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ABSTRACT

Aiming at the emergency decision-making problem of major emergencies, this article proposes a large 
group emergency decision-making (LGEDM) approach with public opinions mining on hesitation 
fuzzy language term set (HFLTS). First, extract keywords that represent general preferences on events 
from the Weibo platform, classify keywords using the word similarity-based keyword clustering 
algorithm and identify decision attributes and their weights. Next, define the similarity measure 
and hesitation fuzzy entropy measure of HFLTS, quantify the decision risk of experts using the 
risk measurement model, and cluster all experts into several subgroups using the risk metric-based 
group clustering algorithm. Subsequently, assign clusters’ weights on their risk value and size and 
obtain each cluster’s preference matrix by the HIOWA operator. Finally, derive the ranking results 
of alternatives using the sorting process, and an example of “COVID-19” is presented to verify the 
rationality and effectiveness of the proposed method.

KEyWoRDS
Data Mining, Hesitant Fuzzy Linguistic Term Sets, K-means, Large Group Emergency Decision Making, Public 
Preference, Risk, Term Frequency-Inverse Word Frequency, Word Similarity

INTRoDUCTIoN

In recent years, major emergencies occurred more and more frequently in China, the types and 
frequency of disasters have increased obviously, and the scope of involvement has expanded markedly, 
such as “the explosion accident in Tianjin Binhai New Area on August 12, 2015,” “the heavy rainstorm 
in Zhengzhou on July 20, 2021,” and “the Corona Virus Disease on December, 2019,” etc. The high 
complexity and destructive nature of major emergencies have a huge negative impact on the social 
order, economic development, and people’s lives and properties in China (Guo et al., 2020; Tan et al., 
2021; Wu et al., 2021b). The primary task after a major emergency is to organize experts analyze and 
judge the current state of affairs, strive to make scientific and efficient decisions quickly in a short 
period, control the development of events as possible and reduce the loss or consumption of resources 
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caused or likely to be caused due to the emergency. Therefore, there is an urgent need for the support of 
group decision-making methods (Cao et al., 2022; Wu et al., 2020; Wu et al., 2021a). The complexity 
and variability of mega-emergency events determine that emergency decision-making requires the 
participation of multiple experts from different fields, which makes the emergency decision-making 
characterized by complex large-group decision-making, and the traditional group decision-making 
methods are no longer applicable to such decision-making problems. Various LGEDM methods have 
been proposed successively (Xu et al., 2015; Xu et al., 2017). Compared with traditional group decision 
problems, the LGEDM usually involve more than 20 decision makers with the characteristics of time 
constraint, decision environment uncertainty, decision information limitation, and the possibility of 
catastrophic loss due to decision errors (Tang et al., 2020; Xing et al., 2022; Wu et al., 2022).

With the development of information technology, the Internet has become a huge platform for the 
expression of public opinion, and events are fermented very fast on the Internet. Once the emergency 
breaks out, hundreds of millions of netizens gather and participate in it rapidly, posting related 
comments on social media platforms, thus generating massive text data. This textual information 
not only reflects the public’s concern about the emergencies but also provides important references 
for emergency decision-makers. Therefore, in the process of emergency decision-making, how to 
effectively utilize the public views in social media and express and integrate the decision information 
of large groups efficiently under urgent time pressure, is one of the pressing problems in the field 
of emergency decision-making. At present, the research of the LGEDM method under a big data 
environment has shown initial results in the field of decision making (Xu et al., 2019b; Xu et al., 
2019c). In addition, the complexity, dynamics, and urgency of LGEDM problems also imply that 
more uncertainties are bound to appear in the decision-making process, which we call risk. If these 
risks cannot be controlled within the effective range, they will become new risk sources, which will 
further deteriorate the situation and lead to low quality or failure of decision-making. Therefore, 
introducing decision risk into LGEDM is one of the main methods for ensuring decision reliability, 
which has attracted a worldwide interest (Yin et al., 2021; Zhong et al., 2020). But in general, the 
related research is still in the initial stage.

