the methods. Section 4 presents some results as well as discussions of 
the proposed system, and Section 5 is the conclusion.

3. MATERIALS AND METHODS

3.1 Dataset Description
The dataset used for this study is a secondary data by AI Research (Online, Accessed 02 june 2020) 
unit of Makerere University, Uganda, which is publicly available for use. The dataset contains 1217 
stool images with bounding boxes of 162 parasite eggs (hookworm, taenia and hymenolepsis nana).

3.2 The Gaussian and Laplacian Pyramid
Pyramids are multi-scale signal representation where a signal is subject to repeated smoothing and 
subsampling. Two types of pyramids exist that is Gaussian and Laplacian pyramid, also known as 
lowpass and bandpass pyramid respectively (Singh, Sinha, & Gupta, 2000). However, this study 
places more emphasis on the Laplacian pyramid. The Laplacian pyramid, as applied to a digital 
image, is constructed by taking the difference between adjacent layers in the Gaussian pyramid. In 
practice, these layers are of varying size, and the smaller sized layers are expanded using interpolating 
techniques (Singh, Sinha, & Gupta, 2000). Mathematically, this concept is set up as follows. Given 
a 2D image, let u(x, y, t) represent a Gaussian pyramid then the difference of levels can be stated as 
u(x, y, t2) - u(x, y, t1). With the assumption that Gaussian pyramid function is a solution to the heat 

Figure 1. Sample images from the dataset: (left) Hookworm; (center) Taenia; (right) Normal Image
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diffusion equation (Singh, Sinha, & Gupta, 2000), the Laplacian pyramid function V(x, y, t) is formed 
with the relation in Eqn. 1:

V x y t
u x y t u x y t

t t

u x y t

tt t
, , lim

, , , , , ,
( ) = ( )− ( )

−
=
∂ ( )
∂→2 2

2 1

2 1

	 (1)

With the property of convolution, Eqn. 1 can be rewritten as Eqn. 2:

V x y t G f G f, , * *( ) = =∆ ∆ 	 (2)

where * is the convolution operator and f is the image function.
The original image f(x,y) can be reconstructed from V(x, y, t) using Eqn. 3:

f x y V x y t dt u x y T
T

, , , , ,( ) = − ( ) + ( )∫ 0
0 ≤ ≤t T 	 (3)

Algorithmically, the Laplacian pyramid as first proposed by Burt and Adelson (Burt & Adelson, 
1993) is outlined in the steps below:

1. 	 Convolve the original and initial image f0 with a Gaussian filter G and subsample it by two to 
create a reduced Gaussian version of the image f1.

2. 	 The resultant image is upsampled using well defined interpolating techniques by convolving 
it with G to obtain the enlarged version of the Gaussian image f’1 and then subtracted pixel by 
pixel from the original. This gives the detailed image V0 as defined by Eqn. 4:

V f f
0 0 1
= − ' 	 (4)

3. 	 Finally, if an image of size 2N × 2N is given, can be further obtained by recursively performing 
step 1 and 2 on the Gaussian and subsampled image f1 a maximum of N number of times.

To generate the original image f0 given N detailed images say V0, V1, …, VN and a Gaussian 
image fN, the inverse transformation is required (Pradham, Younan, King, & Stathaki, 2008) as 
outlined below:

1. 	 fN is upsampled where the missing values are first interpolated and subsequently convolved with 
the filter G to obtain the image f′N.

2. 	 The approximation image at the next resolution level in Eqn. 5 is obtained from the sum of image 
f′N and the lowest detailed image VN:

f V f
N N N− = −

1
' 	 (5)

3. 	 The original image is finally obtained by repeating Steps 1 and 2 on the detail images V0, 
V1, …, VN−1.
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3.3 Feature Extraction
The study made use of the manual feature engineering approach by leveraging on the two-
dimensional discrete wavelet transform and Gabor filters. Conventionally, signal transformation 
into frequency domain is the dominant practice in signal processing as it gives a more effective 
representation of signals compared to the time domain processing. The subsections below provide 
a detailed description.

