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ABSTRACT

Researchers are increasingly using algorithms that are influenced by nature because of its ease and 
versatility. The key components of nature-inspired metaheuristic algorithms are investigated, involving 
divergence and adoption, investigation and utilization, and dissemination techniques. Grey wolf 
optimizer (GWO), a relatively recent algorithm influenced by the dominance structure and poaching 
deportment of grey wolves, is a very popular technique for solving realistic mechanical and optical 
technical challenges. Half of the recurrence in the GWO are committed to the exploration and the other 
half to exploitation, ignoring the importance of maintaining the correct equilibrium to ensure a precise 
estimate of the global optimum. To address this flaw, a multi-tiered GWO (MGWO) is formulated 
that further accomplishes an appropriate equivalence among exploration and exploitation, resulting 
in optimal algorithm efficiency. In comparison to familiar optimization methods, simulations relying 
on benchmark functions exhibit the efficacy, performance, and stabilization of MGWO.
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INTRODUCTION

Meta-heuristic optimal techniques are becoming extremely prevalent in practical execution because 
they implement on basic concepts for easy execution, don’t need gradient knowledge, could be 
employed on numerous problems spanning various fields (Shayanfar & Gharehchopogh,2018; 
Gharehchopogh & Gholizadeh, 2019; Gharehchopogh et al., 2019; Abedi & Gharehchopogh, 2020; 
Majidpour & Gharehchopogh, 2018). Meta-heuristic algorithms have shown to be effective in 
understanding several stochastic and multimodal actual optimal problems. Chaotic and local hunt are 
also used in all Meta-heuristic implementations and for global optimum meta-heuristic algorithms 
may be useful (Khalandi & Gharehchopogh, 2018; Allahverdipour & Gharehchopogh, 2018).

Due to the ever-increasing complication of actual issues in engineering and technology, Global 
Optimization (GO) has evolved as indispensable for utmost optimization. The GO contains a large 
number of difficult multimodal optimization problems for which most conventional optimization lag 
or have unattainable investigations. Swarm Intelligence (SI) implementations are among the most 
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efficient and effective GO approaches. SI algorithms are computation frameworks that were created by 
mimicking natural seeking behavior patterns and are used to solve multi - objective optimization issues.

Populace dependent metaheuristic optimization is among the most robust strategies to overcome 
continuous and combinatorial optimization issues. Numerous real-time problems, on the other hand, 
are frequently framed as multi objective challenges with constrained resources (Sumpunsri et al., 
2021). Two challenges arise when deploying nature-inspired methods to address Mining Algorithm 
with statistical properties: appropriately minimizing the ranges of the upper and lower limits of 
attributes, and effectively designing the assessment function. suggests utilizing a shrinking coefficient 
to minimize the interval of characteristics, while the assessment function is specified as a weighted 
average of support, reliability, participation, and shrinking coefficient (Fister et al., 2021).

GWO (Mirjalili et al., 2014) a competent and new onset meta-heuristic progressive optimization 
technique depend on the dominance and targeting behavior of grey wolves. Grey wolves (Canis Lupus), 
which belong to the Canidae folks, influenced the GWO procedure. Gray wolves live in clusters, with 
a batch size ranging from 5 to 12. The leader is known as alpha and is qualified to make decisions 
such as hunting, sleeping, and so on. The latter is known as beta, and it supports the alpha in making 
decisions. The alpha wolf should be appreciated by the beta wolf. Omega is the weakest grey wolf in 
terms of level, and it sends data to other wolves in the region. The rest of the grey wolves have given 
their names delta. Exploration and exploitation are two key divisions of metaheuristic approaches 
(Miandoab & Gharehchopogh, 2017). Exploration ensures that the algorithm reaches distinct suitable 
regions in the problem space, while exploitation ensures that global optimum is found in the specific 
area (Gharehchopogh et al., 2015). The usefulness and optimum results obtained metaheuristics in 
developing skew complex laminates in active workable situations is investigated in depth (Kalita, et 
al., 2021). In diverse-scale architecture, a conceptual regression performed via Genetic Programming 
(GP) paired with D-optimal layout is offered as an alternative theoretic foundation model for optimal 
algorithm (Kalita, Mukhopadhyay, et al., 2020). In (Kalita, Dey, et al., 2020) By integrating the 
high-accuracy of the structural analysis approach with the continuous enhancement potential of 
evolutionary methods, a high-precision structural optimal control model is established. The (Kalita, 
et al., 2018) study looks upon genetically optimized skew laminates, which have had their impact 
strength changed to enhance their elementary recurrence using an effective optimizer.

Grey wolves’ distinctive prey technique and system approach influenced GWO. An improved 
GWO functionality is introduced in this study as GWO design is prone to falling into local optimum, 
particularly when utilized with high- proportion facts. The discovery function of GWO is improved, 
and the deficiency of GWO is compensated, by incorporating the global-search potential of GWO 
into MGWO to upgrade its strongest three solutions, which are alpha, beta, and delta wolf. The 
suggested methodology has global-search potential, and it could avoid falling into the local optimum 
and jumping out of the local optimum in elevated populations, according to preliminary experimental 
study and thus compared with Particle Swarm Optimization-GWO (PSOGWO), GWO-Cuckoo Search 
(GWOCS), Enhanced-GWO (EGWO), Augmented- GWO (AGWO), Particle Swarm Optimization 
(PSO) and GWO algorithms.

