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ABSTRACT

Natural language, as a rich source of information, has been used as the foundation of the product 
review, the demographic trend, and the domain specific knowledge bases. To extract entities from 
texts, the challenge is, free text is so sparse that missing features always exist which makes the 
training processing incomplete. Based on attention mechanism in deep learning architecture, the 
authors propose a featured transformer model (FTM) which adds category information into inputs to 
overcome missing feature issue. When attention mechanism performs Markov-like updates in deep 
learning architecture, the importance of the category represents the frequency connecting to other 
entities and categories and is compatible with the importance of the entity in decision-making. They 
evaluate the performance of FTM and compare the performance with several other machine learning 
models. FTM overcomes the missing feature issue and performs better than other models.
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1. INTRODUCTION

Natural language is the most common means of providing information to different people, 
to different organizations, and to different subjects; therefore, text has become a rich source 
of information. However, with the development of information technology, the amount of 
documentation has become so great that it is impossible for humans to handle. We need to 
take advantage of the capacity of computers to automatically understand documentation and to 
group documentation into different categories, topics, and subjects so that the total amount of 
information becomes manageable for humans.

Text mining can be applied to question answering, spam detection, semantic analysis, news 
categorization, and content classification, to name a few uses. Depending on the application, text 
data can come from different sources, such as web pages, emails, chats, social media, tickets, product 
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descriptions, invoices, insurance claims, user reviews, and so on. Due to the unstructured nature of 
the medium, it is challenging and time-consuming to extract information from text.

However, there are many open issues and challenges in text mining, such as synonyms, long-
range dependencies, and multiple interacting features. Besides these challenges in the perspective 
of semantic analysis, we can also see issues from the perspective of data quality, such as missing 
features, lack of samples, and imbalanced classes. When these issues can be solved only through data 
modeling, not through data collection, the problem-specific data processing needs to be added to 
algorithms to overcome the limits on data quality. Another challenge is that the integration of domain 
knowledge could play an important role in text mining. Domain knowledge can help speed up text 
processing and increase the precision of the results. Domain-specific knowledge extraction requires 
semantic analysis to extract the association between the objects or concepts in the documentation. It 
is still challenging to make the semantic analysis efficient and scalable.

Feature engineering is an important step in machine learning. Typical text classification uses 
machine learning technology to perform Natural Language Processing (NLP) and to assign labels 
or tags to textual units, such as terms, sentences, paragraphs, documents, and queries. Normally, 
machine learning-based methodology performs classification in two steps: first selecting interesting 
features and then feeding features into classifiers to make predictions. In the training set, because 
the feature set plays the role of a shortcut of the context, it needs to be complete so that trained 
models can be used to retrieve results from new data. In other words, when the feature set is 
incomplete, only partial results can be retrieved by the trained models. Unlike traditional machine 
learning, deep learning trains word embeddings as the starting point of the classification. Feature 
engineering is done during model training by adjusting feature weights. However, the feature set 
still needs to be complete.

In terms of data modeling, text classification can be divided into two categories, one based on 
maximum likelihood and one based on minimum energy. For maximum likelihood-based methodology, 
we have Naive Bayes, Support Vector Machines (SVM), etc. For energy-based methodology, we 
have the Hidden Markov Model (HMM), the Conditional Random Fields model (CRF), etc. The 
difference between the two categories is not only in the technical details but also in how many language 
patterns can be modeled. Normally, maximum likelihood-based methodologies consider words to 
be independent tokens and use Bag of Words (BoW) to build sample sets. Minimum energy-based 
methodologies can fit models not only with individual words but also with the associations between 
words, making it possible to conduct semantic analysis. Deep learning is a separate architecture that 
trains word embeddings, and the classification layer is the last layer in the architecture.

Deep learning architecture is built upon neural networks. Neural approaches have the advantage 
of overcoming the limitations of feature engineering. Word embeddings convert input texts into 
an importance vector in which some words have higher significance and some words have lower 
significance. In this way, the words with higher significance can contribute more to the classification 
process and the words with lower significance can contribute less to classification process. It is 
optional to reduce the number of dimensions, but when the word embeddings are built, feature 
engineering is done.