3.3.1 Multiresolution Analysis and Discrete Wavelet Transform
In the concept of multiresolution analysis, a subspace containing parts of a whole function is 
constructed through the decomposition of an original function x(n) at different resolution. These 
decompositions at different scales are defined as multiresolution (Suter, 1998). The wavelet transform 
is a projection of a given signal into a set of basis function known as wavelets. This is a generalization 
of the short-time-Fouriertransform (STFT) where the basis functions are localized in the frequency 
domain. The discrete wavelet transforms of a signal or function x[n] is defined on the approximation 
coefficient W j kφ 0

,

  and detailed coefficient W j kψ ,


  as explained as follows:

W j k
M

x n n
n

j kφ φ
0

1
0

,
,




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
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and the inverse discrete wavelet transform is defined as:
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where M denotes the number of transformation samples:

n M j J k j= − = − = −0 1 2 1 0 1 2 1 0 1 2 2 1, , , , , , , , , , , , , ,� � �  and 	

M is selected such that M M j=  where J is the number of levels for the transformation. The 
basis functions φ

j k
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,
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
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,
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defined as:
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For an efficient implementation of a two-dimensional wavelet transform, the filter bank structure 
is often used. Figure 2 illustrates how the discrete wavelet transformed images are obtained. The 
first step is to convolve the image with the scaling and wavelet function. The resultant output is 
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downsampled by a factor two to obtain new image maps. Both maps are further convolved with 
the same scaling and wavelet function and downsampled again. This results in four maps which are 
explained as follows (Castleman, 1996):

1. 	 Approximation coefficients (A) – this is the grey level variation of the image at each level.
2. 	 Horizontal coefficients (H) – this is the column variations of the image at a given level.
3. 	 Vertical coefficients (V) – this is the row variations of the image at a given level.
4. 	 Diagonal coefficients (D) – this gives the diagonal variations of the image at a given level.

On the other hand, the reconstruction of the original image is by the inverse discrete wavelet 
transform given the four sub-images obtained from the discrete wavelet transform. Figure 3 gives 
a pictorial representation of reconstructing the original image from its discrete wavelet transform 
components. The four sub-images are upsampled where the vertical sub-image is convolved with the 
scaling function and the diagonal sub-image is convolved with the wavelet function. The approximation 

Figure 2. A 2D discrete wavelet transform (Pradham, Younan, King, & Stathaki, 2008)

Figure 3. A 2D inverse discrete wavelet transform (Pradham, Younan, King, & Stathaki, 2008)
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and horizontal subimages are also convolved with the wavelet and scaling function respectively. Each 
pair of the subimage is further upsampled and convolved with the same wavelet and scaling function 
respectively. The resultant images are finally summed to estimate the original image.

3.3.2 The Gabor Filters
The 2D Gabor filter is a frequency and orientation representation of an edge detector. The filters are 
functions of Gaussian kernels modulated by a sinusoidal wave oriented at an angle. By practice and 
theory, Gabor filters has demonstrated significant performance in texture features extraction over 
other domain-specific filters (Xie, Jiang, & Tsui, 2005). In (Bankman, Spisz, & Pavlopoulos, 2009), 
the general Gabor filter family is implemented as Eqn. 11:

G x y exp
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y

x y
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
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with:

′ = −( ) − −( )x x m y m
x y

cos sinγ γ 	

′ = −( ) − −( )y x m y m
x y

sin cosγ γ 	

where m
x

 and m
y

 is the center of the Gabor receptive field, σ
x

 and σ
y

 is its size, 𝛾 is orientation, 
𝜑 is a  phase offset, and 1¤𝜆 is the preferred spatial frequency of the Gabor filter. In (Xie, Jiang, & 
Tsui, 2005; Kruizinga & Petkov, 1999), a set of eight orientations (𝛾 = {22.5°, 45°, …, 180°}) and 
three spatial frequencies (𝛾 = {5.47,8.20,10.93}) is usually used. This results in 24 features for each 
position of the filter. In like manner, the parameters σ

x
 and σ

y
 are set to σ

y
 = 2σ

x
 = 1.12𝜆,  as 

suggested in (Devalois, Albrecht, & Thorell, 1982). Traditionally, they sum of squares metric is used 
to quantify the texture of a region in a filtered image. 