The paper is arranged as: Section 2 includes a summary of the GWO algorithm. Section 3: 
Provides a review of the literature. Section 4 contains a framework of the research MGWO algorithm. 
Section 5: The MGWO algorithm is validated on confined benchmark functions, followed by an 
experimental investigation and analysis of the results. Section 6: The work’s interpretation is offered, 
as well as its future direction.

GREY WOLF OPTIMIZER (GWO)

GWO is a common SI algorithm that is influenced from the hierarchical administration and chasing 
system of grey wolves. They are considered prime target, and require a community density of 5–12 
individuals. In GWO, alpha (𝛼) is viewed as the supreme overwhelming portion amidst the pack. In 
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figure 1, the subsidiary to are beta (𝛽) and delta (𝛿), which aids to regulate most of wolves classified 
as omega (𝜔) appeared in figure 1. The 𝜔  wolves are of the most minimal positioning in the chain. 
The alphas have the most elevated level in the pecking order and omega the least. The alphas are 
the most grounded in the pack and provide the administration to the gathering. These wolves can 
distinguish the area of prey and the henceforth entire pack will proceed and attack.

The phases of trapping are (Mirjalili et al., 2014):

1. 	 Locating, pursuing, and arriving at prey.
2. 	 Encompassing and annoying prey till it stops.
3. 	 Attacks the prey.

The numerical representation of the wolves for prey chasing and attacking is presented as below:

1. 	 Encompassing Prey: Wolves enclose the target in the chase obtained numerically as Eq 1, 2:
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Figure 1. Dominance of Grey wolves
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where segments of a  
��

 straightaway diminished along 2 to 0 throughout emphases and r1, r2 are 
arbitrary trajectory in [0, 1].

2. 	 Tracking: Grey wolves can sense where they are being hunted and will surround them. The 
𝛼 is usually in charge of the pursuit. The β and δ can occasionally engage in pursuing as well. 
Nonetheless, in a theoretical hunt space, Developers also had no knowledge where the perfect 
area is (prey). To numerically recreate the pursuit behavior patterns of wolves, Designers believe 
that α (finest competitors’ scenario), β and δ have broader insight about the possible prey zone. 
Subsequently, they keep the first 3 top arrangements made thus far and require the other chase 
agents (adding up ω) to reposition themselves in accordance with the placement of the top 
candidate solutions seen in Figure 2. The foremost necessary category α, β and δ lead to the 
strongest test methods in terms of strength. Then, using the calculation below, the wolf locations 
with these three categories are revised in eq 6,7,8:
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,  is the placement trajectory of α, β and δ respectively. Within standard conditions, 

first three phases of grey wolf are believed to be familiar with the following location of the target on 
the chase. While acquiring abovementioned conditional probability, the wolves will formulate 
approximation to the acquired location to achieve the entire modification in eq 9,10,11:
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Attacking Prey (Exploitation)
As referenced grey wolves conclude pursue by striking the target as it halts motion. To numerically 
demonstrate motion to the target value of a

�
 is declined. The change scope of A

��
 is likewise diminished 

by a
�

. A
��

 is irregular quantity in the span [−𝑎, 𝑎], 𝑎 is diminished straightaway from 2  to 0 throughout 
the reduplications. At the point when arbitrary quantity of A

��
 lies in [−1, 1], the following location 

of a hunt specialist can be in any role amidst its present range and location of target. |𝐴| < 1 powers 
the wolves to assault target. Subsequently the assault again they look for target in the following cycle, 
accordingly, they once more track down the following best finding 𝛼 amidst every wolf. This action 
replicate till the termination benchmark is accomplished.

Discover Target (Exploration)
Grey wolves hunt primarily using α, β and δ locations. They separate to hunt for prey and then combine 
to strike prey. To numerically display A

��
 is used with unsymmetrical values more distinguished < 1 

or < -1 to force the hunt maestro to detached from target. This encourages discovery and enables 
GWO to examine the globe. Figure 3 also reveals that when |A| > 1 the grey wolves are compelled 
to detached from target to track down a fitter prey. C

��
 is another aspect of GWO that encourages 

exploration. The C
��

 vector, as shown in Eq. 4, includes arbitrary values in the range [0, 2]. This 
portion gives arbitrary loads to prey to stochastically prioritize (C > 1) or diminish (C < 1) the impact 
of target in characterizing the range. This allows GWO to behave in irregular manner during 
optimization, preferring exploration and averting local optima. It’s worth noting that, in comparison 
to A, C does not diminish linearly. We need C to give arbitrary values consistently to accentuate 
exploration not only during the starting cycles but also during the final cycles.

Figure 2. Location update in GWO
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The discovery phase begins with the GWO algorithm generating an arbitrary populace of grey 
wolves. α, β, and δ wolves predict the approximate whereabouts of the target over the throughout 
iterations. The distance between each finding and target is modified. To affirm discovery and 
exploitation, the criterion a is reduced from 2 to 0. As |A| > 1 candidate findings appear to separate 
target and join the target as |A| < 1. At last, the GWO is terminated when an end condition is met.

In (Kumar, et al., 2021), a new adaptive GP-GWO strategy for biodiesel procedure optimization 
is suggested, in which kinematic viscosity is demonstrated as a symbolic regression process model 
to address the impact on optimized process parameters using a GWO optimal solution.

