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ABSTRACT

The traditional multi-modal sentiment analysis (MSA) method usually considers the multi-modal 
characteristics to be equally important and ignores the contribution of different modes to the final MSA 
result. Therefore, an MSA method based on hierarchical adaptive feature fusion network is proposed. 
Firstly, RoBERTa, ResViT, and LibROSA are used to extract different modal features and construct 
a layered adaptive multi-modal fusion network. Then, the multi-modal feature extraction module and 
cross-modal feature interaction module are combined to realize the interactive fusion of information 
between modes. Finally, an adaptive gating mechanism is introduced to design a global multi-modal 
feature interaction module to learn the unique features of different modes. The experimental results on 
three public data sets show that the proposed method can make full use of multi-modal information, 
outperform other advanced comparison methods, improve the accuracy and robustness of sentiment 
analysis, and is expected to achieve better results in the field of sentiment analysis.

Keywords
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INTRODUCTION

Social media, as a network platform for users to create, share, and communicate, can make it more 
convenient for users to access information and also provide them with more choices and editing 
rights. Unlike paper media, such as newspapers, social media has a variety of content forms (Sahoo 
& Gupta, 2021; Ahmed et al., 2022; Almomani et al., 2022). In addition to text mode, social media 
can also provide users with more intuitive and three-dimensional information content through modes 
such as voice and image. Images, speech, and text constitute the most common scenes in daily life 
(Su et al., 2023; Gao et al., 2022; Balcilar et al., 2021).

Sentiments play a crucial role in our daily lives, helping us communicate, learn, and make 
decisions. For a long time, researchers have been dedicated to using machines to analyze human 
sentiments (Tiwari et al., 2021; Schneider et al., 2023; Singh & Sachan, 2021). Early MSA often 
focused on single modality information such as sound, text, visual, and biological signals. However, 
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using a single modality for MSA users often did not accurately analyze their sentiments (Salhi et al., 
2021; Mohammed et al., 2022; Garcia-Garcia, 2023). Because the same text may express opposite 
meanings in different contexts, it is difficult to accurately predict users’ sentiments based solely on 
one modality. Due to the inability of single-mode MSA technology to effectively process data and 
fully utilize the diversity of information, it is no longer suitable for the current complex environment 
(Sun et al., 2020; Yuan et al., 2021; Zhang et al., 2022).

As research deepens, researchers have found that information can more effectively analyze human 
sentiments than single-modal information. The way people communicate and express sentiments 
in daily life is usually through the fusion of sound, text, and visual modalities. MSA is research on 
mining user perspectives and emotional states from data, such as text, vision, or speech, based on 
single-mode MSA (Chen et al., 2022; Niu et al., 2021; Poria et al., 2023).

Multimodal emotion recognition can be used to analyze user emotions on social media. By 
combining text, image, and video data, users’ emotional tendencies and emotional states can 
be more accurately understood.In the field of education, multimodal plays an important role. 
Multimodal emotion recognition analyzes students’ speech, facial expression, and gesture data and 
can understand students’ emotional state and learning effect and provide personalized teaching 
and feedback. When integrating a multi-modal emotion recognition system, it can be integrated 
with an existing system or platform through an API interface or SDK. The results of multimodal 
emotion recognition can be used as input for decision-making, personalized recommendation, 
emotion analysis, and other functions.

Analyzing the sentiment information of users in multimodal data can better help cloud service 
providers and enterprises grasp the emotional state of users and guide their next steps (Kumar & 
Sivakumar, 2022; Guo et al., 2022). For example, users’ comments on e-commerce products, to 
a certain extent, reflect their level of preference for the product, and these comments will have a 
significant impact on potential users of the product. If enterprises can promptly improve their products 
in response to negative comments, they can avoid significant economic losses. MSA can better guide 
the analysis of sentiment classifiers (Yadav & Vishwakarma, 2023). MSA of videos can compensate 
for the shortcomings of sound and visuals in text SA. Voice and facial expressions provide important 
clues for better identifying the emotional state of opinion holders, which has significant practical 
uses for research on user feedback (Zhang et al., 2022; Liao et al., 2022).