Clustering is a fundamental tool for analyzing and managing large-scale comments, and it is 
also a vital tool for solving LGEDM problems. Clustering refers to the dimensionality reduction of 
large-scale decision-makers according to some clustering principles or algorithms for analysis easily 
(Tang et al., 2019; Xu et al., 2019a, Xiong et al., 2022). Many different clustering algorithms have 
been proposed in previous literature to achieve clustering for group decision-making (Yu et al., 2020; 
Zhong et al., 2021; Chen et al., 2018). K-means is a classical distance-based unsupervised clustering 
algorithm that uses distance as the evaluation index of similarity, that is, the closer the distance between 
two objects is considered, the greater their similarity. The algorithm has a number of advantages: 1. 
simple algorithm idea and fast convergence; 2. low time complexity and high efficiency; 3. better 
clustering effect when clustering large-scale data. The algorithm has been widely used in large group 
decision problems. (Chao et al., 2020; Liu et al., 2021). Therefore, the k-means algorithm is chosen 
as the clustering method for this paper. The clustering in the large group decision-making process 
is usually implemented based on the evaluation information given by the decision-makers (Gou et 
al., 2018; Mandal et al., 2021). Therefore, choosing a suitable way to express the decision maker’s 
evaluation information is a key issue for the LGEDM problem. With the inspiration of hesitant fuzzy 
sets (Torra, 2010) and linguistic fuzzy sets (Zadeh, 1975), the Hesitant Fuzzy Linguistic Term Sets 
(HFLTS) is proposed. HFLTS allows experts to use several linguistic terms evaluating a linguistic 
variable and has many advantages in describing experts’ perceptions and preferences. Since its 
proposal, the HFLTS has been concerned by many scholars (Farhadinia & Xu, 2018; Wu & Zhang, 
2021). With the increasing maturity of hesitant fuzzy language theory and methods and their special 
advantages in describing decision-maker preferences in complex decision problems, more and more 
scholars have applied them to large group decision problems in recent years (Rodríguez et al., 2021; 
Zhong & Xu, 2020).
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This paper focuses on the complex LGEDM problem in the social media big data environment, 
combines data science, risk theory, and group decision theory, and propose an LGEDM approach 
with public preference attribute mining based on HFLTS, the method is verified by the case of “novel 
coronavirus pneumonia (COVID-19)”.

METHoDoLoGy

Hesitant Fuzzy Linguistic Term Sets
The concept of HFLTS was introduced to model experts’ hesitation in qualitative contexts (Rodríguez et 
al., 2012). In the following, some basic concepts and operational laws related to HFLTS are described.

Definition 1. (Xu, 2004) Let S s N= = ∈{ }µ µ τ τ| , ,..., ,0 1  be a LTS with an odd granularity 

τ +1 , A HFLTS HS  is an order finite subset of the consecutive linguistic terms of S, noted as:

H s s s s S k i i jS i i j= ∈ = +{ }+, ,..., | , , ,...,
1

1µ  (1)

To preserve all the given information, the discrete term sets should be extended to a continuous 
LTS S s q q q= ∈ { }{ } >µ µ τ| , , ( )0 S, where q q( )> τ  is a sufficiently large positive integer. If 

s Sµ ∈ , then sm  is termed an original linguistic term, otherwise, sm  is termed a virtual linguistic 
term. In general, the expert uses the original linguistic term to express opinions, and the virtual 
linguistic terms can only appear in calculation.

One significant issue in the process of the GDM is to integrate of individual opinions. Here, an 
aggregation operator of HFLTS and some basic properties are presented.

Definition 2: (Yager & Filev, 1999) Let S s q= ∈ { }{ }µ µ| ,0  be a set of extended LTSs related 

to S S= ={ }µ µ τ| , , ,...,0 1 2 , and H s s s ll
gl

= …{ } = …( )µ µ µ1 2
1 2, , , , , , ,n  be n  HFLTSs on S . 

Then, the hesitant induced ordered weighted averaging (HIOWA) operator is a function that is 
expressed as follows:

HIOWA H H H Hn C:
1 2
× ×…×( )→  

HIOWA H H H Hn n l

n

l o l
: , , , ,..., ,λ λ λ ωτ τ1 1 2 2 1

1( ) = ⋅ ( )




=

−

( )∑› ›   (2)

Where, Λ Λτ µ τ µµ µ−

( )( ) = ( ) =1 s s H
o l

, ,  stands for the l th  largest in H l nl , , , ,= …( )1 2 , the ordered 

inducing variable related to H l nl , , , ,= …( )1 2  is denoted as ωl l n, , , ,= …( )1 2 .

Term Frequency-Inverse Word Frequency (TF-IWF)
TF-IWF is an improved algorithm proposed on basis of the traditional TF-IDF (Term Frequency 
- Inverse Document Frequency). TF-IDF is a classical algorithm to calculate document feature 
weights (Sandiwarno, 2020; Tian & Wu, 2018). As known, IDF is unable to reflect the importance 
and distribution of feature words for its simple structure, which makes it difficult to adjust the TF 
weights better. Therefore, an improved weighting algorithm TF-IWF is proposed by researchers 
(Huang et al., 2011; Lu & Li, 2013).
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On the one hand, let ni j,  denote the frequency of word ti  in text j and �
,k k jnå  denote the sum 

of all words in document j. Then, the TF value of word ti  in text j is:

tf
n

nij
i j

k k j

=
∑

,

,

 (3)

On the other hand, let 
i

m

int=∑ 1
 denote a sum of the frequencies of all words in the corpus, and 

nti  denote the total frequency of word ti  in the corpus. Then, the IWF value of word ti  with respect 
to the document set or corpus is:

iwf log
nt

nti
i

m

i

i

= =∑ 1  (4)

Then, the TF-IWF value of word ti  corresponding to document j is:

TF IWF tf iwf
n

n
log

nt

nti j ij i
i j

k k j

i

m

i

i

− → × = ×
∑

∑ =
,

,

,

1  (5)

The TF-IWF algorithm reduces the impact on word weights of similar texts from the 
document set/corpus and more accurately expresses the importance of words in documents 
under investigation. In addition, the weights obtained by the traditional TF-IDF are 
generally small, even close to 0, and not very accurate. However, the TF-IWF can solve 
this problem precisely.