Limitations
Low solution accuracy, sluggish convergence, and poor local searching capabilities are all drawbacks of 
the typical GWO algorithm. The MGWO algorithm is presented to tackle limited optimization issues 
in order to overcome the shortcomings of GWO. Since GWO variations, including MGWO, rely on 
the arithmetic averaging formula for individual location upgrade, our primary goal in MGWO is to 
investigate the algorithm’s behavior by combining the arithmetic averaging formula with the fitness factor.

Motivation
The wolves’ social conduct and levelled demeanor are prominent and readily noticeable (Figure 1). 
This conduct prompts a productive chasing strategy. This social insight of the wolves, the strength of 
the pioneer wolf that is alpha and other i.e., beta, delta, and omega alongside the adaptable system 
of searching, drawing closer lastly chasing the prey are the three fundamental rousing components 
behind the powerful working of the GWO calculation. It is unsuitable for more complex functions, 
and it may still be susceptible to becoming stuck in local optima. To counter this shortcoming and 
boost its exploration ability. Multi-layered GWO (MGWO) a variant dependent on GWO calculation 
is developed to answer relevant genuine issues. The fundamental inspiration driving MGWO is to 
improve the slow convergence rate and inadequate solution space capability.

BACKGROUND

Integration on an automated platform cluster would be a popular mode for completing necessary 
activities. Community decision-making is a crucial technology for facilitating unmanned cluster 

Figure 3. (a) Discovering Target (b) Attacking Prey
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collective work due to the complexity and variety of the domain and task categories. Gray wolves 
have excellent intellectual and coordination abilities, and can trace and envelop prey in a dynamic 
world easily. Knowledge awareness, division of work, and collaboration are intelligent action attributes 
that are compatible with the judgement requirements of an automated group. GWO is a modern SI 
optimization algorithm that is well suited to resolving such critical decision optimization problems.

Related Works
Focusing on the inadequacies of conventional GWO as sluggish convergence speed and effective 
plunge to search space, an enhanced grey wolf optimization (EGWO) (Joshi & Arora, 2017) is 
applied to disintegrate the collective hunting behaviour of wolves in phases. Different mathematical 
strategies are used to refine the theoretical formulation built from discovery and monitor, chase, 
encirclement, and strike predators. The process phase transitioning model is designed to interact 
with structure mutations in actual environments, allowing the cluster to solve problems and respond 
faster. To resolve limitation of GWO, EGWO proposes a stronger hunting strategy that emphasizes on 
a balanced combination between discovery and exploitation, resulting in optimal method efficiency.

For superior targeting efficiency, a fast and structured Augmentation GWO (AGWO) (Qais et 
al., 2018) technique is suggested. By altering the conduct of the control parameter (a) and location 
modification, the AGWO aims on expanding the probability of the exploration over exploitation. 
The AGWO is well suited to applications with a small count of search agents like the power grid. 
A novel hybrid method relies on GWO and cuckoo search (GWOCS) is introduced to retrieve the 
specifications of various PV cell models from measured evidence under various conditions. New 
resistance investigation technique for selection level populations (α, β, and δ) is formulated in GWOCS 
(Long et al., 2020) to increase GWO heterogeneity. The potential of GWOCS to strike a balance 
between discovery and exploitation is its key benefit. Particle swarm optimization (PSO) (Wang 
et al., 2018) is a community stochastic optimizer inspired by the sophisticated active participation 
of certain entities such as bird flocks or fish schools. Researchers have created updated models of 
the strategy to meet higher needs, introduced innovative implementations in a variety of fields, 
conducted conceptual evaluation of the impact of key variables, and suggested numerous variants 
of the approach. The PSO is based on (Kennedy & Eberhart, 1995) algorithm, with variations 
recommended by (Mezura-Montes et al., 2011; Pedersen, 2010). The preliminary particles are created 
and given basic flow rates in the PSO. It makes an ideal (lowest) fitness values and the right place 
by evaluating the objective function at every entity site. It determines further velocities depending 
on the present velocity, the best locations of the objects individually, and their surroundings. It then 
repetitively upgrades particle positions, velocities, and surroundings (the new position is the previous 
one plus the velocity, updated to hold objects in scope). Repetitions continue until the process meets 
a threshold for terminating. Particle swarm optimization’s (PSO) exploitation potential is combined 
with the grey wolf optimizer’s (GWO) exploration strength in this combination algorithm (Şenel 
et al., 2019). By swapping a particle of the PSO with a minimal chance with a particle moderately 
strengthened with the GWO, the approach incorporates two approaches. The method is tested against 
five separate benchmark functions as well as three real concerns, including estimation methods for 
flow sheeting, and leather nesting (LNP) so on. Approach also conforms to more efficient outcomes 
with less iterations, according to the findings.

