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ABSTRACT

To ensure the safe and stable operation of solar photovoltaic system-based power systems, it is essential 
to predict the PV module output performance under varying operating conditions. In this paper, the 
interest is to develop an accurate model of a PV module in order to predict its electrical characteristics. 
For this purpose, an artificial neural network (ANN) based on the backpropagation algorithm is 
proposed for the performance prediction of a photovoltaic module. In this modeling approach, the 
temperature and illumination are taken as inputs and the current of the mathematical model as output 
for the learning of the ANN-PV-Panel. Simulation results showing the performance of the ANN 
model in obtaining the electrical properties of the chosen PV panel, including I–V curves and P–V 
curves, in comparison with the mathematical model performance are presented and discussed. The 
given results show that the error of the maximum power is very small while the current error is about 
10-8, which means that the obtained model is able to predict accurately the outputs of the PV panel.
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INTRODUCTION

Today, energy is at the heart of the economy for all countries as well as the basis for all human activity. 
Over the years, energy resources have diversified in order to meet ever-increasing needs. The developed 
countries have moved from wood to coal, to hydrocarbons, to hydroelectricity, and finally to nuclear 
power. However, the use of fossil fuels is responsible for acid rain and global warming (IEA, 2019). 
On the other hand, the exploitation of nuclear energy presents risks of serious accidents, in addition 
to those induced by the management of the resulting waste, which can be radioactively dangerous for 
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several thousand years (Compaan, 2006),(Panchenko, 2021). Numerous countries have committed 
themselves under the Kyoto protocol to minimize their greenhouse gas emissions by 8% (Luther, 
2005). Renewable energy such as wind, solar, hydropower and biomass have an important role to 
play in achieving this goal. More particularly, the solar energy resource starts to have a significant 
contribution to global energy production due to the low cost of maintenance and recurring operation 
of the photovoltaic systems (Luther, 2005) (Antonanzas et al., 2016).

In the photovoltaic field, the manufacturers provide notations for PV modules under various 
metrological conditions. However, these conditions are not always evident, which rarely occur in 
outdoor conditions, as they are mostly performed under laboratory conditions using solar simulators 
(Naeijian et al., 2021). To this end, the accurate and efficient modeling of solar photovoltaic modules 
represents one of the most important and difficult problems in the field of photovoltaic systems. 
These problems are mainly caused by the non-linear characteristics of solar cells, and by the lack 
of availability of all their parameters (Cortés et al., 2020). Several mathematical models have been 
developed to characterize the PV module under different working conditions; the widely used being 
the diode-based model. The most well-known models in the literature are single diode and double 
diode. The model of the single diode is the simplest model that introduces 5 unknown parameters 
(Chegaar et al., 2001)(Cardenas et al., 2017)(Villalva et al., 2009), while the double diode model 
takes into account more features than the double diode model with 7 unknown parameters (Chan & 
Phang, 1987)(Mathew et al., 2018)(Ishaque et al., 2011). However, the main problem that should be 
dealt with is the estimation of the unknown parameters of the PV panel model.