Embedding models have a long history. The earliest embedding model is Latent Semantic 
Analysis (LSA; Dumais et al., 1988). LSA is based on dimension reduction. The dimensions with 
larger Eigenvalues are considered more significant and can be kept. The dimensions with smaller 
Eigenvalues are considered less significant and can be removed. The neural network model was 
proposed by Bengio et al. in 2001 and was based on a feed-forward neural network. However, the 
early embedding models underperformed classical models, so they were not generally used. In 2013 
Google proposed word2vec models that were trained on billions of words and could be applied to 
many NLP tasks. In 2017, a contextual embedding model based on a three-layer bidirectional Long 
Short-Term Memory (LSTM) was trained on one billion words; this model performed better than 
word2vec because it could capture context and perform semantic analysis. The same year Google 
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developed Bidirectional Encoder Representation from Transformers (BERT). BERT consists of 340 
parameters, was trained on 3.3 billion words, and is the current state-of-the-art embedding model. 
The trend of using pretrained larger models continues to be popular.

Although these large deep learning models show impressive performance on various NLP tasks, 
there are some challenges in data modeling. For example, it is hard to convert deep learning models 
into relational models. Linguistics as the domain knowledge in natural languages cannot be modeled 
in deep learning. For example, in entity resolution, we need to extract meaningful phrases from 
the text. The meanings of the words are defined by adjacent words and can be changed in different 
contexts. Some researchers argue that deep learning models do not really understand languages and 
are not robust enough for mission-critical domains.

Attention mechanism is an important breakthrough in deep learning. It is an increasingly popular 
concept and a useful tool in developing deep learning models for Natural Language Processing (NLP). 
Because it builds a shortcut of the context for input texts and promotes correlated words in one sentence, 
the importance vector in the attention layer can be updated through Markov-like updates and can be 
customized easily in classification. The prediction can be made by estimating how strongly the word 
is correlated with or attends to other words.

We propose a Featured Transformer Methodology (FTM) based on an attention mechanism. 
It can efficiently add domain knowledge to deep learning architecture. The attention mechanism 
performs Markov-like updates. When the model converts, the associations between domain features 
and word embeddings can be extracted.

The remainder of the paper is structured as follows: section 2 presents related work, section 3 
introduces related definitions, section 4 explains the proposed methodology, section 5 evaluates the 
performance through experiments, and section 6 presents conclusions.

2. RELATED WORK

2.1 Feed-Forward Networks View Text as a Bag of Words
Word representation can be considered as a multiple-dimensional problem which requires high 
computation power. Originally, it could be solved by using a naive Bayesian logarithm of word-count 
ratios as feature values for SVM to train a sentiment analysis model (Wang et al., 2012). However, 
this methodology has been improved by deep learning by using feed-forward networks because of 
the high dimensional nature of neural networks.

To compute the continuous vector representation of words, two models were proposed by 
Mikolov et al. (2013) and were evaluated with a word similarity task: one is a BoW model; the other 
is a skip-n-gram model. The idea is that we removed a hidden layer for both of the two models and 
also defined the range for similar words for the skip-n-gram model. All these changes can efficiently 
decrease the computation complexity.

A global log-bilinear regression model was proposed by Mikolov et al. (2013) that combined the 
advantages of the two major model families in the literature: global matrix factorization and local 
context window methods. The model produces a vector space with meaningful substructure of 75% 
accuracy on a recent word analogy task, word similarity task, and entity recognition task.

Deep averaging neural network (Lyyer et al., 2015) added more averaging layers and applied 
dropout to improve performance.

Product quantization (Joulin et al., 2016) was used to compress word embeddings and to reduce 
the size of the classification models. This method could lower the memory usage to two orders of 
magnitude and outperformed the state of the art by a good margin in terms of compromise between 
memory usage and accuracy.

In Le et al. (2014), paragraph vector representations of documents were discovered to be fixed-
length feature representations from variable-length pieces of texts, such as sentences, paragraphs, and 
documents. This way of constructing word vectors overcame the weaknesses of BoW by not ignoring 
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orders between words. It achieved a new state-of-the-art performance on several text classification 
and sentiment analysis tasks.