Hybrid implementations for the optimizing of multifaceted complex domain, FWGWO is 
introduced, which is focused on GWO and Fireworks Algorithm (FWA) (Yue et al., 2020). The 
FWGWO algorithm blends GWO’s strong exploitation ability with the FWA’s strong exploration 
potential. In terms of balancing exploitation and discovery, this algorithm employs an appropriate 
equilibrium coefficient. The equilibrium multiplier determines the likelihood of exploitation or 
discovery. The FWGWO algorithm has a quick convergence speed and can resist the local optimum 
as much as feasible by adjusting the equilibrium multiplier. Numerous uncertainties are common 
in sophisticated manufacturing facilities. As a result, advanced fuzzy optimization (metaheuristics) 
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approaches have become mainstream, and are now required for efficient design, development, and 
services. However, when compared to the large problems, such cutting-edge solutions have numerous 
limitations. The fuzzy random matrix theory (RMT) is proposed as an update to the cuckoo search 
(CS) solution to address the fuzzy large-scale multi-objective (MO) optimization issue in order to 
enhance the effectiveness of metaheuristics among those (GANESAN et al., 2020).

The Binary Grey Wolf Optimizer (BGWO) (Pei al., 2020) adds the GWO’s functionality to 
binary optimization problems. A parameter affects analytic discovery and exploitation in the BGWO 
location modification equations by controlling the variables of A and D. This investigates the scope 
of AD attributes in binary conditions and suggests a new modifying equation for a variable that give 
equilibrium to global and local search abilities. The upgraded GWO based on tracking mode (TGWO), 
focused on searching (SGWO), the modified GWO based on monitoring and seeking (TSGWO) is 
presented in (GUO et al., 2020). It is used to solve the simplest pressure vessel design engineering 
challenge. The suggested methodology has better efficiency in terms of enhancing the ideal, and it 
has benefits of exploration, according to results obtained.

I-GWO (Mohammad et al., 2021) suggested a method to overcome the problem of population size, 
the disparity among exploitation and discovery, and the GWO algorithm’s premature convergence. 
The I-GWO algorithm takes advantage of a modern mobility technique known as dimension learning-
based hunting (DLH) sensitive approach, which was inspired by wolf hunting activity in the wild. DLH 
uses a unique approach to creating a community for each wolf, one in which neighbours’ knowledge 
can be exchanged. The DLH analysis method utilizes dimension learning to improve the equilibrium 
among local and global quest while maintaining versatility. IGWO (Li et al., 2021) is a method that 
allows engineers solve design problems. The initial position of the grey wolf population is generated 
using a tent map, which equalises wolf populace and provides the basis for a manifold universal quest 
behaviour. Second, to prevent the method crashing into local optima, Gaussian mutation distortion 
execute different functionality on existing optimum. Finally, a cosine control factor is added to align 
the algorithm’s global and local exploration proficiency and accelerate convergence. The IGWO 
algorithm is used to solve four engineering optimization problems with varying degrees of complexity. 
Investigators have intensified their usage meta-heuristic strategies in the fields of industry, science, 
and technology as a result of their growth. The K-means clustering is applied to improve the existing 
GWO’s performance; the updated algorithm is known as K-means clustering GWO (KMGWO) 
(Mohammed et al., 2021). Cat swarm optimization (CSO), whale optimization algorithm-bat algorithm 
(WOA-BAT), WOA, and GWO are all contrasted with KMGWO for investigations. In addition, hybrid 
Particle Swarm Optimization– GWO (PSO–GWO) (Prithi & Sumathi, 2021) accurately consume 
power and safely send information in an extended direction. To incorporate the changing aspect of 
the system, Learning Dynamic Deterministic Finite Automata (LD2FA) is implemented. The main 
purpose of LD2FA is to give experienced and authorized string to PSO–GWO in order to optimise 
the routes. To ensure the best route, PSO–GWO is followed to select best subsequent node for each 
direction. Expanded GWO has major three wolves are alpha, beta, and delta, just like they are in 
GWO. The following wolves, on the other hand, choose and change location dependent on prior and 
first three wolves (Seyyedabbasi & Kiani,2021). The incremental GWO is another suggested method 
that is dependent on the incremental model. This system upgrades each wolf’s location based on the 
positions of all the wolves chosen before it. There’s a chance that this algorithm can find solutions 
(hunts) faster than other implementations in the same group. However, since they rely on one another, 
they cannot always be able to come up with a good alternative. Both algorithms rely on exploration 
and discovery.

Each of the aforementioned optimization algorithms must resolve the exploration and exploitation 
of a local optimum. An optimization algorithm must develop an equilibrium between exploration 
and exploitation in order to be optimal. The Multi-tiered GWO (MGWO) is suggested in this paper 
to resolve the discovery and exploitation trade-off in the existing GWO. Over the iteration process, 
various tasks with different orientations are used to determine the stability of the GWO algorithm 
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for varying exploration and exploitation formulations. Increasing discovery in relation to exploitation 
speeds up convergence and prevents the locking impact of local minima. Numerous performance 
aspects, such as precision, authenticity, concurrence, and enumeration, are tested using 23 benchmarks 
to thoroughly assess the efficacy of MGWO.

MULTI-TIERED GREY WOLF OPTIMIZER (MGWO)

Discussion
This new variant aims to increase GWO’s global exploring capabilities and computational complexity 
by redesigning the encircling framework and location reform equations. MGWO begins with creating 
a populace of P grey wolves Pj, j = 1, 2, . . ., n actually like GWO, where n is issue measurement. All 
through this work, the grey wolves will be referred to as search agents. The populace generated based 
on fitness objective function and is arranged in order. The fittest (with a base target esteem) populace 
part is known as X 'α , the second-best worth is X 'β , the third best is X 'δ , and the excess populace 
individuals are signified as X 'ω . The algorithmic model of MGWO is introduced in Algorithm 1. 
The analytical, quantitative, convergence capability of MGWO have been evaluated on 23 benchmark 
functions and are contrasted with current metaheuristics.