An LGEDM Approach with Public Preference Data Mining on HFLTS

Let X x m Mmn= = …{ }| , , ,1 2  be the considered alternatives and E e d Dd= = …{ }| , , ,1 2  be a 
set of decision makers. C c n Nn= = …{ }| , , ,1 2  is a set of attributes and the weight vector of these 

attributes is denoted as U u u uN= …{ }1 2
, , ,  where 

n

N

nu
=
∑
1

 and un ³ 0 . R rd
mn
d

MN
= { }  is the decision 

matrix provided by ed , where rmn
d  is an HFLTS representing the evaluations of xm  with respect to 

attribute cn . In this section, a novel LGEDM approach with public preference data mining on HFLTS 
is introduced. The detailed method flow is shown in Figure 1.

Public Preference-Based Attribute Mining
In this section, a method for mining public preferences and constructing the decision attribute system 
based on social media data is proposed, and the Sina Weibo is chosen as the analysis base and data 
collection channel (Chen et al., 2014). The data processing in this part is implemented by Python 
3.9, including data collection, data cleaning, word separation, and keyword extraction. The detailed 
steps are as follows.
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Step1: Data acquisition and cleaning. The relevant comments of Sina Weibo in a specific period are 
seized by Web Scraper. And the captured text content is cleaned through Python-based natural 
language processing, which included removing useless content such as subject tags, @, abnormal 
values, time fields, URL, etc.

Step2: Keyword extraction. The cleaned text content is cut using the Python-jieba word splitting 
package to extract keywords, exclude invalid keywords, such as deactivated words, etc. Then 
the TF-IWF algorithm is used to sort the keywords after text splitting, and the keywords with 
greater weight are selected as valid keywords.

Step3: Attribute system construction. Normally, the number of valid keywords is set to hundreds 
or thousands, depending on the event context, data size, and expert experience. Therefore, it is 
important to integrate these huge numbers of keywords quickly and effectively under the urgent 
time pressure of LGEDM.

The semantic similarity calculation of words is a method to numerically measure the degree of 
semantic similarity between two words based on certain calculation methods and various linguistic 
resources by computer. K-means algorithm is a distance-based clustering algorithm that combines 

Figure 1. The framework of an LGEDM approach with public preference data mining on HFLTS
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simplicity and classicality, using distance as an evaluation index of similarity. Therefore, it is feasible 
and meaningful to use the semantic similarity of words as the index of distance measurement between 
words and combine it with the traditional k-means algorithm to realize keyword clustering.

In summary, a new keyword clustering algorithm is proposed in this section by combining the 
traditional k-means algorithm (Hartigan & Wong, 1979) and the word similarity algorithm (Chen et 
al., 2021), which is implemented by using Python3.9 programming. The detailed steps are described 
as follows.

Phase One: Identify the initial clusters. Assume the number of keywords is L, denoted as: 
W y Ly, , , ,= …1 2 . Let t=0. Firstly, the K words is selected randomly as the initial clustering centers, 
denoted as G k Kk

t , , , ,= …1 2 . The number of K values is determined by the management experience 
of experts and the number of data points. Subsequently, the similarity between the rest of the keywords 
and each clustering center is calculated separately, denoted as SD k Ky k

t
,
, , , ,= …1 2 ; finally, the 

keyword W y  is assigned to the category k represented by the clustering center with the highest 
similarity SDy k

t
,

 with it, until all the keywords are finished being classified.
Phase two: Update clusters. Firstly, the average similarity between each word and every cluster 

separately is recalculated based on the initial clustering results, expressed as:

SD SD W W y L k Ky k
t

n

N
y

n
t

k
t

k
t

k
t,

, , , , , ; , , , .+

=

= ( ) = … = …∑1

1

1 2 1 2  (6)

where Nk
t  denotes the number of words contained in the kth cluster at stage t.

Similarly, the maximum similarity SDy k
t
,
+1  is selected and the words W y  is reassigned to the 

corresponding category k. The k-means algorithm is used to update the clustering in this process 
until the stopping condition is reached.

Phase three: stopping condition. The maximum number of iterations Q and the threshold 
σ σ→ >( )0 0  are set. Let SDt t, +1  presents the difference of the average similarity of all keywords 
to each cluster at stage t and stage t+1, denoted as:

SD
LK

SD SDt t
y

L

k

K

y k
t

y k
t

, , ,+
= =

+= −∑∑1
1 1

11  (7)

When SDt t, + <1 σ  or t Q+ >1 , the clustering iteration stopped; otherwise, returned to step2. 
Details of the clustering algorithm were provided in Table 1.