2.2 Recurrent Neural Networks (RNN)-Based Models
RNN-based models view text as a sequence of words and are intended to capture word dependencies 
and text structures. RNN has issues in exploding and vanishing gradients when learning long distance 
correlations, which can be addressed in LSTM by using memory cell to preserve state over long 
periods of time.

In addition to the generally used linear chain structured LSTM models, a tree structured LSTM 
model was proposed byTai et al. (2015) which outperformed the linear chain structured LSTM models 
in semantic sentence similarity and sentiment classification.

The difference between the standard LSTM units and the Tree-LSTM units is that gating vectors 
and memory cell updates are dependent on the states of possibly many-child units. Additionally, instead 
of a single forget gate, each Tree-LSTM unit (indexed by j) contains one forget gate fjk for each child 
k, which allows the Tree-LSTM units to selectively incorporate information from each child. For 
example, a Tree-LSTM model can learn to emphasize semantic heads in a semantic relatedness task, 
or it can learn to preserve the representation of sentiment-rich children for sentiment classification. 
The input word at each node depends on the tree structure used for the network. In other words, each 
node in the tree takes the vector corresponding to the head word as input.

The forget gate controls the extent to which the previous memory cell is forgotten, the input gate 
controls how much each unit is updated, and the output gate controls the exposure of the internal 
memory state. The hidden state vector in an LSTM unit is therefore a gated, partial view of the state of 
the unit’s internal memory cell. Since the value of the gating variables varies for each vector element, 
the model can learn to represent information over multiple time scales.

The TopicRNN (Dieng et al., 2016) model integrates the merits of RNNs and latent topic models: 
it captures local dependencies using an RNN and global dependencies using latent topics. Unlike 
previous work on contextual RNN language modeling, this model is learned end-to-end.

LSTM was extended from chain structure to tree structure in which each memory cell can reflect 
the history memories of multiple children cells or multiple descendant cells in a recursive process. It 
can provide a principled way of considering long-distance interaction over hierarchies. It outperforms 
the state-of-the-art recursive model by replacing its composition layers with the S-LSTM (Zhu, X., et 
al., 2015) memory blocks and overcoming gradient vanishing in long-distance dependency. S-LSTM 
can be considered as a combination of recursive neural networks and recurrent neural networks. It 
wires memory blocks in a partial-order structure instead of in a full-order sequence as in a chain-
structured LSTM.

A machine reading simulator to render sequence-level networks can process text incrementally 
from left to right and perform shallow reasoning with memory and attention. The reader extends 
LSTM architecture by replacing the memory cell with a memory network which enables LSTM to 
reason about relations between tokens with a neural attention layer and then perform non-Markov 
state updates. Long-Short Term Memory-Network (LSTMN) (Cheng et al., 2016) outperforms 
KN5, RNN, and LSTM with less than 33, 21, and 7 in perplexity. In sentiment analysis, LSTMN 
outperforms Recursive Auto Encoder (RAE) (Socher et al., 2011), Recursive Neural Tensor Network 
(RNTN) (Socher et al., 2013), Dynamic Convolutional Neural Network (DCNN) (Kalchbrenner et al., 
2014), Deep Recursive Neural Networks (DRNN) (Ozan et al., 2014), Convolution Neural Networks-
Multichannel (CNN-MC) (Kim et al., 2014), Tubelets with Convolutional Neural Networks (T-CNN) 
(Kang et al., 2017), Paragraph Vector (PV) (Le et al., 2014), Constituency Tree-LSTM (CT-LSTM) 
(Tai et al., 2015), LSTM and two-layer LSTM with accuracy 86.3% or one-layer LSTMN and 87.0% 
for two-layer LSTMN. In sentence inference, LSTMN deep fusion outperforms BoW, LSTM, and 
match LSTM (mLSTM) (Wang et al., 2016), with 86.3% accuracy.
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A general framework jointly trains a feature generator and a linear model in which the feature 
generator consists of region embedding + pooling (Liu et al., 2016). This framework can find an 
efficient way to explore a more sophisticated region embedding method using LSTM. The results 
show that embeddings of text regions representing complex concepts are more useful than embeddings 
of single words in isolation.