Mathematical Formulation of Proposed Algorithm
The traditional GWO algorithm tries to find for a global solution by imitating grey wolves’ prey 
tracking process. The location modification formula, that is measured as the average of three strongest 
grey wolf positions, is at the core of the GWO algorithm. This method performs well for simple 
problems, but it fails to provide accurate estimates for complex multimodal issues with higher 
dimensions. As a result, alternatives to complex multimodal global optimization problems demonstrate 
premature convergence and low quality. We suggest the MGWO to enhance the efficiency of the 
standard GWO. The location optimization formula in MGWO algorithm is dependent on the objective 
fitness function f

k
. The leader agents as X 'α , Xβ ' , and Xδ

� ��
'  are selected as according to the best 

three fitness value of objective fitness function P( f
k

) by applying sorting. Estimation is used to 
determine the location of the target.

The top three ranks, α’, β’ and δ’, lead to the three results with optimal condition. Thus, using 
the calculation below, the wolf locations with all these three top ranks are modified in eq 13,14,15:
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 placement trajectory of α’, β’ and δ’ respectively.
Within standard conditions, first three stages of grey wolves are believed to be familiar with the 

following locations of the predators on the quest. The wolves will conduct the final version based 
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on the acquired location using the equation below after retrieving abovementioned fitness value in 
eq 16,17,18:
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 demonstrates the placement trajectory of a grey wolf where t shows the present emphasis. As 
a result, via equation, define the closest agent to be identified as the new best option given by eq 19:
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As shown in Eq 3, 4,5 the modified coordinates are determined using coefficient vectors 
A
��

 and C
��

.

Parameters for Objective Functions

1. 	 Coverage Area (f1): The coverage area of each wolf, where a proper distribution of search agents 
should retrieve both similar coverage area across search agents and coverage for every wolf, as 
in eq 20:

A d n
Cover far
= ( * ) /2 π 	 (20)

ACover is the coverage area and d2
far is the squared interspace to the extreme wolf from the median. 

Hence, all wolf is within d2
farπ, the ring-shaped area from median of the wolf to d2

far, and any wolf 
interior of ring enclosed by a search agent has interspace lessened than the extent to that search agents. 
Further, correlating interspace is manageable than demonstrating if a wolf is interior of ring as in eq 21:

R
A d

n

d

n
Cover

Cover far far= = =
π

π

π

2 2*

*
	 (21)

where RCover is the extent to regulate whether a wolf is inside scope ACover. The group of wolfs enclosed 
by the k-th search agent is indicated as:

coverK search agentID Distance search agentID mk R
Cover

= ( ) <{� | ,  }} = …( )∀, , ,k n ID1 2 3 	
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where Distance (search agent
ID

 , mk ) is the range from wolf particularly characterized by ID to 
the k-th search agent. Observe RCover examine that the total scope area is split uniformly. Therefore, 
additional wolfs enclosed by the search agents signify a finer organization. Accordingly, a fitness 
estimate can be indicated as eq 22:

f cover
k

N

K
1

1

=
=
∪ 	 (22)

Here | | symbolizes cardinality of group (i.e., element count) and union avert total overlying wolfs 
enclosed by numerous best search agents.

2. 	 Balancing Element (f2): There is necessity of equilibrium in group of search agents. For sake 
of arbitrary formation of agents, there is a probability that several large groups are set up and 
several tiny groups of search agents. So, this factor is perquisite to stabilize the dissipation of 
vitality in eq 23:
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where n is overall count of search agents, m is Total aggregate of best search agents, lk is numbers 
of wolfs in the group k. Alternatively, individually reduce one and all fitness function it is preferable 
to shrink the union of the above fitness function as expressed in mathematical statement. The above 
fitness functions are energetically in consistency of both.

If best search agents are in range, then wolfs will consider as optimal set of search agents, that 
implies search_agents(i). d R

toBest
<  then compute the Fitness function (fi) as:

fi = µ * f1 + σ * f2	

where µ  and σ  represent constant variable and µ  + σ  = 1 and if (search_agents (i). d R
toBest

< )
Compute eq 24:

f µ cover
n

m
l

k
k

N

K k

m

k
= + −











=
=∑* *

1
1∪ σ 	 (24)

The objective for deciding GWO atop meta-heuristic techniques is that GWO has rapid 
convergence rate. Additionally, GWO dominance uninterrupted depletion of search space and selection 
parameters are fewer. Moreover, avert local optima.

The position optimization calculation is changed to represent the current measured objective 
fitness, f

k
 given in eq 25:

f µ cover
n

m
l

k
k

Np

K k

Np

j
= + −











=
=∑* *

1
1∪ σ 	 (25)
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where Np is Total Populace Proportions.
This system is highly useful in a dynamic environment where the issue landscape has narrower 

and numerous ranges. MGWO is deployed on tracking and seeking mode.