Output results, each cluster represents an attribute, and the corresponding attribute set is 
represented as:C c n Kn= = …{ }| , , ,1 2 .

Step4: Identifying the weights of attributes. The TF-IWF values corresponding to all keywords under 
each attribute are accumulated, expressed as:

TF IWF tf iwf n Nn

h

H

h
n

n

n− = − = …
=

∑
1

1 2, , , , .  (8)

where, H n  denotes the number of keywords under the nth attribute.
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Based on this, the weight value of each attribute is calculated, denoted as:

u TF IWF

TF IWF
n

n

n

N n
=

−

−
=∑ 1

 (9)

Risk Metric Model With Uncertainty and Conflicts
Decision risk is the possibility of decision errors in the decision-making process due to uncertainty 
generated by decision individual or group factors, and uncertainty of decision is a manifestation of 
decision risk. Therefore, it is necessary to use specific methods to quantify the connection between 
uncertainty and risk. In this paper, the authors adopt a risk measure model for the degree indicator 
from Xu et al. (2019c) to quantify the risk level of decision maker as follows:

H X P x log P x
x X

( ) = − ( ) ( )
∈
∑ 1

α

α  (10)

where P x( )  denote the degree indicator of x. a  is the risk adjustment factor, which indicates the 
probability of decision maker’s error, that is the error level, α ∈ 


0 1, . The smaller the value of α, 

the lower the probability of decision maker’s error, the higher the decision-making ability, the better 
the control of decision risk, and the higher the accuracy of the decision.

Table 1. Word similarity-based keyword clustering algorithm (Algorithm 1)

Input: W y Ly, , , ,= …1 2  (Keywords)
     K (The number of categories) 
     HowNet, CiLin (knowledge base) 
     s  (The threshold value)

Output: Clusters. G G GK1 2
  , , ,¼

Step1: Let t=0, choose K initial clustering centers from W y Ly, , , ,= …1 2  , noted as G k Kk
t , , , , .= …1 2

Step2: For every W y L y Gy
k
t, , , , ,= … ∉1 2 , apply word semantic similarity in [2] to compute 

SD k Ky k
t
,
, , , ,= …1 2 .

           Classify W y  into the category of Gk
t  with the highest similarity degree SDy k

t
,

 among them.
Step3: Let t=t+1, recomputing the mean similarity between words and each category separately by Eq. (6), 

SD y L k Ky k
t
,
, , , , ; , , , .+ = … = …1 1 2 1 2

           Re-classify W y  into the category of Gk
t+1  with the highest similarity degree SDy k

t
,
+1  among them.

Step4: Using Eq. (7) to compute the difference of the mean similarity for all keywords to each category between stage t 

and stage t+1, SDt t, +1 .

Step5: If SDt t, + <1 σ  or t Q+ >1 ,  proceed to the next step;
     Otherwise, let t=t+1, and return to step 2. 

Step6: Output the final clusters, G G GK1 2
  , , ,¼ .
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In the process of LGEDM, the differences in psychological cognition, background, and knowledge 
of decision-makers, as well as the complexity and uncertainty of the decision problem, lead to 
inevitable preference conflicts among experts when evaluating alternatives. In addition, constrained 
by many practical factors, experts often have some uncertainties in expressing their evaluation 
information and cannot give a definite evaluation value. Usually, the greater the uncertainty of experts 
in expressing their information indicates the lower the reference value of the information given by 
the experts. Therefore, to ensure the validity of decision results, it is crucial to consider both factors 
of group conflict and hesitant ambiguity of assessment information in the LGEDM.

In this paper, the decision risk is considered caused by two aspects: hesitation ambiguity of 
preference information and group conflict. Thus, the hesitation fuzzy measures and conflict measures 
of HFLTS are introduced.

Definition 3: (Wei et al., 2018) Let H s s sS l
= { }α α α1 2

, ,...,  be the hesitant fuzzy linguistic terms 

denoted on the set of linguistic terms S s N= = ∈{ }µ µ τ τ| , ,..., ,0 1 , then the hesitation entropy of 

HS  can be expressed as:

E l lh HS( ) = +
+

≥
3

2
2

τ
, .  (11)

The hesitation entropy Eh HS( )  satisfies the following requirements:

• Eh HS( ) = 0 , if and only if H sS = { } =µ µ τ, , ,...,0 1 ;

• Eh HS( ) = 1 , if and only if H s s sS g= { }0 1
, ,..., .

Definition 4: (Wei et al., 2018) Let H s s sS l
= { }α α α1 2

, ,...,  be the hesitant fuzzy linguistic terms 

denoted on the set of linguistic terms S s N= = ∈{ }µ µ τ τ| , ,..., ,0 1 , then the fuzzy entropy of HS  
can be expressed as:

E
lf
i

l
i i

H
S

( ) = −










=
∑
1 4

1
1

α

τ

α

τ
 (12)

The fuzzy entropy Ef HS( )  satisfies the following requirements.