A region embedding method (Johnson et al., 2016; Liu et al., 2015) using LSTM can embed 
text regions of variable sizes, whereas the region size needs to be fixed in a CNN. Three RNN-based 
architectures were introduced to model text sequence with multi-task learning. The differences 
among them are the mechanisms of sharing information among the several tasks. Experimental 
results show that our models can improve the performances of a group of related tasks by exploring 
common features.

RNN converts representation of texts into a two-dimensional matrix (Zhu, P., et al., 2016): the 
time step dimension and the feature vector dimension. 2D pooling operation over the two dimensions 
may sample more meaningful features for sequence modeling tasks.

By using Bi-LSTM, the rich context of the whole sentence is leveraged to capture the 
contextualized local information in each positional sentence representation. As shown by Wan et 
al. (2016), by matching with multiple positional sentence representations, it is flexible to aggregate 
different important contextualized local information in a sentence to support the matching. Experiments 
on different tasks, such as question answering and sentence completion, demonstrate the superiority 
of our model. The model for semantic matching with multiple positional sentence representations, 
MV-LSTM, is defined as a sentence representation at one position. MV-LSTM can capture important 
local information by introducing multiple positional sentence representations. By using Bi-LSTM to 
generate each positional sentence representation, MV-LSTM has leveraged rich context to determine 
the importance of the local information. MV-LSTM performs better than ARC-I, CNTN, and LSTM-
RNN. MV-LSTM obtains an 11.1% improvement over LSTM-RNN and a 5.6% relative improvement 
over MultiGranCNN. MV-LSTM works in three steps: (1) positional sentence representation through 
Bi-LSTM; (2) interactions between two sentences with cosine similarity measure, bilinear similarity 
measure, and tensor layer similarity measure; and (3) interaction aggregation through k-max pooling 
and multi-layer perception.

2.3 Attention Mechanism
In Bahdanau et al. (2016), neural machine translation has an encoder-decoder structure. It encodes 
a source sentence into a fixed-length vector from which a decoder can generate a translation. An 
automatic soft search for parts of source sentences can solve the fixed-length vector issue and help 
improve the translation performance.

In Graves et al. (2014), a neural Turing machine was proposed to with attentional processes 
through which they can be coupled to external memory resources. The combined system allows it to 
be efficiently trained with gradient descent.

In Vinyals et al. (2017), conditional probability of an output sequence can be learned through a 
neural architecture named Pointer networks. Neural attention is different from the previous attention 
attempts in that it uses attention as a point to select a member of input sequences as the output, instead 
of aligning an encoder to a decoder through an importance vector. This methodology can be used to 
solve the problem of variable-size output dictionaries.

2.4 Combination of Domain Knowledge
Text classification can be improved through domain-specific knowledge (Eke et al., 2021; Akhtar 
et al., 2020; Perevalov et al., 2021; Geetha et al., 2021) in perspectives of tokenization (Geetha 
et al., 2021), transfer learning (Qasim et al., 2021), and domain specific features, such as the 
combination of both questions and answers (Geetha et al., 2021) and the sarcasm identification 
(Eke et al., 2021).
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3. DEFINITIONS

Attention mechanism works through a vector of importance weights in comparison with recurrent 
network architecture. Attention network architecture can discover connections with longer distances 
by using the context vector to provide shortcut connections between inputs and outputs. On the other 
hand, sequential models can remember a few states instead of the entire context. For example, given 
a word in a sentence as the input, we use the attention vector to estimate how strongly it is related to 
or attends to other elements in the sentence/context and then take the sum of their values weighted 
by the attention vector as the approximation of the output.

The context vector consumes three pieces of information: encoder hidden states, decoder hidden 
states, and alignment between source and target. Given a source sequence x = [x1, x2, …, xn] to generate 
the target sequence y = [y1, y2, …, ym], we define an attention mechanism to solve this problem.