Step 1: Instantiate MGWO benchmark framework: Populace Proportions (Np), maximal recurrence 
count (Max_Np), Remembrance Bank (RB), Replace Count (CDC), Arbitrary Initial Rate, 
Arbitrary placement of α’, β’ and δ’ wolf (X 'α

� ���
; X 'β
� ���

; X 'δ
� ���

).
Step 2: Amend orientation of α, β and δ applying Eq. 16, 17, 18. Enumerate the fitness value every 

wolf. Evaluate X 'α  as finest quest agent, and assess fitness value f (X 'α ) using eq 25.
Step 3: The MGWO algorithm updates the placements of α, β and δ using Eqs. 16, 17, 18. MGWO 

approach employs the seeking mode to amend position of α and alerts β and δ with tracking 
mode by using Eqs. 16, 17, 18; MGWO implement seeking feature to change the locations of α, 
β and δ to create a set of entities to occupy the quest storage database, duplicate the entities in 
the existing seeking phase: Establishing RB =5, X '

1
, X '

2
, X '

3
 are freed in memory cache as 

nominees. Eq. 25 repeats the candidate solution Np times, Np = RB - 1; fitness values of all 
nominee sites in the recall cache are determined individually at this stage.

Step 4: Upgrade X of applying Eq. 19 amend the placement X '
� ��

 of each wolf applying Eq. 16,17,18.
Step 5: In case f ( ')X _< f ( )X , then f ( ')X _= f ( )X , else constant.

In case f ( )X < f X 'α( ) , then f X 'α( )  = f ( )X

Step 6: Termination criteria met and return optimal outcome f X 'α( ) , else reinstate Step 2.

The flow chart of MGWO is given in Figure 4 and Pseudo-code MGWO deployed on chasing 
and hunting process is outlined Considering arbitrary initialization of grey wolf populace is given 
in Algorithm 1.

Advantages and Disadvantages of the Proposed Methodology

The location, speed, and convergence precision of the X 'α  agent have been strengthened in this 
version by using MGWO’s location modification in Eq. (19) for stability among the exploration and 
the exploitation procedure and lengthening the convergence overall performance of GWO. In addition, 
the chaotic initialization strategy is used to construct the preliminary populace, which speeds up the 
overall computational efficiency of the GWO algorithm.

The investigational findings of 23 typical evaluation metrics show that the proposed MGWO 
algorithm outperforms the conventional GWO in terms of optimization accuracy, robustness, 
and optimal execution. However, the MGWO algorithm is not without flaws. F5, F19, F20 have 
functionality problems, MGWO and GWO perform in same manner.

SIMULATION EXPERIMENTS AND RESULT ANALYSIS

Benchmark Functions
They are standardized mechanisms derived from natural science research. These are normally complex 
and impartial, making analytical expressions impossible to solve. Benchmark functions have long been 
an important tool for evaluating the accuracy, performance, and validity of optimization algorithms. 
They ranged from the range of uncertain peaks in the function, reusability and dimensionality. The 
benchmark functions are being categorized quantitatively using the five essential characteristics 
(Jamil & Yang, 2005):
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1. 	 Continuous or uncontinuous
2. 	 Differentiable or nondifferentiable
3. 	 Separable or nonseparable
4. 	 Scalable or nonscalable
5. 	 Unimodal or multimodal

A total of 175 benchmark functions are interpreted within the context. We selected 23 benchmark 
functions, ranging in complexities from basic to advanced, that included in this paper. They are ideal for 
evaluating the capabilities of the algorithms and they are all scalable. The equations are all n-dimensional, 
and the domain limits the source vectors y = (y1, y2, ..., yn). The domain’s maximum and minimum 
values are ub and lb, respectively. The single result variables are all zeros technically for ease.

To assess the efficiency of the suggested technique from various viewpoints, three classes of test 
functions are used: unimodal (F1-F7, F18-F19), multimodal (F8-F13, F20-F21), and fixed-dimension 
multimodal functions (F14-F17) (Liang et al., 2005; Awad et al., 2017).

Assumptions
MATLAB is used to support this research. Table 1 shows specification of parameters.

Figure 4. Flowchart of Optimization of MGWO
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Simulations and Performance Analysis
With a Populace Proportions of 30, all of the algorithms are performed for 500 repetitions. As 
demonstrated in Table 1, the efficacy of methods is evaluated on known benchmark functions to 
analyse the mean and standard deviation of all methods. The maximum iterations count is set as the 
terminating condition for all algorithms. PSOGWO, GWO, GWOCS, EGWO, AGWO, and PSO are 
contrasted to the potential surveillance and targeting mode-based MGWO. The modified simulation 
is conducted ten times for each benchmark function, beginning with different populations that were 
randomly generated. Table 1 shows standard deviation of the closest estimated outcome in the 
previous iteration.

The standard deviation can be used to analysed the computation system efficiency. The 
convergence curve is a visual representation of the algorithm’s optimization results. The convergence 
curves of unimodal and multimodal functions (F1-F7, F18-F19), multimodal (F8-F13, F20-F21), and 
fixed-dimension unimodal (F1-F7), multimodal (F8-F13, F20-F21), and fixed-dimension unimodal 
(F8-F13, F20-F21), and fixed-dimension unimodal (F8-F13, F20-F21), and fixed-dimension 
multimodal functions (F14-F17), are shown in Figure 5 (a) – (u).