To estimate the parameters of a PV panel, various methods have been suggested in the literature. In 
general, there are two categories of methods: deterministic as well as heuristic methods. In deterministic 
terms, the methods are classified into analytical and iterative approaches (Waly et al., 2019). The 
analytical techniques use information from the PV datasheet to estimate the parameters. Among the 
analytical methods, reduced space search (RSS) (Cardenas et al., 2017), Lambert-W based methods 
(Peñaranda Chenche et al., 2018), and OSMP based methods (Tong & Pora, 2016). The above-
outlined approaches are complex and time-consuming because they solve the non-linear equations 
to determine the unknown parameters of the PV cell model. The second approach of deterministic 
methods is that of iterative ones, where the parameters are derived via trial and error and/or iteration. 
Among them, the Newton-Raphson method (Easwa Rakhanthan et al., 1986) (Ayang et al., 2019), 
Gauss-Seidel method (Chatterjee et al., 2011), and the Least-Squares (LS) technique (El Achouby et 
al., 2018). However, the application of iterative methods requires the system equations to be convex, 
continuous, and differentiable, which restricts the application of these methods. Furthermore, the 
selection of appropriate initial values in iterative methods is an important issue, in which a wrong 
choice can lead to getting stuck in local optima (Qais et al., 2020). To overcome the above-mentioned 
drawbacks of deterministic methods, scientists have oriented themselves towards heuristic methods; 
the unknown parameters of the PV model being determined by solving an optimization problem. The 
problem of parameter estimation in heuristic methods is treated as a black-box problem, in this case, 
it is not necessary to apply certain restrictions to the system equations, in contrast to deterministic 
methods (Naeijian et al., 2021). According to the literature, a variety of heuristic methods have 
been successfully applied to extract the PV parameters, among them; Particle Swarm Optimization 
(PSO) (Ye et al., 2009), Simulated Annealing (SA) (El-Naggar et al., 2012), Artificial Bee Colony 
Algorithm (ABC) (Oliva et al., 2014), Genetic Algorithm (GA) (Ismail et al., 2013), Salp Swarming 
Algorithm (SSA) (Abbassi et al., 2019), Enriched HHO (EHHO) (Chen et al., 2020), and Springy 
whale optimization algorithm (SWOA) (Pourmousa et al., 2021).

Despite heuristic methods showing better accuracy and performance than deterministic methods, 
some heuristic methods require a significantly high number of iterations to converge, where different 
results are found by repeating the function.

The Artificial Intelligence (AI) has been used for solving complicated problems in several 
application areas, including pattern recognition, identification, classification, speech, vision, 
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prediction, and control systems (Vasant et al., 2019), (Vasant et al., 2021a), (Vasant et al., 2021b), 
(Ganesan et al., 2020). Recently, artificial neural networks (ANNs) have been used to model the PV 
modules for obtaining the electrical characteristics (I-V or P-V curves). For instance, the authors 
(Hadjab et al., 2012) and (Mekki et al., 2007) have been utilized the ANN to estimate the behavior 
of the PV module, where the input/output data for learning the network are obtained in simulation 
by an adequate mathematical model.

This study presents the neural modeling of the PV array only for certain values of standard metrological 
conditions (i.e., temperature; T=25°C; and illumination; G=1000W/m2). But, for inputs with arbitrary values, 
the results found have uncertainties with respect to the desired results obtained by the mathematical model.

Based on the research works discussed above, we are interested in this paper on providing an 
accurate prediction of a PV output performance based on an artificial neural network. The work 
carried out in the scope of this paper gives rise to the following contributions:

•	 The first issue that we want to work on is the development of a multi-layered perception (MLP) 
neural network with two hidden layers. This ANN is optimized regarding the number of hidden 
neurons based on the trial-and-error technique.

•	 In order to ensure a good validation of the proposed ANN model for any input values, a simulation 
study is proposed. In this simulation study, a random choice (i.e., use of uniformly distributed 
random variables, “rand”) of the inputs (atmospheric conditions) and the output voltage of the 
PV panel is considered for the training of the ANN model. The role of this choice is to cover the 
maximum possible combinations of temperature, illumination, and panel voltage.

•	 For the “off-line” adaptation of the weights of the ANN network, we use in our research work 
an algorithm of training, which is the backpropagation algorithm.

The rest of this paper is arranged as follows. In section 2, the mathematical modeling of the 
PV cell and the description of the chosen PV module are given. Next, an overview of the artificial 
neural network is provided in section 3. Section 4 describes in detail the proposed ANN modeling 
approach. The simulation results and discussions are highlighted in section 5. In section 6, the main 
conclusions of the present research work are reported.

PHOTOVOLTAIC SYSTEM

In this section, the modeling of a PV module and the description of the chosen module (BP-SX150S) 
are presented.