The encoder is a recurrent network—for example, a bidirectional recurrent neural network 
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The alignment model assigns a score a
t i,

 to the pair of input at position i and output at position 
t, (yt, xi), on the basis of how well they match. The set of {at,i} are weights defining how much of 
each source hidden state should be considered for each input. In Bahdanau et al. (2015) the alignment 
score a

t i,
 is parameterized by a feed-forward network with a single hidden layer, and this network is 

jointly trained with other parts of the model. The score function is therefore in the following form, 
given that tanh is used as the non-linear activation function:

score s h v W s h
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where both v
a

 and Wa are weight matrices to be learned in the alignment model.
Attention mechanism can be divided into several categories: self-attention (Cheng et al., 2016), 

global/soft attention (Xu et al., 2015), and local/hard attention (Luong et al., 2015). Self-attention 
can be used to relate different positions of the same input sequence. The most popular self-attention 
architecture is LSTM. Global/soft attention can align attention weights over all patches, which can 
be done by using a window centered around the source position to compute a context vector after 
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aligning the position for the current target word. Local/hard attention can align attention weights 
one patch of the input at a time. the alignment of the attention weights is through alignment score 
functions, such as content-base attention, additive, location-base, general, dot-product, and scaled 
dot-product score functions.

The transformer model (Vaswani et al., 2017) is built on self-attention mechanism. With a 
sequence transduction architecture, it has an encoder-decoder structure which is aligned by attention 
mechanism. Attention has three applications in transformer: attention layer for encoder, attention 
layer for decoder, and encoder-decoder attention layer for alignment. In other words, the transformer 
follows neural sequence transduction architecture with both encoder and decoder, which have stacked 
self-attention and pointwise, fully connected layers.

Attention functions are also called alignment score functions, which can be divided into several 
categories according to the attention mechanism: content-based attention (Graves et al., 2014), 
additive attention (Bahdanau et al., 2015), location-based attention (Luong et al., 2015), general 
attention (Luong et al., 2015), dot-product attention (Luong et al., 2015), and scaled dot-product 
attention (Vaswani et al., 2017). In Vaswani et al. (2017) the transformer uses scaled dot-product 
attention score function.

Attention mechanism simulates hidden Markov-like updates in which each the attention point 
can be updated by all data points in the previous layer. If the attention functions are selected properly, 
when the model is converged, long distance dependencies can be obtained.

Content-based attention was inspired by the Neural Turing Machine. As the first prototype of 
modern computers, the Turing machine could perform all kinds of computations with a controller 
and an unlimited tape as memory. Content-based attention focuses on content addressing on the 
basis of the similarity between their current values and the values emitted by the controller. Content-
based addressing can be a broader definition than location-based addressing, because contents can 
contain location information as well. A controller can take the values of variables and store them 
anywhere, retrieve them later, and perform computation. In Graves et al. (2014) the similarity measure 
is cosine similarity. The controller is central to the neural Turing architecture. The controller can 
be a feedforward network, a recurrent network, and even an LSTM. Content-based attention aligns 
system input to the controller output through similarity measure. In Graves et al. (2014) the similarity 
measure is cosine similarity.

score s h cosine s h
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Additive attention works by finding the maximum weighted sum of the output. This mechanism 
simulates sequence-to-sequence prediction problems. A typical application of additive attention is 
machine translation. The attention layer connects the encoder layer and the decoder layer on RNN 
or LSTM network architecture, in which conditional distribution of the sentence pairs can be learned 
and a corresponding translation for a given source sentence can be generated by searching for the 
sentence that maximizes the conditional probability. Machine translation network architecture learns, 
aligns, and translates simultaneously. The attention alignment function is the weighted sum of the 
output of the encoder.
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Dot-product attention can also be used to simulate sequence-to-sequence prediction problems 
in which long-distance dependency can be preserved as well. A typical application of dot-
product attention is transformer network architecture. Transformer network architecture is built 
upon convolution networks instead of recurrent networks, which can allow for more significant 
parallelization and efficiently reduce the total amount of computation. As shown below, in Vaswani 
et al. (2017) the transformer used a scaled dot-product score function, which is like a dot-product 
score function except for a scaling factor.

score s h
s h

n
i i

i
T
i,( ) = 	 (9)

4. METHODOLOGY

A Transformer simplifies the neural network architecture and reduces computation cost. However, 
several open issues have not yet been solved, such as the combination of domain-specific patterns, 
the combination of high-level associations, and unlabeled terms. FTM can add arbitrary features to 
the network architecture and can help solve feature combination, high-level association combination, 
and unlabeled terms issues.