Algorithm 1. Pseudo Code: MGWO Algorithm

Procedure: Initialize MGWO a A C pi, , ,( )

Notation List:
1. Pi = Populace Proportions
2. Np= Total Populace Proportions
3. A
��

 and C
��

 = Coefficient Vector
4. Max_Np = Threshold Count in RB
5. Placement of α’, β’ and δ’, as (X 'α

� ���
; X 'β
� ���

; X 'δ
� ���

)
6. X 'α  as the best search agent
7.  n  = aggregate of search agents
8. m = Sum of best search agents
9. l

k
= numbers of wolfs in the group k.

10. µ,  σ  = constant variable and µ  + σ  = 1

     Pseudocode: Algorithm BEGIN
 // Initialization Phase
     1. Initialize packs GWO Pi as {p1, p2, p3, p4, p5….}, RB = 5 
     2. Np= Count (Pi) 
     3. Initialize a, A

��
 and C

��

     A a
�� �
= 2  * r

1

��
 -a
�
,  C
��

 = 2
2
r
��

     
a

t

T
= −










2 1

          a
�

 linearly diminished from 2 to 0 over repetition and r1, r2 arbitrary vectors in [0, 1].
     4. Xp: placement of prey, X(t) is search agent(wolf), x(t+1) is current fitness, on the basis of this current fitness we find X 'α  = best, Xβ= second-best, X 'δ  = third- best search agent

     
�
D  =

� � �� �
C X t X t

p
* ( )− ( )

     X t
��

( )+1  = X t
p

� ��
( )  - �A  * 

�
D

                     // Working Phase
     5. For k = 1 to Max_Np do 
     6. Calculate Fitness () Using objective function as in equation 
     7. 
     8. P[x]= (Sort (Fitness {P fk( )}), 1< x £ Np
     9. EndFor 
     10. Select the leader agents as X 'α , X 'β , and X 'δ  according to the best three fitness value of P fk( )
     11. Modify placement of prey applying equation 

     D'α
� ���

 = C X X
1

��� � ��� �
�*� ’α − ,  D'β

� ���
 = � �*� ’ � ’C X X D

2

� �� � ��� � � ��
β δ− ,  = � �*� ’C X X

3

� �� � ��� �
δ −

           X'
1

� ��
 =X'α
� ���

 - A
1

���
 * Dα
� ��

, X'
2

� ���
 =X'β
� ���

 - A
2

���
 * Dβ
� ��

, X'
3

� ���
 =X'δ
� ���

 - A3

���
 * Dδ
� ��

     12. Update position for the agent as 

X ���’
� ���

 k
X X X

+( ) = + +
1

3
1 2 3
' ' '
� ��� � ��� � ���

     13. Find the nearest agent to be selected as new best search 
     14. EndFor 
     15. Amend 𝑎, A

��
 and C

��
 using step 3

     16. Enumerate Fitness fk( )  of all search agents using step 6
     17. Modify Location of present search agent X 'α , X 'β , X 'δ
     18. k=k+1 
     19. return X 'α
     20. Best_Agent ← X 'α
     21. Second_Best_Agent ← X 'β
     22. Endfor 
 END Algorithm
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Simulations demonstrate that the proposed enhanced algorithm outperform other algorithms. 
The MGWO outperforms other strategies on the most of unimodal benchmark functions, as shown by 
the outcomes of the implementations on the unimodal test functions in Table 1 and the convergence 
curves of the unimodal functions, Figure 5 (a)-(g) and Figure 5(p)-(q). Table 2 shows that the 
MGWO method’s accurate approximation for optimizing unimodal functions F1-F4, F7, F18, and 
F19 is the nearest to the optimal solution; convergence towards optimum occurs only in the ultimate 
implementations, as shown in F5 and F6, but average weight achieved by MGWO is the nearest to 
the optimized predicted weight, and To summarize, the results demonstrate the effectiveness MGWO 
implementations outperform well-known meta-heuristics in resolving complex benchmark functions.

In contrast to certain other meta-heuristic strategies, MGWO has a faster convergence rate. 
MGWO performs well, particularly in the benchmark functions F1, F2, F3, F4, F5, F6, F8, F10, and 
F12. Similarly, MGWO has respectable functionality to PSOGWO, GWO, GWOCS, EGWO, AGWO, 
and PSO for F11, F16, F18, F19, and F20. As can be seen from the chart, GWOCS and MGWO both 
determined the optimum ‘‘zero” for F11. As indicated in Table 2, MGWO outperformed on seven of 
the nine test tasks. It’s possible that MGWO’s disappointing leadership on F9 and F22 is related to the 
structural properties of such problems, which each have many local minimum options. These issues are 
not simple to solve. Because the suggested method’s assessment stage in the hunt strategy performed 
in a balanced manner, the presented heuristics demonstrate that it has a significant dominance over 
GWO in the hunt operation. The recommended MGWO methodology has a high rate of convergence.

FUTURE RESEARCH DIRECTIONS

As a result, the algorithm discussed in this work may be beneficial to researchers in a variety of 
situations. The MGWO, on either hand, can be used for routing and localization issues due to its 
stable behavior and ability to completely encircle the aim. The usage of these strategies for node 
localization and discovering route in sensor networks, as well as to interpret reform fitness functions 
in computing weight codes in artificial neural networks and deep learning-dependent frameworks, 
is outlined for the future. Adaptation of MGWO to multi-objective performance prediction, large-
scale global optimization problems, and real-time engineering challenges will be the focus of future 
research. In bioinformatics, such as DNA and RNA behavior analysis, integrated approach can be 
used to determine the best feature extraction and filtering approach.