3.4 Image Classification Model
Good features are technically difficult to obtain and are not sufficient to appropriately classify 
images but instead required to work with a good classification model that suitably characterize the 
images. Most classification methods perform model construction based on feature vectors (Mohanty, 
Lee-St.John, Manmatha, & Rath, 2013). For this task, several classification methods have been 
developed in the literature. However, in this study, the support vector machine is considered as its 
theory provides the most principled approach to the design of neural networks, eliminating the need 
for domain knowledge [33, 34] and its popularity in machine learning methods. Given two classes 
labelled by 1 or -1, the binary classifier 𝑓: 𝑋 → 𝑌 = {1, −1} is a function mapping the input space X 
to Y which groups X into two classes. A small error is expected if the classifier performs well. This 
misclassification error R(f) is measured in Eqn. 12 as the probability of predicting an event wrongly 
{𝑓(𝑥) ≠ 𝑦} (Wu, et al., 2006):

R f Prob f x y P y f x x d X
z Z( ) = ( ) ≠{ } = ∫ ≠ ( )( )∈� �

| ρ 	 (12)

Clearly, the best classifier is estimated by minimizing Eqn. 12 with the Bayes rule defined by 
f x sgn f
c ( ) = ( )ρ  where:
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The task of estimating this good approximation fz of the Bayes rule is to draw a random sample 
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i i i
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,
1
 from a probability distribution 𝜌. Here, the regularization schemes associated with 

reproducing a kernel Hilbert space is considered where:
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where ∅ : 𝑅 → 𝑅 + is the loss function for classification.
Given the general classification scheme in Eqn. 14, suppose X n⊂ �  where the sample set, z 

has two classes that is; 𝐼 = {𝑖: 𝑦i =  1} and 𝐼𝐼 = {𝑖: 𝑦i = −1}, then these classes are separable by a 
hyperplane 𝑤𝑥 =  𝑏 with 𝑤  ∈ �n , |𝑤| = 1, and 𝑏 ∈   �  if:
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From Eqn. 15, we define b w w x b
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where the two separating hyperplanes are expected to be 2∆(𝑤) distance apart where ∆(𝑤) is 
the margin from the hyperplane 𝑤𝑥 =  𝑐(𝑤). The primary task of the support vector machine 
is to find the best hyperplane where ∆(𝑤) is the maximum by solving the optimization 
problem in Eqn. 17:

∆ w w x w x
w y i y j

i j

* max min max( ) = ⋅ − ⋅








= = =−1 1 1

1

2
	 (17)

If ∆(𝑤∗) > 0 then z is separable and 𝑤∗ is a  solution to the optimization problem. This gives a 
classifier defined as 𝑓(𝑥) =  𝑠𝑔𝑛(𝑤∗𝑥 −  𝑐(𝑤∗)). Unfortunately, most data are not separable by a 

hyperplane leading to the introduction of slack variable ξ ξ= ( )
=i i

m

1
 into support vector machine 

termed as soft margin classifier defined as Eqn. 18:
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such that y w x b
i i
⋅ −( ) ≥ − ≥ = −1 0 1ξ

i
i, , , …, 𝑚. where 𝐶 > 0 is the trade-off. This defines 

sgn w x b� �⋅ −( )  as the soft margin classifier. 

3.5 Performance Metrics
The classification metric is easily illustrated with elements of the confusion matrix. The confusion 
matrix of a binary classifier where Y and N represent the two classes can be viewed as one of the 
four possible ways as enumerated below (Kotu & Deshpande, 2015):

1. 	 True Positive (TP): Where the predicted label (Y) is the same as the actual label (Y).
2. 	 False Positive (FP): Where the predicted label (Y) is different from the actual label (N).
3. 	 False Negative (FN): Where the predicted label (N) is different from the actual label (Y).
4. 	 True Negative (TN): Where the predicted label (N) is the same as the actual label (N).

These four cases are used to explain the classification performance. The general expectation is 
that a perfect classifier will have the number of FP = number of FN = 0.

1. 	 Sensitivity/Recall is expressed as a ratio, usually presented as a percentage in Eqn. 19. The metric 
selects all positive instances tagged with “positive” labels:

TP

TP FN+
	 (19)

2. 	 Specificity of a model rejects all negative instances that are tagged as “negative” and it is expressed 
as Eqn. 20:

TN

TN FP+
	 (20)

3. 	 The precision metric explains the portion of positive instances that are relevant to the study and 
this is computed as:

TP

TP FP+
	 (21)

4. 	 The accuracy is defined by Eqn. 22. An accuracy of 100% indicates that FP = FN = 0. This 
metric selects all positive instances while rejecting all negative instances:

TP TN

TP FP TN FN

+
+ + +

	 (22)
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Finally, the error of the classification model is computed as the the complement of accuracy 
that is; (1 – accuracy).