Modeling of a PV Panel
The equivalent circuit of a PV cell is presented in Fig. 1, in which the simplest single-diode model of 
a PV panel can be represented by a photo-generated current source (Iph) in antiparallel with a diode, 
defined by the single-exponential Shockley equation (Naeijian et al., 2021), and the non-ideals are 
represented by the insertion of the resistance Rs (series resistance). The Ipv–Vpv characteristic of the solar 
cell is described by a nonlinear equation given as follows (Chegaar et al., 2001), (Cardenas et al., 2017):

I I I e
pv ph s

q V R I

Tk

pv S pv

= − −












+ ⋅( )
η 1 	 (1)

where Vpv represents the output voltage of one PV panel, Is is the saturation current of the PV diode, 
q is the electrical charge (q = 1.6 × 10−19 C), η is the p-n junction quality factor, k is the Boltzmann 
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constant (k = 1.38 × 10−23 J/K), T is the ambient temperature (in kelvins), and Iph is the generated 
photocurrent related to the solar irradiation as described in the following equation:

I I k T T
G

ph sc i r
= + −( )



 ⋅ 1000

	 (2)

being Isc the cell short-circuit current at adequate temperature; Tr the cell reference temperature, ki the 
short-circuit current temperature coefficient, and G the solar illumination in W/m2.

Equation (1) can be modified in order to present a null root when the current Ipv approaches the 
real PV current. So, (1) can be defined by (3) as a function of its PV current as follows:
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The current Ipv, with a null initial value, is utilized in an iterative process that approximates 
(2) of its root, being obtained by the Newton–Raphson method (4), which seeks the zero of the 
differentiable equation:
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Therefore, the current Ipv can be calculated by (Easwarakhanthan et al., 1986):
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Figure 1. Equivalent circuit of the solar cell (single-diode three-parameters model)
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where:

V
T

q

k
T
=
η 	

BP-SX150S Panel
In our study, we chose the BP-SX150S photovoltaic panel, due to its higher efficiency, compared 
to other panels from different manufacturers, hence, its maximum voltage is higher. In addition, 
it provides efficient power for general use by the direct operation of direct current (DC) loads, 
or alternating current (AC) loads on systems equipped with inverters. The panel consists of 
72 polycrystalline silicon cells connected in series to produce 150W of power (Hornsberg & 
Bowden, 2018).

Manufacturers of solar panels specify the performance of their equipment under the following 
standard conditions (S.T.C):

•	 An AM 1.5 spectrum
•	 An illuminance of 1000W/m2

•	 An ambient temperature of 25°

Based on the technical data sheets provided by the manufacturer, the parameters of the chosen 
panel are determined, and they are reported in Table 1.

Overview of ANN
Biological neural networks easily perform many applications such as pattern recognition, signal 
processing, learning (memorization and generalization). These applications are, however, despite all 
the efforts made in algorithmic and artificial intelligence, at the limit of the current possibilities. It 
is on the assumption that intelligent behavior emerges from the structure and behavior of the basic 
elements of the brain that artificial neural network. Artificial neural networks are models, as such; 
they can be described by their components, their descriptive variables, and the interactions of the 
components (Yegnanarayana, 1994), (Popoola et al., 2019).

Each artificial neuron is an elementary processor; it receives a variable number of inputs from 
upstream neurons. A weight (Wij) is associated with each of these inputs. Each elementary processor 
has a single output, which then branches to feed a variable number of downstream neurons. Each 
connection is associated with a synaptic weight (see Figure 2), this elementary structure is called 
perceptron (HARMON, 1959).

Table 1. BP-SX150S panel specifications at S. T. C

Parameter Symbol Value Unit

Nominal Power Pnom 150 W

Voltage at maximum power Vpm 34.5 V

Current at maximum power Ipm 4.35 A

Open circuit voltage Voc 43.5 V

Short-circuit current Isc 4.75 A

Temperature coefficient a 0.065±0.015 mA/°C
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PROPOSED ANN MODELING APPROACH

In the photovoltaic field, manufacturers provide datasheets for PV modules at different meteorological 
conditions. However, these conditions are not always obvious, rarely occurring outdoors, as they 
are mainly carried out under laboratory conditions using a solar simulator. Therefore, in order to 
perform an appropriate characterization of the electrical behavior of PV panels (obtaining the I-V 
and P-V curves). The present research work focuses on developing a model based on artificial 
neural network to substitute it for the response of the BP-SX150S photovoltaic panel under different 
meteorological conditions.