CONCLUSION

These findings demonstrate that the MGWO outperforms six existing prominent meta-heuristic 
algorithms. As contrast to other approaches, MGWO showed the best outcomes in 9 benchmark 
functions, 6 of which are near global optima and 4 of which are the best options. For a number of 

Table 1. Parameter Specification

Parameter Specification

Populace Proportions 30

Maximum count of Iterations 500

Total count of runs 30

constant variable, µ,  σ µ  + σ  = 1

numbers of wolfs in the group k 30
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Table 2. Running results of functions F1-F23

Function 
Name

PSOGWO GWO MGWO GWOCS EGWO AGWO PSO

Std Std Std Std Std Std Std

F1 4.15 8.7043e-28 1.5876e-14 4.0829e-27 9.7454e-31 7.192e-43 2.6629e-05

F2 8.61 1.4918e-16 2.2434e-16 1.5232e-17 1.5232e-17 7.9239e-27 0.0050915

F3 9482.1147 7.138e-06 0.0099252 1.4158e-08 0.00079791 3.2187e-09 2251.9731

F4 0.00053149 4.1713e-07 0.00031609 2.2431e-07 0.22196 2.9557e-11 15.7618

F5 26.0403 27.0802 26.175 26.1598 0.7602 0.6465 84.9374

F6 0.0015508 0.50571 9.7619e-05 0.4995 0.5912 0.3273 8.4177e-06

F7 54.9287 0.0040793 0.001101 0.0013597 0.0081689 0.0015895 0.069956

F8 6733.6464 -5599.3474 11691.8935 11686.8541 689.5401 297.2602 -9536.6458

F9 47.773 1.1369e-13 28.7837 5.0971 169.3195 0.21322 56.33

F10 8.4467 1.1102e-13 1.1973e-09 7.5495e-14 0.19456 9.0594e-15 1.0078

F11 0.00019543 0.01374 0 0 0.012937 0.00087209 0.031963

F12 7.8001e-06 0.019186 0.044654 0.037017 3.5249 0.096761 0.65402

F13 26202627.7369 0.26711 1.2175 0.33208 2.4778 1.0243 0.50662

F14 0.99874 10.7632 7.874 2.9821 8.1185 3.2843 1.097

F15 0.00030755 0.020363 0.0013675 0.00031337 0.0037232 0.0032383 0.0033157

F16 -1.0316 -1.0316 -1.0316 -1.0316 -1.0306 -1.0316 -1.0316

F17 26 27.08 26.17 26. 98 0.762 0. 46 84. 37

F18 3 3.0001 3 3 3 8.401 3

F19 -3.8622 -3.8626 -3.8563 -3.8621 -3.8623 -3.8598 -3.8628

F20 -3.322 -3.2024 -3.322 -3.322 -3.2316 -3.1851 -3.2803

F21 -2.6828 -2.6827 -5.1 -10.1481 -6.6414 -6.8244 -5.5507

F22 -9.8568 -10.4021 -5.0877 -10.4009 -7.2449 -7.3594 -7.4128

F23 -10.3517 -10.5351 -5.1752 -10.5353 -7.544 -7.6578 -8.3008

Figure 5a. Three-dimensional images and Simulation results of function F1
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Figure 5b. F2

Figure 5c. F3

Figure 5d. F4
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Figure 5e. F5

Figure 5f. F6

Figure 5g. F7
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Figure 5h. F8

Figure 5i. F9

Figure 5j. F10
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Figure 5k. F11

Figure 5l. F12

Figure 5m. F13
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Figure 5n. F14

Figure 5o. F15

Figure 5p. F18
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Figure 5q. F19

Figure 5r. F20

Figure 5s. F21
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complicated problems, there is a high likelihood of finding successful solutions. Furthermore, it 
can easily identify global solutions in a several repetitions. The MGWO approach has an inferior 
convergence rate to the global solution than other methods, but it has a more consistent behavior 
and efficiency in many design alternatives. As a consequence, the suggested technique can be 
implemented to a wide range of applications and challenges to find optimal solutions. MGWO can 
be utilized in environments where global outcomes are required rapidly and with lower complexity, 
such as learning-based systems.

Focused on tracking and seeking modes, developed an efficient GWO. On 23 test functions, output 
of proposed improved strategy is evaluated. In comparison to known heuristics such as GWO, PSO, 
PSOGWO, EGWO, AGWO, and GWOCS, the analysis indicates that MGWO is sufficient to provide 
extremely competitive outcomes. The results demonstrate that the MGWO successfully overwhelms 
the grey wolf optimizer’s lack of local search capacity by striking an equal opportunity for discovery 
and exploitation. MGWO scores effectively, notably in operations F1, F2, F3, F4, F5, F6, F8, F10, 
and F12. Similarly, MGWO has decent accuracy to PSOGWO, GWO, GWOCS, EGWO, AGWO, 
and PSO for F11, F16, F18, F19, and F20. Moreover, F1-F4, F7, F18, and F19 are the closest to the 
perfect solution, with F11 obtaining the best ‘‘0”. The optimization technique in this study has the 
drawback of not optimizing specific technical challenges. As a result, MGWO improves demographic 
diversity and reduces the risk of slipping into the local optimum.

Figure 5t. F22

Figure 5u. F23
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