The MSA algorithm based on has more advantages in robustness and accuracy, and it has 
gradually become the mainstream of MSA research. In addition, the cross-modal hierarchical will 
better model dynamics between and within modalities, which is of great significance for studying 
machine learning. However, existing fusion methods often have some significant issues, such as 1) 
Insufficient single-mode high-level feature extraction. 2) Treating multimodal features as equally 
important and focusing more on the direct fusion of multimodal features, while neglecting the 
contribution of different modalities to the final MSA, leading to insufficient utilization of important 
modal information. 3) It is difficult to balance local modal-related features and global modal unique 
features, resulting in the loss of important features and affecting the performance of MSA.

A level adaptive fusion method based on text modality guidance is proposed to address these 
issues. Compared with traditional MSA methods, the innovation of this method lies in:

1) 	 In the phase of modal feature extraction, the advantage of the in capturing contextual relationships 
is utilized to model single modal low-level features and obtain richer high-level feature 
information.

2) 	 To address the issue of insufficient information fusion between modalities, a local cross-modal 
interaction module was designed. Using the text modality with a greater degree of contribution 
as the guiding modality, and the speech and visual modalities with a lesser degree of contribution 
as the auxiliary modality, the cross-modal attention is utilized to achieve the representation of 
important information.



International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

3

3) 	 To better learn the unique features of different modalities, a global multimodal feature interaction 
module was designed, and hierarchical adaptive fusion based on important information was 
achieved through the adaptive gating mechanism.

4) 	 A local-global feature fusion module was designed, which combines local modal related features 
and global modal unique features to achieve comprehensive judgment of sentiment.

RELATED WORKS

Today, people are willing to publish user-generated videos to express their sentiments and viewpoints. 
This provides a large number of data sources for MSA. MSA aims to use multimodal information to 
analyze human sentiment, which has become the main focus of sentiment computing research. Many 
MSA methods have been proposed and achieved excellent results, which have excellent performance 
and robustness compared to single-mode SA. At present, the existing MSA methods can be divided into 
nontext mode-dominated MSA and text mode-dominated MSA, according to the different dominant 
modes. The following will introduce them separately.

Non Modal Dominated MSA
In the non-textual modal-dominated MSA method, a multi-label training scheme was designed in 
reference (Yu et al., 2021), which can generate additional single modal labels for each modality and 
train simultaneously with the main task. The deep neural network method avoids complex feature 
engineering and can adaptively learn data features. However, the internal structure of deep neural 
networks is relatively complex and has poor interpretability.

By using a cross-modal converter to map other modes to the target mode, reference (Zhang et al., 
2022) proposes an integrated consistency difference network, on which multiple single modal labels 
are obtained through self-supervision for MSA tasks. However, this method cannot effectively fuse 
multiple single-mode labels and obtain analysis results based on this. Mai et al., (2020) propose an 
adversarial codec framework that achieves multimodal MSA by transforming the feature distribution 
of the source mode into the feature distribution of the target mode. However, the proposed framework 
structure is relatively complex, resulting in high computational complexity and low MSA efficiency. 
Yang et al., (2022) propose a translation framework that improves the quality of BERT. However, 
this method can only extract text information from other modalities, and it cannot comprehensively 
extract features of tone in audio and expressions and actions in video.

Text Modal Dominated MSA
In the MSA method dominated by text modality, Wang et al., (2020) proposes an end-to-end translation 
network, which uses transform between modalities and captures the correlation between multimodal 
features through forward and backward translation to improve translation performance. However, this 
method can only achieve good results when applied to text information, and it is less applicable to other 
types of fusion information. Considering the poor quality of non-natural language emotional features, 
it will weaken emotions during feature fusion. Wang et al., (2022) propose a modal reinforcement 
cross-attention module.

Modal translation methods can improve modal quality, but this method requires processing 
multiple forms of input, requiring more complex models and higher computational resources. By 
calculating the bimodal attention matrix between two different modes, Huddar et al., (2020) spliced 
it into a three-mode attention matrix to fuse the interaction information between different modes, and 
proposed an effective MSA method. However, the fusion mechanism of this method has shortcomings 
in cross-modal modeling and cannot capture the connections between multiple modalities well. Xi 
et al., (2020) utilize self-attention and multi-head interactive attention to get correlations between 
different modalities, which can improve the accuracy. However, after the introduction of multi-level 



International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

4

attention mechanisms, this method needed to calculate the attention weights of each input position, 
which increased the computational complexity when processing large-scale data.