• Ef HS( ) = 0 , if and only if H sS = { }0  or H sS = { }τ ;

• Ef HS( ) = 1 , if and only if H sS =













τ
2

.

Then the comprehensive entropy that considers hesitancy and ambiguity is denoted as:

E
E E

Ec
f h

h

H
S

( ) =
+

+

β

β1
 (13)
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The projection has the advantage that it can reflect the difference between two elements due to 
its ability for including the angle between two angles as well as describe their distances (Xu & Liu, 
2013; Zhang & Wang, 2017). To compute the conflict degree between decision-makers, this paper 
defines the relative projection models by extending the method of Zhang et al. (2018) as follows.

Definition 5: Let R H ll mn
l

MN
= 


 =( )1 2,  be two matrices denoted in the linguistic term set 

S s N= = ∈{ }µ µ τ τ| , ,..., ,0 1 , two matrices, where H s s s lmn
l

mn mn mn
gmn
l= …










=( )µ µ µ

1 2 1 2, , , , , , the 

relative projection degree from R
1
 to R

2
 is denoted as:

RP RR

m

M

n

N

P

g

P

g

mn
p

mn
p

m

mn

mn

mn

mn mn mn

2

1

1

2

2
1 2

1

1 1 1 1( ) =
⋅

= = = =

=

∑ ∑ ∑ ∑ µ µ

11 1 1

1
2

2

2
2M

n

N

P

g

mn mn
p

mn

mn mng∑ ∑ ∑= =
⋅( )µ

 (14)

Then, the similarity degree between R
1
 and R

2
 is expressed as:

SD R R
RP R RP RR R

1 2

1 22 1

2
,( ) =

( )+ ( )
 (15)

The conflict degree is: D R R SD R R
1 2 1 2

1, ,( ) = − ( )
Thus, based on the risk measurement model of degree indicators, the risk value of decision 

-maker can be calculated as follows.
First, the hesitation fuzzy risk of decision-maker d is calculated:

I
MN

IU
m

M

n

N

U
rmn
dd =

= =
∑∑

1

1 1

 (16)

where, IU
rmn
d

 is the hesitancy fuzzy entropy of decision-maker d about the nth attribute preference 
information for the mth  alternative, as follows:

I E r log E rU
r

c mn
d

c mn
dmn

d

= − ( ) ( )1

α

α  (17)

and then, the conflict risk between decision maker d and the group decision makers is calculated:

I
D

R R

R R
log

R
C

d d d

D
d d

d d d

D

d d

d
D

D

D

=
−
−

( )
( )

×
′ ′

′

′ ′ ′
= ≠

= ≠

∑
∑

1

1 1
1

1
,

,

,

, α

α dd d

d d d

D

d d

R

R R

,

,
,

′

′ ′ ′= ≠

( )
( )



















∑ 1

D

 (18)

Finally, the group decision makers’ risk value vector I I I I D= …{ }1 2, , ,  for the group decision 
is obtained, and which is given by:
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I min I I d Dd
U C= + −( )



 = …β βd d1 1 1 2, , , , , .  (19)

Risk Metric-Based Group Clustering Algorithm
In this section, a decision risk-based large group clustering algorithm is designed based on the k-means 
algorithm, which divide the decision members into several clusters with equal decision risk levels 
and can help control the overall decision risk. The clustering algorithm is implemented by using 
Python3.9 programming, and the specific steps are as follows.

Step1: Identify the initial clusters. Let t=0. First, the K values randomly is chosen as the initial 
clustering centers, denoted as: I k Kk

t , , , ,= …1 2 ; here the number of K values is determined by 
the management experience of experts and the number of data points. Subsequently, the risk 
deviation values of all the rest experts from each clustering center are calculated separately, 
denoted as:

I I I k K d Dd k
t

k
t d

,
, , , , ; , , , .= − = … = …1 2 1 2  (20)

Finally, the decision-maker ed  is assigned to the category k with the smallest value of risk 
deviation Journals.eqp Id k

t
,

, until all experts are assigned to the corresponding category.

Step2: Update the clusters. First, the risk deviation value of each expert from each cluster is 
recalculated based on the initial clustering result, denoted as:

I
N

I I k K d Dd k
t

k
t
n

N

n
t d

k
t

k
t

k
t,

, , , , , , , , .+

=

= − = … = …∑1

1

1
1 2 1 2  (21)

where Nk
t  denotes the number of decision-makers included in the kth category at stage t.

Similarly, the smallest risk deviation value Id k
t
,
+1  is chosen to reassign the decision-maker d to 

the corresponding category. The k-means algorithm is used to update the clusters in this process until 
the stopping condition has been reached.

Step3: Stopping condition. Set the maximum number of iterations Q and the threshold σ σ→ >( )0 0 . 
Let It t, +1  denotes the difference of the average risk deviation values from all experts to each 
category at stage t and stage t+1, denoted as:

I
DK

I It t
d

D

k

K

d k
t

d k
t

, , ,+
= =

+= −∑∑1
1 1

11  (22)

The clustering iteration stops when It t, + <1 γ  or t Q+ >1 ; otherwise, it returns to the Step2. 
Details of the clustering algorithm are provided in Table 2.