3.6 Proposed Framework
Figure 4 is an overview of the proposed framework used to carry out this study. Images of the dataset 
are first loaded with unwanted borders cropped to maintain a uniform image size. The image is further 
greyed, and the Laplacian pyramid is applied to it. The resultant image is passed to a three levelled 
two-dimensional discrete wavelet transform. Gabor filters are then applied to both the approximation 
and detail image maps generated from each level of the wavelet transform. The Gabor features are put 
together to form the feature vector. Due to the largeness of the feature space, a principal component 
analysis is applied to reduce the feature space. A refined soft margin support vector machine model 
is build using the result feature space. The model is then validated using metric developed from the 
standard confusion matrix for classification.

4. RESULTS AND DISCUSSION

4.1 Environmental Setup
This study was carried out using MATLABR v2016 on a CPU machine with 16GB memory, IntelR 
CoreTM i7-7800U processor at 2.80GHz x 4 running 64-bit Ubuntu 18.04 LTS.

4.2 Feature Composition
Using a Gabor filter of five scales, eight orientations, and size of 39 x 39 on the wavelet image 
map produces 40 features. Given that we have three image maps per wavelet level, excluding the 
approximation coefficient, a total of 40 x 3 x 3 = 360 features are extracted from each image in 
the dataset. The structure and the distribution of the images are such that the features extracted are 
highly correlated. Considering the high dimension of these feature vector, a dimensionality reduction 
technique known as principal component analysis (PCA) was employed. In effect, only 5 out of 
360 features were found to be better explain the dataset, thereby reducing the overhead cost in the 
training phase.

Figure 4. The proposed framework



International Journal of System Dynamics Applications
Volume 11 • Issue 1

11

4.3 Analysis of Observation
This section of the study discusses the various experimental scenarios observed in analyzing the 
detection of the intestinal worm of the given dataset.

4.3.1 Effect of Knowledge Drift on Performance
The original dataset used for this study has unbalanced characteristics where only 147 observations 
out of a total of 1217 observations had intestinal worm present. This poses a challenge of knowledge 
drift in the data distribution.

At a glance of Table 1, as has been the practice of most study, one may conclude that the linear 
SVM performs well compared to the other classification models based on the face value of accuracy 
metric. Several works of literature only report the performance of their model based on the overall 
accuracy of their model without taking into account other factors that are of practical interest to the 
research and industrial community. However, careful observation of the table in relation to other metrics 
more especially, sensitivity/recall and precision indicate that there is some hidden information that 
needs to be revealed as shown in Table 1. In Table 1, linear SVM refers to the linear support vector 
machine, LDA is linear discriminant analysis, kNN is k-nearest neighbourhood, tree is decision tree, 
and Bayes is the naïve Bayes.

From Table 2, it is evident that reporting the performance of a classification algorithm using the 
accuracy metric, as shown in Table 1 is misleading to the research community. In Table 2, A-NW 
represent actual image without the intestinal worm, A-W is an actual image with the intestinal 
worm, P-NW is images predicted not to have intestinal worm by the classifier, and lastly, P-W is 
the images predicted to have an intestinal worm. The table is an augmentation of five confusion 
matrix. Observing Table 2 carefully, one will notice that the accepted classify thus Linear SVM 
based on accuracy as reported in Table 1 is biased towards non-intestinal worm images. It fails 
to discriminate the wormed images from the nonwormed images. This is usually attributed to 
the knowledge drift problem introduced into the dataset. As the classifier makes an attempt to 
discriminate appropriately, the performance in the context of accuracy metric turns to decrease 
making kNN reporting low performance even though its performance is more appreciative compared 
to the rest using the confusion matrix. This problem could be addressed using the concept of 
knowledge balance, as discussed in Section 4.3.2.

Table 1. Performance of classification algorithm

Metric Linear SVM % LDA % kNN % Tree % Bayes %

Accuracy 87.92 87.76 78.96 80.36 87.76

Sensitivity/Recall NaN 25.00 10.79 16.67 37.50

Specificity 87.92 87.96 87.76 88.51 88.09

Precision 0 0.68 10.20 15.65 2.04

Table 2. Confusion matrix of the classification algorithm

Linear SVM LDA kNN Tree Bayes

P-NW P-W P-NW P-W P-NW P-W P-NW P-W P-NW P-W

A-NW 1070 0 1067 3 952 118 939 131 1064 6

A-W 147 0 147 0 135 12 127 20 144 3
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4.3.2 Effect of Balanced Knowledge on Performance
It is usually essential that the distribution of classes in a given dataset is reasonably balanced. 
Enforcing this requirement is expected to resolve the issue of knowledge drift, as discussed in Section 
4.3.1. For the sake of computational cost and the demonstration of a proof of concept, the number of 
non-intestinal wormed images was reduced to match up with the intestinal wormed images instead 
of employing the concept of data augmentation. In effect, the number of intestinal wormed images 
remain at 147 while the non-intestinal wormed images become 152. This gives a marginal variation 
of five images and a total of 299 images.