BERT has transformer network architecture. Attention layer plays the role of aligning encoder and 
decoder layers. Encoder and decoder layers are built upon convolution networks instead of recurrent 
networks to reduce computation costs. The attention layer can be updated through a Markov-like 
process, as shown in Figure 1.

Figure 1. Markov chain updates
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Connections between two sequences are presented in a two-dimensional matrix in which each 
dimension has a sequence of tokens. The more often the connections appear, the larger the values 
are. Attention mechanism is a shortcut of the Markov Chain, in which the attention layer has fewer 
heads than the previous layer. As shown in Figure 2, in BERT network architecture, the importance 
vector of the attention layer can align the encoder to the decoder and significantly affect the final 
prediction. If we can properly adjust the importance vector, for example, to promote positive patterns 
and suppress negative/random patterns, we can efficiently improve the model performance.

4.1. Model Structure
We propose Featured Transformer Methodology (FTM) to improve the performance of transformer 
networks, especially on BERT network architecture. The idea is that we define patterns according to 
the domain knowledge, add patterns as arbitrary features to the input layer, and use arbitrary features 
to promote the importance of corresponding terms on attention layer. FTM works in four parts, as 
shown below:

(1) 	 Input layer. We add domain-specific patterns to the input so that these patterns can be used to 
present the high-level features which are defined according to domain knowledge. After these 
patterns have been added to the input layer, they become part of the input. During model training, 
these patterns can be used to improve model performance. During prediction making, these 
patterns can contribute to the importance vector, especially for unlabeled terms that depend on 
these domain-specific patterns to maximize the importance of the input sequences.

Features can be defined in many ways, such as linguistic features and semantic features. For 
example, they can be linguistic features that include part-of-speech (POS) tags, suffixes/prefixes of 
the words, and others. They can also be semantic features, such as stop words, a list of abbreviations, 
a list of domain-specific terms, and a list of units of measurement.

The selection of the features depends on the characteristics of the data. Additional features can 
efficiently fix the unlabeled data issue. However, too many additional features can cover up the 
characteristics of the data, which may cause an overfitting problem.

Figure 2. BERT single sentence classification network architecture (Devlin et al., 2018)
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(2) 	 BERT Encoder layer. As shown in Figure 3, the encoder layer consists of transformer blocks, 
which include several layers. Each layer has two sublayers: one is a multihead self-attention 
layer; the other is a point-wise and fully connected feed-forward network layer. The output of 
each sublayer is followed by layer normalization.

(3) 	 BERT Decoder layer. As shown in Figure 3, the decoder has a similar structure to the encoder. 
In addition to the two sublayers, the decoder inserts an attention layer to align the encoder output 
to the decoder.

(4) 	 Output layer. As shown in Figure 4, attention function maps a query and a set of key-value pairs 
to output. The outputs are computed as a weighted sum of the values where the weights are 
computed by compatibility function of the query with the corresponding keys.

4.2. Input Layer
Let x be a input sequence of k words, denoted as x1:k = x1, x2, …, xk. In BERT, an input sequence 
can be either one sequence or a pair of sequences separated by a special token (SEP). We use one 
sequence input as an example to demonstrate how the arbitrary features are added.

In Yu et al. (2019), auxiliary sentences are paired with the input to form sentence pairs so that 
the original classification can be converted into sentence-pair classification. Since the auxiliary 
sentences include higher-level common features, the classification performance can be improved 
after the conversion.

Figure 3. Transformer model architecture (Vaswani et al., 2017)
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However, our idea is not to increase the accuracy of pattern matching but to increase the 
importance of the feature dimensions so that we directly add arbitrary features to input sequences to 
maximize the importance of the positive samples.

We add unit entity feature ([UL]) and name entity feature ([NL]) after unit entities and name 
entities. After training, as shown in Figure 5, since unit entities and name entities appear very often, 
unit entities and name entities can draw a high quantity of attention, which can eventually promote the 
importance of corresponding samples. Especially, when some entities are missing during modeling 
training, in prediction process, since entity features of words have been trained and obtained a high 
quantity of attention, the model can still count on name entity features ([NL]) and unit entity features 
([UL]) to promote the importance of the input sequence.