In this paper, the authors assume that the experts of each cluster have equal importance, 
then the preference matrix RG

k

 of each cluster is obtained using the HIOWA operator, and the 
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cluster weights is assigned by combining the cluster size and the cluster risk value, the calculation 
functions are as follows:

The weights are assigned based on risk values.

ωI
G

G

k

K G

k
k

k

I

K I
=

−

−
=∑

1

1

, I
D

IG
k
d

D
dk

k

k

k

=
=

∑
1

1

 (23)

where Dk  represents the number of decision makers in the kth cluster and I Gk  represents the risk 
level of cluster k.

The weights are assigned based on the size of the clusters.

ωS
G G

k

K

G

k k

k

m

m
=

=∑ 1

 (24)

where mGk  denotes the number of decision makers in cluster k.
The comprehensive weight of clusters combining cluster size and cluster risk value is expressed as:

Table 2. Risk metric-based group clustering algorithm (Algorithm 2)

Input: I d Dd , , , ,= …1 2  (Individual risk value)
     K (The number of categories) 
     g  (The threshold value)

Output: Clusters. G G Gk1 2
, , ,¼

Step1: Let t=0, choose K initial clustering centers from I d Dd , , , ,= …1 2 , noted as I k Kk
t , , , , .= …1 2

Step2: For every I d D d Id
k
t, , , , ,= … ∉1 2 ., apply Eq. (20) to compute the risk deviation value with each 

clustering center, I k K d Dd k
t
,
, , , , , , , ,+ = … = …1 1 2 1 2 .

          Classify I d  int

ohe category of Gk
t  with the lowest risk deviation value among them.

Step3: Let t=t+1, recomputing the risk deviation value Id k
t
,
+1  between I d Dd , , , ,= …1 2  and 

G k Kk
t , , , ,= …1 2 .

          Re-classify I d  into the category of Gk
t+1  with the lowest risk deviation value among them.

Step4: Using Eq. (22) to compute the difference of the mean risk deviation value for all I d Dd , , , ,= …1 2  to each 

category between stage t and stage t+1, noted as It t, .+1

Step5: If It t, + <1 γ  or t Q+ >1 ,  proceed to the next step;
     Otherwise, let t=t+1, and return to step 3. 

Step6: Output the clusters, G G Gk1 2
, , ,¼ .
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ω α ω α ωG I
G

S
G

k

k k= + −( )* *1  (25)

The Sorting Process
After the large-scale decision-makers are divided into several subgroups, the optimal alternative is 
determined by the following sorting process:
Step 1:  The collective decision matrix is obtained. By the HIOWA operator, the collective decision 
matrix R rC mn

c

MN
= { }  is obtained, where r HIOWA r r rmn

c
mn mn mn

K= …( )1 2, , , .

The numerical matrix is given. Each component in the element rij
c  is transformed equivalently into 

a crisp value by Eq. (26), noted as R rV
mn
V

MN
= { } .

r
gmn

V

mn
V

p

g

p

mn
V

mn
V

mn
V=

=

∑
1

1

µ  (26)

where, gmn
V  denotes the number of linguistic terms included in element rmn

c  from the matrix, and pmn
V  

denotes the pmn
V th linguistic term included in element rmn

c  from the matrix. rmn
V  and rmn

c  are considered 
to be equivalent here except their different expressions.

The overall score c xi( )  of each alternative is calculated according to Eq. (27) to rank the 
alternatives.

c x u ri n

N

n mn
V( ) = ×

=∑ 1
 (27)

In summary, the procedures of an LGEDM approach with public preference data mining on HFLTS:

Step1: Several response alternatives are formulated quickly by decision members based on their 
own experience.

Step2: The public preference information is seized from Sina Weibo by Web Scraper, and the captured 
text content is cleaned through Python-based natural language processing. Then, the text content 
is cut up by using the Python - jieba package, and several effective keywords are extracted via 
TF-IWF methods, which is described in section 2.2.

Step3: The extracted valid keywords are classified into k categories that represent k attributes by 
using Algorithm 1. Subsequently, the TF-IWF values of the corresponding keywords in each 
attribute are accumulated to determine the attribute weights.

Step4: The evaluative information of alternatives is provided by decision makers separately based 
on the formulated attribute system, which is represented by the HFLTS.

Step5: The hesitation fuzzy entropy and conflict degree of decision-makers are computed using 
Def. (3), (4), (5); on the basis, the risk values of decision members are obtained by using Eq. 
(16), (18), (19).

Step6: The large group decision-makers are classified into several clusters by utilizing Algorithms 
2. Then the subgroup weights are computed by Eq. (23), (24), (25) and the preference matrix of 
each cluster is obtained by the HIOWA operator.