The proposed multi-layer feed-forward neural network architecture for the modeling of the PV 
module is portrayed in figure 3. This architecture considers three inputs; cell temperature (T), solar 
illumination (G), and the output voltage of the PV module (Vpv); and one output which is the PV output 
current (Ipv). In addition, it consists of two hidden layers, in which the first hidden layer composes of 
06 neurons and the second hidden layer of 10 neurons. The number of neurons in each hidden layer is 
chosen in optimum way considering the least MSE between the estimated current (Ipv) by the proposed 
ANN model and the one calculated using the PV mathematical equation. This process is done based on 
a simulation study in MATLAB/Simulink environment. The different obtained results are reported in 
Table 2, where the error converges to the minimum in architecture number 1, which justifies our choice.

It is worth noting that, the global database is divided into two bases, the learning base, and the 
test base. The learning base with the backpropagation algorithm is used to train the neural network, 
while the test base is exploited to check the performance of the obtained model. The database must 
cover this set of values. Based on the values of the different parameters, the database will therefore 
have 512×512×512 elements, and the training of the neural network is done with a database of 
134217728 elements. It is important to notice that no part of the test base is used throughout the 
learning process. This database is reserved only for the final measurement of performance. In other 
words, to check whether the neural network performs well in the cases it has not learned “test basis”.

To obtain the expected ANN-PV model, the procedure of the ANN is done based on the 
following phases:

1. 	 Normalization phase: All the parameters used for the ANN modeling of the chosen PV panel 
(BP-SX150S) are summarized, hereafter:
a. 	 Architecture: Multi-layer perceptron (Feed-forward MLP)

Figure 2. A model of an artificial neuron network
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b. 	 Learning rule: Backpropagation of errors
c. 	 Number of hidden layers: 2
d. 	 Number of neurons in the input layer: 3 (Vpv, G, T)
e. 	 The number of neurons in each hidden layer: See below:

i. 	 1st hidden layer: 06 neurons
ii. 	 2nd hidden layer: 10 neurons

f. 	 The number of neurons in the output layer: 1 (Ipv)
g. 	 The functions: See below:

i. 	 1st hidden layer: Sigmoid
ii. 	 2nd hidden layer: Sigmoid

h. 	 Input and output terminals: See below:

Inputs: Vpv (V): min = 0V, max = 50V	
G (W/m2): min = 0W/m2, max = 1000W/m2	
T (°C): min = 0°C, max = 100°C	
Output: Ipv (A): min = 0A, max = 6A	

Figure 3. Schematic diagram of the proposed neural network architecture
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i. 	 Database: See below:
i. 	 Learning base: 134217728
ii. 	 Validation and test basis: 40265318

j. 	 The error: Desired error, Ed: 10-8:
i. 	 MSE: 1.13x10-6

2. 	 Learning phase: Learning is a phase in the development of a neural network, in which 
the behavior of the network is modified until the desired behavior is achieved. After 
several executions of the program, the values of the learning coefficient (μ = 0.0002) 
and the inertia (momentum) (α = 0.8) are selected which gives the desired error with a 
fixed number of iterations. Figure 4 shows the flowchart that represents the implemented 

Table 2. Variation of the test error according to the different structures

N Number of neurons 1st hidden layer Number of neurons 2nd hidden layer MSE

1 6 10 0.00000113

2 7 4 0.0000225

3 7 5 0.0000553

4 7 9 0.00006614

5 6 5 0.000109

6 6 9 0.000202

7 5 10 0.000213

8 8 5 0.000324

9 6 8 0.000413

10 4 9 0.000464

11 5 8 0.000507

12 6 4 0.000722

13 4 7 0.00224

14 4 8 0.00225

15 5 4 0.00231

16 4 5 0.00285

17 5 5 0.00297

18 4 6 0.00357

19 5 9 0.00511

20 7 8 0.00622

21 6 7 0.00764

22 8 6 0.00768

23 7 6 0.0087

24 4 10 0.0156

25 5 6 0.0174

26 6 6 0.041

27 5 7 0.0634

28 7 7 0.08885

29 8 4 0.09476

30 7 10 0.099423
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algorithm in MATLAB for the ANN training. Since, in our case, the number of neurons 
in the output layer is set by the number of system outputs to be modeled, the PV panel 
has a single output Ipv (output current). In figure 5, we present the detailed flowchart for 
learning the ANN model.