4.3. BERT Encoder
After entity features are added to input sequences, for positive samples which have entities, entity 
features can gain great importance, since they are common features and appear more often. For 
example, as shown in Figure 5(b), feature [NL] and feature [UL] are highly related; token WBC/
RBC/MCV and feature NL are also highly related; token x/uL and feature [UL] are highly related.

Figure 4. Attention mechanism (Vaswani et al., 2017); scaled dot-product attention (left), multi-head attention (right)

Figure 5. Importance of attention mechanism for input sequences: (a) original text, (b) after adding features
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4.4. BERT Decoder
Entity features can be added to decoder input sequences as well. These features can pick up the 
importance trained at the encoder when the attention layer aligns the encoder to query sequences. 
When query sequences have entities unlabeled during encoding, the importance of the query can 
depend on entity features to get promoted. In other words, entity features can efficiently solve 
unlabeled feature issues.

4.5. Output Layer
The output layer is a softmax classifier on top of the attention layer. When the importance vector 
is tuned very well, the model can converge. During model training, the network architecture can be 
tuned through back-propagation, and each layer can be tuned through auto regression.

5. EXPERIMENTS

In all healthcare environments, documentation follows the Health Level Seven (HL7) Standard for 
electronic data exchange. For example, in the OBX segment, all the elements are defined to facilitate 
meeting the laboratory reporting requirements. There are a limited number of fields in the OBX 
segment to support compliance. For unstructured lab projects, we only use information in the fifth 
column, which is called OBX.5 (which means the observation 5).

In the field OBX.5, from different data sources, the formats of text contents are coded in different 
ways. The formats can be related to section separations, paragraph separations, sentence separations, 
the formats of lists, the formats of interpretations, etc. For the purpose of building a sample set of OBX 
laboratory tests for machine learning, we need to integrate data from different sources by converting 
different formats into one; after that we can start processing the data set with such operations as 
sample set generation, data modeling, model evaluation, and data post-processing.

For a sample selection, since we wanted to extract all lab tests (which were about 735 tests) from 
raw messages, we wanted to include as many lab tests as possible in the sample set. Three measurements 
could be used to determine sample quality: sample frequency, term frequency, and total number of 
terms. Sample frequency can be defined as how many samples are related to a certain term. Term 
frequency can be defined as how many times a certain term appears in the sample set. The total number 
of terms means how many distinct terms are in the sample set. During sample selection, we needed 
to check sample frequency and the total number of terms from time to time to ensure that the sample 
set covered as many terms as possible and that each term had enough samples for training purpose.

First we built a lab test dictionary that had all the terms we could extract from the raw messages. 
The sample selection stage could collect samples for each of the terms for model training. Each term 
needed between three and five samples to properly define features related to the term. If a term had 
fewer than three samples, the term could not be accurately extracted by the trained model. If a term 
had more than five samples, the sample set was over prepared.

We conducted three rounds of sample collection to prepare high-quality sample sets for data 
modeling purposes. In Round 1 we collected 58,746 samples, in which 22,498 samples contained lab 
tests, and 289 out of 735 tests were included in Round 1 samples. In Round 2 we collected 38,426 
samples, in which 7,030 samples contained lab tests, and 299 out of 735 tests were included in Round 
2 samples. In Round 3, we collected 21,896 samples, in which 7,067 samples contained lab tests, and 
286 out of 735 tests were included in Round 3 samples. We generated two sample sets, which were the 
combination of Round 1 and Round 2 data, and the combination of Round 1, Round 2, and Round 3 
data. For the combination of Round 1 and Round 2 data, there were 97,172 samples, in which 27,227 
samples contained lab tests; 455 out of 735 tests were included in the combination of Round 1 and 
Round 2 samples, and 314 out of 735 tests had more than 2 samples. For the combination of Round 
1, Round 2, and Round 3, there were 119,068 samples, in which 33,806 samples contained lab tests; 
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546 out of 735 tests were included in the combination of Round 1, Round2 and Round 3 samples, 
and 374 out of 735 tests had more than 2 samples.