It can be seen from the previous work that non-text modality-dominated multimodal emotion 
recognition mainly focuses on non-text data, such as images, audio, video, etc. This recognition also 
uses specially designed feature extraction methods, such as image feature extraction, audio feature 
extraction, etc. Multimodal emotion recognition mainly focuses on text data. When extracting features, 
it mainly focuses on extracting text features, such as word embedding and text vectorization. The 
hierarchical adaptive feature fusion network emotion recognition is a comprehensive multi-modal data 
method, which can process both text and non-text data. Text and non-text features are extracted and 
fused at different levels to capture semantic and visual information of the data more comprehensively.

Based on the above analysis, existing fusion methods usually focus on the direct fusion of 
multimodal features, while neglecting the contribution of different modalities to emotional features, 
which can easily cause important information loss and affect the performance of MSA. To this end, a 
level adaptive fusion method based on text modality guidance is proposed, which can fully consider the 
feature interaction between modalities, while also taking into account local modality-related features 
and global modality-specific features, effectively improving sentiment classification performance.

PROPOSED MULTIMODAL

For text modality, the RoBERTa is used, and knowledge enhancement is performed through a 
representation dictionary. The rationale for using RoBERTa for feature extraction is to pre-train 
the deep bidirectional model using large-scale unsupervised data to obtain a diverse and universal 
representation of the language. In RoBERTa, the Embedding layer converts words into words for 
embedding and then inputs them into the Encoder layer for encoding to obtain text features. Knowledge 
enhancement is carried out in the Embedding layer.

For video modality, ResViT is used to extract high-level semantic features of image modality. 
ResViT (Vision Transformer) is a new vision pre-training model that uses a encoder to extract image 
features. Unlike traditional convolutional neural networks (CNNS), ResViT uses multi-head self-
attention mechanisms to model the relationships between different locations in an image to obtain 
a more global representation of visual features. The structure of ResViT includes two parts: ResNet 
and ViT based on ImageNet pre-training. By using the ResViT toolkit to extract facial symbols, 
facial action units, head direction, gaze direction, and other information, the facial features of the 
video are obtained.

For audio modality, use the LibROSA speech toolkit to extract the acoustic of 22050HZ, then 
obtain low-level audio modality features. LibROSA can extract time domain features (such as 
time domain envelope, short-time energy, etc.), spectral features (such as Meir spectrum cepstrum 
coefficient (MFCC), Meir frequency spectra, etc.), and other advanced features (such as tone, rhythm, 
etc.) of audio signals.

On this basis, a hierarchical adaptive fusion network model was constructed. The overall 
architecture diagram is shown in Fig. 1. There is a close relationship between each component of 
the model. Firstly, the multimodal feature extraction module is the foundation of the whole system, 
which is responsible for extracting feature representation from input data of different modes. Next, 
the output of the multimodal feature extraction module is passed to the multimodal feature extraction 
module. The goal of this module is to further learn and extract multimodal features to obtain more 
representative feature representations and model and fuse multimodal features. At the same time, 
the adaptive gating mechanism can adjust the feature weights of different modes adaptively to better 
integrate the global multi-modal information. Finally, the local-global feature fusion module is used 
to realize the feature interaction and fusion between different modes. In summary, each module 
works with each other to achieve effective processing and performance improvement of multi-modal 
emotion recognition tasks.
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In Figure 1,linear is a linear unit that is a fundamental component of deep learning. “Stacking” 
refers to stacking multiple neural network layers in turn to form a deeper neural network model.

Multimodal
For video mode, assuming there is a total of M videos, each containing m discourse segments, the 
k-th video can be represented as V V V V V

k k k k km
=

1 2 3
, , ,..., . Pass the text, audio, and video of the l-th 

Figure 1. Adaptive multimodal
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segment of the k-th video into their respective single mode feature extraction modules to obtain 
corresponding text feature F

kl
L , speech feature F

kl
A , and video feature F

kl
V . The features of the k-th 

video are represented as follows:

F f f f f
k
n

k
n

k
n

k
n

km
n= 

1 2 3

, , ,..., 	 (1)

In eq(1), F R
k
n H Dk k

n

∈ × , n K V L∈ 

, , ,L is text mode, A is audio mode, and V is video mode. 