3. 	 Validation and test phase: The evaluation of the generalization capacity of the neuronal 
system is carried out on a validation basis. Using input-output pairs that do not belong to 
the learning base. Indeed, after carrying out the learning and finding the network weights 
necessary for the calculation of the properties, the error must be estimated on a test basis. 
It is sufficient to compare the initial database with the one obtained after the training and 
to draw the current (power) curve modulating Ipv (Ppv = Ipv × Vpv) for different values of Vpv, 
G, and T. The block diagram of the adopted algorithm for the ANN model validation is 
depicted in Figure 6.

Figure 4. Flow shat of the learning phase algorithm
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SIMULATION RESULTS AND DISCUSSIONS

In this section, the test-bed built to assess the obtained ANN model (given in figure 3) 
is shown in figure 7. In addition, the obtained results that show the performance of the 
obtained ANN model, in which the I-V and P-V characteristics, as well as the calculated 
relative error between the ANN model and the mathematical actual model, are provided. 
It’s worth mentioning that the parameters used in this simulation study are the same given 
in the initialization phase.

I-V and PV Curves
Simulations in MATLAB are carried out to assess the performance of the obtained ANN model. 
Indeed, the comparison between the initial database and the one obtained after the learning phase, 
using the test base, has indicated that the proposed neural model faithfully expresses the variation in 
the response of the PV panel characterized.

Figures 8 and 9 show the performance of the ANN model obtained for different values of G with 
T = 25°C. In this test, the following four values of G are considered: 300 W/ m2, 500 W/ m2, 800 W/ 
m2, 1000 W/m2. From these figures, it can be noticed that the I–V and P–V curves predicted with 
the proposed ANN model are matched with the ones given by the mathematical model for different 
values of irradiance G.

Figure 5. Detailed flowchart for the learning task
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Figure 6. Validation flowchart

Figure 7. Block diagram of the built test-bed for assessing the performance of the ANN-panel model



International Journal of Energy Optimization and Engineering
Volume 11 • Issue 2

12

With the same procedures, we assess the performance of the proposed neural model carried out 
for different values of the temperature T. We took four values of temperature T, which are: 0 C°, 
25 C°, 50 C°, and 75 C°. Figures 10 and 11 show the performance of the ANN model obtained for 
different values of T and G = 1000W/m2. According to figures 10 and 11, it can be seen that the 
ANN model accurately predicts the I-V and P-V curves as the mathematical model for various values 
of the temperature T.

Figure 8. Current-voltage curve (mathematical model with ANN model) for different illuminations values and T = 25°C

Figure 9. Power-voltage curve (mathematical model with ANN model) for different illumination G values and T = 25°C
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Error Calculation
To demonstrate further the effectiveness of the proposed ANN model, the relative error between the 
electrical PV parameters ; maximum power Ppv_m, open circuit voltage VOC , and short circuit current 
ISC ; predicted by the ANN model and the ones of the mathematical model is evaluated under several 
illumination and temperature conditions.

The relative error is defined as the difference between the values of the generated PV parameter 
by the two models; the mathematical model (Y

pv
) and the obtained neural model (Ŷ

pv
), divided by 

that of the mathematical model (Y
pv

). This error is calculated using the expression given by equation 
(6) below:

E
Y Y

Yr

pv pv

pv

=
−

×
ˆ

%100 	 (6)

Figure 10. Current-voltage curve (mathematical model with ANN model) for different temperature T values and G = 1000W/m2

Figure 11. Power-voltage curve (mathematical model with ANN model) for different temperature values and G =1000W/m2
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Maximum Power (Ppv_m) Error
Figure 12 depicts the relative error in Ppv_m of the BP-SX150S module at different irradiation levels, 
while the temperature is set at the STC condition (T = 25°C).

It can be observed that the relative error of the maximum power increases when the irradiance 
decreases. More particularly, in the case of high irradiation, i.e., in the value of 1000W/m2, the relative 
error is around 0.02%, due to the good learning of the proposed model in STC conditions. Whereas, in 
the case of low values of irradiation, the maximum relative error does not exceed the value of 3.7%.