Step7: The collective decision matrix is obtained by the HIOWA operator, and the collective decision 
matrix is transformed equivalently into a numerical matrix by Eq. (26). Then, the ranking results of 
the alternatives are obtained by calculating the overall score of each alternative according to Eq. (27).
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CASE STUDy AND DISCUSSIoN

In this section, a case study of “Corona Virus Disease 2019, COVID-19” is provided to demonstrate 
the proposed approach. Early in 2020, pneumonia caused by the novel Coronavirus (Corona Virus 
Disease 2019, COVID-19) spread from its origin, Wuhan, to the whole country within days 
(Sandiwarno et al., 2020; Yi et al., 2021). The COVID-19 is a new strain of coronavirus that has 
never been found in humans before and its powerful transmission exceeds our imagination (Wang et 
al., 2020; Xu et al., 2020). On January 31, 2020, the World Health Organization declared the outbreak 
as an international public health emergency, showing its seriousness (Cho et al., 2022; Mishra et al., 
2022). The outbreak drew strong public attention at the beginning of the outbreak; simultaneously, 
numerous Internet users published their opinions and insights via social networks after it occurred. 
we can mine valuable information from it to drive the decision-making process. According to “Chinese 
actions against the Corona Virus Disease 2019 “, the epidemic in China is mainly divided into five 
stages, this paper aim at the prevention and control of the epidemic after the initial control stage (Xu 
& Yu, 2022), suppose the National Health Commission (NHC) quickly convened 20 experts from 
the relevant fields E e dd= = …{ }| , , ,1 2 20 to formulate 3 alternative plans X x x x= { }1 2 3

, ,  in 
conjunction with the prevailing situation. The main contents of alternatives are as follows:

x
1
: Normal inter-city traffic, set up epidemic checkpoints, and immediately isolate those with 

abnormal health conditions; publicize and honor heroic deeds in the fight against the epidemic, and 
strengthen national social security.

x
2
: Ban traffic from key epidemic cities, and require nucleic acid test results and 14-day quarantine 

for travel to and from cities, broadcast news about the epidemic’s progress; introduce policies to 
relieve pressure on industries heavily affected by the epidemic, and set up free psychological counseling 
sites online.

x
3

: Closed the epidemic key areas, other normal passage, set up the epidemic checkpoint, travel 
to and from different cities need to home isolation, found abnormal signs immediately isolated and 
do nucleic acid testing, send the epidemic prevention and control news through microblogging, 
strengthen public mental health education.

In this case, we suppose that the linguistic label set for the evaluation of alternatives is

S s very poor s poor s slightly poor s medium s sligh=
0 1 2 3 4
: , : , : , : , :  ttly good s good s very good  , : , : .

5 6{ }  

Illustration of the Proposed Method
Below, the authors utilize the proposed model to select the best alternative.

Step1: Sina-Weibo is selected as the data collection channel, and the relevant text comment information 
during January 19, 2020, 0:00 to January 20, 2020, 0:00 related to the COVID-19 is captured 
for the data analysis. Then, we carry out data cleaning on the captured comments, including 
eliminating wrong fields, invalid fields, and abnormal values, URL, etc. At last, 64535 pieces 
of textual information are retained in total. The data obtained in this paper are also feasible and 
representative for decision making problems related to epidemic prevention and control.

Step2: First, cut the text content and extracted the keywords by the Python - jieba package. Then, 
the keywords’ TF-IWF weight are calculated by using Eq. (5) and the 500 words with the highest 
TF-IWF values are selected as candidate keywords. At last, the valid keywords extracted are 
divided into 5 categories by Algorithm 1, which represents 5 attributes C c nn= = …{ }| , , ,1 2 5 . 
Thus, an attribute system for decision making about COVID-19 can be formed, as shown in 
Table 3.
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Subsequently, the TF-IWF values of the corresponding keywords under each attribute are 
accumulated to determine the attribute weights, and the results are as follows.

ω
1
0 08= . , ω ω ω ω

2 3 4 5
0 22 0 16 0 28 0 26= = = =. , . , . , . .  

Step3: The decision matrix Rd  provided by decision makers independently is obtained based on 
LTS S .
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Table 3. An attribute system for decision making about COVID-19

Attribute c
1

c
2

c
3

c
4

c
5

Keywords
Medical staff, Hurry-up, 
Spare no effort, control, 
detection, treatment, etc.

Epidemic situation, 
panic, wish, cheer, 

believe, pray, salute, 
etc.

Wuhan, virus, wild 
game, pneumonia, 

source, news, 
government, etc.

safeness, confirmed 
diagnosis, infection, 
symptoms, cure, etc.

masks, Spring Festival, 
student, prevention, 
work, solation, etc.

un 0 08. 0 22. 0.16 0.28 0.26
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Step4: Compute the risk value of all decision-makers using Eqs. (16), (18) and (19). On the basis, 
classify the large group decision-makers into 4 categories by utilizing the Algorithm 2. Then, 
obtain the preference matrix of each cluster using the HIOWA operator, and the results are 
shown in Table 4.