From Table 3, it is clear that the accuracy value reported in Table 1 was overly estimated and 
did not give a true reflection of the classifier’s performance. Though the overall performance of 
the classifiers in Table 3 is relatively low using the accuracy metric, it gives a true reflection of the 
classifier. This is best for industrial practice as it engages the organizational research unit to take 
further investigation to propose new classifiers or feature set that best explains the dataset. Again, 
from Table 3, one will notice that the Bayes classifier recorded 93.20% with its precision metric 
though it had the lowest performance value with accuracy metric. This though gives mixed emotion 
on the acceptance or rejection of the Bayes model. However, from Eqn. 20 and Eqn. 21 it is stated that 
precision is more sensitive to “truly positive” while specificity is more sensitive to “truly negative” 
which is evident in Table 4.

In Table 4, the Bayes model finds it challenging to discriminate between wormed and non-wormed 
images by treating almost all images as wormed images. This results in poor performance, in general, 
using the accuracy metric. However, LinearSVM, LDA, and kNN make a fair trade-off though their 
performance is relatively low due to the underlining challenges established in the dataset. Even though 
LDA recorded the highest performance, SVM is more parametric and can be fine-tuned. Besides, it 
recorded the second position in performance in its most basic form.

4.3.3 Parameter Tuning of SVM
From Eqn. 18, not all dataset is separable with the linearity assumption in SVM, hence the need for 
a data transformation with kernel functions. A number of kernel functions exist; however, Table 5 
shows the dynamics of the polynomial kernel as used in SVM. The accuracy metric was considered.

From Table 5, the cubic polynomial kernel function with 9-folds proves a considerable 
improvement in the use of SVM as a classifier for this study. Again, from the table, an increase in 

Table 3. Performance of classification algorithm

Metric Linear SVM % LDA % kNN % Tree % Bayes %

Accuracy 58.19 59.53 50.84 51.17 49.83

Sensitivity/Recall 57.97 60.00 50.00 50.35 49.46

Specificity 58.39 59.17 51.57 51.90 54.55

Precision 54.42 53.06 47.62 48.30 93.20

Table 4. Confusion matrix of the classification algorithm

Linear SVM LDA kNN Tree Bayes

P-NW P-W P-NW P-W P-NW P-W P-NW P-W P-NW P-W

A-NW 94 58 100 52 82 70 82 70 12 140

A-W 67 80 69 78 77 70 76 71 10 137
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the order of the polynomial kernel leads to a decrease in performance. This observation perhaps 
could be attributed to the fact that the classifier turns to overfit the implicit train data resulting in low 
performance in the implicit test data. Furthermore, an increase in the order of the polynomial kernel 
also increases the computational time required. In this instance, one may by choice compromise on 
performance and select the quadratic polynomial kernel function with 5-folds which gives 63.55%.

4.3.4 Deep Learning Techniques
In this study, concepts of deep learning were not explored due to the limitation of the physical devices. 
This is therefore treated as a threat to validity of the study, nonetheless it is expected to be adopted 
when building the hybrid models in future studies.

5. CONCLUSION

In this study, we have been able to analysis intestinal worm dataset curated by Makerere AI Research 
unit using a mobile phone at its preliminary stage. This was done with the fusion of Laplacian pyramid, 
Gabor filters and reverse bio-orthogonal wavelet features. Despite the fundamental challenges posed 
by the dataset, our proposed framework attained an overall accuracy of 65.22% using the third-order 
polynomial kernel of support vector machine at 9-folds. It was also concluded that research in this 
field should not only rely on the accuracy value reported by their framework, but to also check the 
behaviour of their classifiers subject to other parameters and how they contribute to the overall 
performance of their model. This study based on the characteristic of the given dataset serves as a 
benchmark for further study to improve upon performance. In future studies, we seek to create hybrid 
models that leverages on the advantages of the proposed framework with other existing frameworks 
to increase performance of the benchmark set in this study.
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Table 5. Dynamics of the polynomial kernel on SVM

Kfold 2nd Order 3rd Order 4th Order 5th Order

3 59.20 59.87 47.49 52.51

5 63.55 60.20 54.18 48.83

7 61.20 63.88 58.19 51.17

9 62.21 65.22 54.18 54.85
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