For temperature variation, Figure 13 shows the relative error in Ppv_m for the BP-SX150S module 
under different temperature values, and the irradiance is set to 1000 W/m2 (STC condition). It is 

Figure 12. Relative error of the maximum power for different values of G with T = 25°C

Figure 13. Relative error of the maximum power under different values of T with G = 1000 W/m2
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noticeable that the relative error of the maximum power for zero-temperature is important (4%) 
compared to other temperature values because the zero-temperature value is at the limit of the database 
space chosen for the training phase. However, the relative error of the maximum power for different 
temperature values does not exceed the value of 3.2%.

Open Circuit Voltage VOC Error
Figure 14 shows the analytical relative error in VOC for the BP-SX150S module under different 
illumination levels when the temperature value is set at 25 °C (STC condition). According to this 
figure, the relative error of the open-circuit voltage for different illuminance values is minimal, 
especially for 800 W/m2 irradiance, which is of the order of 10-2%.

The relative analytical error in Voc for the BP-SX150S modules for different temperature values 
is shown in Figure 15 while the irradiance value was set in the STC condition. From this figure, it 

Figure 14. Relative error of the open-circuit voltage Voc for different values of G with T = 25°C

Figure 15. Relative error of the open-circuit voltage Voc under different values of T with G = 1000 W/m2
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can be noted that the relative error is very small for the different values of temperature except the 
value 0°C, in which an error of about 8% is noticed.

Short-Circuit Current ISC Error
Here, the performance of the proposed model for predicting the short circuit current ISC under varying 
illumination and temperature conditions is assessed. Figures 16 and 17 show the relative error in ISC 
for the BP-SX150S module at different illumination and temperature levels respectively. In the case 
of illumination variation, the maximum error value is 0.5% for the illumination value of 300 W/m2, 
while the minimum value is 0.01% for the illumination value of 800 W/m2. However, the maximum 
error value in the case of temperature variation is 0.75% for the temperature value of 25°C, whereas 
a minimum value of 0.1% is found when the temperature value is 50 °C.

Figure 16. Relative error of the short-circuit current Isc under different values of G with T = 25°C

Figure 17. Relative error of the short circuit current Isc for different values of T with G = 1000W/m2
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Generally speaking, it can be seen that the proposed neural model provides an accurate prediction 
for the shape of the I-V and P-V curves of the BP-SX150S photovoltaic module, compared with the 
mathematical model under different metrological conditions.

CONCLUSION

In this paper, a model of the BP-SX150S PV module based on a multi-layer feed-forward neural 
network trained with a back-propagation algorithm was developed. First, a good selection of the 
database is necessary where illumination range have been selected from 0 W/m2 to 1000 W/m2, and 
temperature range from 0 C° to 100C°. As far as the output voltage was concerned, a range of 0V to 
50V has been set in the training phase. It is necessary to note that the training set is very important, 
it must represent a fairly large set of PV module behavior so that our artificial neural network is well 
trained. In addition, the neural network has been optimized in terms of number of hidden neurons by 
using the trial-and-error technique. An MSE in the output current was reached up to 10-8 in the training 
phase. Once all the training steps have been completed, the performance of the proposed neural model 
against the learning data has been evaluated, which is necessary to check its reliability. Second, the 
performance of the proposed neural model has been tested for inputs that were not confronted during 
the learning phase. The obtained results have shown that the proposed neural model can provide an 
accurate prediction for the shape of the curves of the supplied current versus the voltage and produced 
power versus the voltage. Also, they have presented that the calculated relative error between the 
maximum power produced by the ANN model and the mathematical model was reached up to 0.02%. 
Thus, the maximum power delivered by the ANN is very close to that obtained by the BP-SX150S 
model. This model can be very useful for academic researchers and engineers in applications where 
precise prediction of the outputs of a BP-SX150S module is needed. As perspectives, the extension 
of this research work can be envisaged, it is a way to apply a real database (experimental data of our 
city; M’sila, Algeria) for optimal neuronal modeling of the photovoltaic module.
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