Table 4. Clustering results
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Step5: Compute the subgroup weights w
Gk

 by Eq. (23), (24), (25).

ωG1 0 2148= . , ωG2 0 2329= . , ωG3 0 2395= . , ωG4 0 3092= .  

Then, the collective decision matrix is obtained using the HIOWA operator.
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Step6: Transform the collective decision matrix into a numerical matrix equivalently by Eq. (14).

RV =
3 21 4 02
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And then, the synthetical values of alternatives are calculated based on the results of example 
by Eq. (15).

c x
1( )=3.60, c x c x

2 3
3 66 3 19( ) = ( ) =. , . .  

Finally, the ranking of the alternatives can be shaped as x x x
2 1 3
> > . Therefore, the best 

alternative for this problem is x
2
.

Comparative Analysis
For further validation, a comparative analysis is performed between the method from this paper and 
the method from Zhang et al. (2019) to illustrate the rationality of the proposed method. To avoid the 
interference of any other factors, only the clustering and ranking process are modified accordingly, 
and the number of categories k is unified to 4. Note that the data used in the comparative analyses 
are from the case study in Section 4.1. The detailed results are listed in Table 5.

Given the results in Table 5, the following conclusions can be drawn as follows:

1.  The ranking results obtained by the two methods are equal, that was x x x
2 1 3
> > , and x

2
 is 

the optimal solution, which demonstrates the rationality of the method in this paper.
2.  The clustering results from the two methods are slightly different. This is because the classification 

standards of the two methods are different. This paper’s method divides the group based on the 
risk level of decision-makers, each clustered expert has a similar risk level by this method, while 
the method from Zhang et al. (2019) is clustered on the distance between decision-makers.

3.  The risk level of the results obtained in this paper is significantly lower than the results obtained by the 
method from Zhang et al. (2019). The main reason is that the method from Zhang et al. (2019) mainly 
consider fuzzy clustering and weight calculation methods, but the method in this paper not only consider 
these two aspects, but also consider decision risk factors from both group conflict and individual decision 
information, and incorporate them into the clustering and weight assignment process.
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By comparison, the method in this paper is reasonable, effective, and superior. In addition, the 
group decision-making method based on risk measures proposed in this paper can effectively reduce 
the risk level of group decision-making and enable the decision result to be more scientific.

CoNCLUSIoN

In this paper, a new LGEDM approach based on public preference attribute mining is proposed for 
the emergency decision problem by combining data science, risk theory and group decision theory, 
which establishes a certain theoretical foundation for the LGEDM method of the big data environment. 
In addition to the “COVID-19” mentioned in the example section, this study is also applicable to the 
emergency decision-making problem in the context of other major pubic-related emergencies, such 
as major natural disasters, unexpected accidental disasters, other major public health events, etc. The 
main innovations and contributions in this paper are as follows:

1.  The construction of the decision attribute system in this paper is based on public preference 
information mining, which can effectively avoid the subjective interference of traditional 
experts when constructing the decision attribute system and could improve public satisfaction 
for decision making.

2.  In this paper, a new clustering algorithm is assigned to cluster keywords based on the word 
semantic similarity algorithm and k-means clustering algorithm. It can quickly and effectively 
merge massive keywords extracted from public preference information and accelerate the decision 
analysis process.

3.  The decision risk caused by individual uncertainty and group conflict under hesitant fuzzy 
language environment was quantified using the degree index risk measure model. On the basis, 
group clustering and weight assignment process are achieved, which effectively reduces decision 
risk and improves decision quality.

4.  The linguistic information processing process is completely implemented by the Python program, 
which does not involve complex semantic analysis of massive grammar and sentences, and 
has high text processing efficiency, thus can meet the timeliness requirements of large group 
emergency decision-making.

Furthermore, there are still some limitations to be overcome in the future: (1) in the early stage 
of a major emergency outbreak, the relevant data from the network often exists more noise and 

Table 5. Comparison results of methods

Methods Method from this paper Method from Zhang et al. (2019)

Clustering result

e e e e
1 4 7 20
, , ,

e e e e e
6 9 12 14 16
, , , ,

e e e e e
2 3 10 15 17
, , , ,

e e e e e e
5 8 11 13 18 19
, ,, , , ,

e e e e
1 4 7 20
, , ,

e e e e
9 12 14 16
, , ,

e e e e
3 6 15 17
, , ,

e e e e e e e e
2 5 8 10 11 13 18 19
, , , , , , ,

Ranking results x x x
2 1 3
> > x x x

2 1 3
> >

Risk value 0 3418. 0 4215.
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information over-dispersion, which will affect the decision results. (2) in this paper, only the risk 
factors caused by individual information hesitation fuzziness and group conflict are considered, while 
other risk factors, such as non-cooperative behavior, trust risk, and other factors are not considered. 
Therefore, these aspects can be considered in future studies to further improve the decision quality.
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