As shown in the following table, the experimental results showed that the performance 
measurements, such as precision, recall, and F1-score, indicated that the model can be used to identify 
lab tests with 100% in all measurements. In comparison with the Conditional Random Fields (CRF) 
model, Bi-directional Encoder Representation Transformer (BERT), Naïve Bayes Support Vector 
Machine (NBSVM), Logistic Regression (LOGREG), FASTTEXT, Standard Gated Recurrent Units 
(STANDARD GRU), and Bi-directional Gated Recurrent Units (BiGRU), Featured Transformer 
Methodology (FTM) can perform much better than CRF, BERT, NBSVM, LOGREG, FASTTEXT, 
STANDARD GRU, and BiGRU in all measurements.

We proved the hypothesis that the selected algorithms can be used to solve the lab test extraction 
problem. Especially, the proposed algorithm performs better than other models. The next step is that 
we need to fit the algorithms with large repositories and to build models for large repositories. Some 
algorithms require high-performance computing machines when the data set size is large, such as 
BERT, Standard GRU, BiGRU, and several other deep learning algorithms. CRF is a local algorithm 
that works on low dimensional data and does not require high performance computing machines. In 
the following, we show the performance of CRF models on large repositories.

Table 1. Performance of FTM on 2871 samples

precision recall f1-score

DOC 1.00 1.00 1.00

LAB 1.00 1.00 1.00

accuracy 1.00

macro avg 1.00 1.00 1.00

weighted avg 1.00 1.00 1.00

Table 2. Performance of CRF on 2871 samples

precision recall f1-score

DOC 0.927 0.989 0.957

LAB 0.959 0.764 0.85

accuracy 0.933

macro avg 0.943 0.876 0.904

weighted avg 0.935 0.933 0.931

Table 3. Performance of BERT on 2871 samples

precision recall f1-score

DOC 0.99 0.99 0.99

LAB 0.99 0.99 0.99

accuracy 0.99

macro avg 0.99 0.99 0.99

weighted avg 0.99 0.99 0.99
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6. CONCLUSION

We proposed a way to improve transformer architecture by adding arbitrary features to input sequences. 
According to the Markov-like updates, we used arbitrary features to influence the importance vector of 
the attention layers. This methodology can help combine domain knowledge with the input sequences, 

Table 4. Performance of NBSVM on 2871 samples

precision recall f1-score

DOC 0.92 0.98 0.95

LAB 0.99 0.97 0.98

accuracy 0.97

macro avg 0.96 0.97 0.96

weighted avg 0.97 0.97 0.97

Table 5. Performance of LOGREG on 2871 samples

precision recall f1-score

DOC 0.92 0.96 0.94

LAB 0.98 0.97 0.97

accuracy 0.96

macro avg 0.95 0.96 0.96

weighted avg 0.96 0.96 0.96

Table 6. Performance of FASTTEXT on 2871 samples

precision recall f1-score

DOC 0.97 0.97 0.97

LAB 0.99 0.99 0.99

accuracy 0.98

macro avg 0.98 0.98 0.98

weighted avg 0.98 0.98 0.98

Table 7. Performance of STANDARD GRU on 2871 samples

precision recall f1-score

DOC 0.97 0.94 0.95

LAB 0.98 0.99 0.98

accuracy 0.997

macro avg 0.97 0.96 0.97

weighted avg 0.97 0.97 0.97
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efficiently promote the importance of the domain-specific patterns, and resolve the unlabeled data 
issue. We reviewed state-of-the-art solutions in transformer architecture, presented the association 
between Markov graph and attention mechanism, and introduced a way to implement the methodology 
in BERT architecture on different layers, such as the input layer, the encoder and decoder layer, the 
attention layer, and the output layer. We compared the new methodology—Featured Transformer—with 
several recently researched models, such as CRF which also uses arbitrary features for classification, 
BERT, NBSVM, FASTTEXT, STANDARD GRU, and BiGRU. Experimental results showed us that, 
according to several performance measurements, such as precision, recall, F1-score, accuracy, and 
micro average and weighted average precision, recall and F1-score, Featured Transformer performs 
better than other methodologies in text classification. In the future, we want to add lexical and semantic 
features and evaluate how much arbitrary features can influence data modeling.
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Table 8. Performance of BiGRU on 2871 samples

precision recall f1-score

DOC 0.98 0.98 0.98

LAB 0.99 0.99 0.99

accuracy 0.99

macro avg 0.99 0.99 0.99

weighted avg 0.99 0.99 0.99
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