H
k

 is discourse amount contained in the k-th video, D
k
n  is the feature dimensions of each modality 

in the k-th video.
Firstly, the advantage of in capturing contextual relationships is utilized to model single-mode 

low-level features and obtain richer high-level feature information. Taking the text modal features as 
an example, input the text feature F

k
L  of the k-th video into:
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In eq(2) and eq(3), ω λ λ
Q
R k

L
k∈ × , ω λ λ

K
R k

L
k∈ × , ω λ λ

V
R k

L
v∈ ×  are linear transformation weight 

matrices for text features, respectively. l l l
k
L

k v
= =  Q is the corresponding dimension size.

H Att Q K V
h L h

Q
L h
K

L h
V= ( )w w w, , 	 (4)

MH Q K V Co H H H
L L L h h

Z, , , ,...,( ) = ( )1 2
w 	 (5)

In eq(4) and eq(5), ω λ λ
h
Q R k

L
k
h

∈ × , ω λ λ
h
K R k

L
k
h

∈ × , ω λ λ
h
V R k

L
v
h

∈ × , ω λ λ
h
Z hR k

L
v∈ ×  is the linear 

transformation weight matrices of text features in multi-head attention. l l
l

k
h

v
h k

L

h
= =  is the 

dimensional size of each head.
Then, a vector representation of internal relationships of the text modality is obtained through 

residual connection and layer normalization operations. Then, a feedforward neural network composed 
of two linear layers is formed, and finally, a high-level text feature Tab. H R

L

lL L∈ ×l  is obtained 
through residual connection and layer normalization. l

L
 represent the sequence length, and l

L
 

represent the feature dimension. Similarly, high-level audio feature representation H R
A

lA A∈ ×l  and 
high-level video feature representation H R

V

lV V∈ ×l  can be obtained, where l
A

 and l
V

 represent the 
sequence lengths of audio and video modalities, respectively, and l

A
 and l

V
 represent the feature 

dimensions of video modalities.

Cross-Modal Feature Interaction
In cross-modal feature interaction, cross-modal fusion is achieved through an improved . The improved 
can receive two modalities as inputs, and it inputs the high-level text feature representation H

L
 and 
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high-level audio feature representation H
A

 together into the cross-modal feature interaction module. 
As the main mode, H

A
 provides Q. H

L
 serves as an auxiliary mode, providing K and V. The structure 

of it is seen in Figure 2.
The cross-modal feature interaction representation using text-assisted audio is as follows:

CrossModal softmax
Q K

V
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L L
D

k
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In eq(6), D is the words amount in the k-th audio, ω λ λ
QA

R k
A

k∈ × , ω λ λ
KL

R k
L

k∈ × , ω λ λ
VL

R k
L

v∈ ×  
linear transformation weights°

After cross-modal multi-head attention, the feature vectors that fuse text and audio modal 
information are obtained through residual connections and layer normalization operations, enabling 

Figure 2. Structure of module
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full learning of the information of two modalities and achieving interactive fusion of information 
between modalities. After passing through a feedforward neural network composed of two linear 
layers, and finally, through residual connection and layer normalization, the audio feature vector 
F
k
L A®  fused with text feature information is obtained.

Due to the advantages of pooling operation in suppressing noise, reducing information redundancy, 
model computation, and preventing overfitting, combined pooling is chosen to obtain richer feature 
layers, maximum pooling is chosen to capture local features at each moment, and average pooling is 
chosen to make the model more focused on global features. Splice the results of maximum pooling 
and average pooling together as the output:

F maxpooling F

F averagepooling F

F

k
L A

k
L A

k
L A

k
L A

k

avg

max

→ →

→ →

= ( )
= ( )
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L AConcat F F
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







 max
,

	 (7)

To get the fusion of internal information and interaction information between single modalities, 
the high-level audio and video features within the modalities are concatenated with the corresponding 
features of cross-modal fusion:

U Concat F U

U Concat F F
k
A

k
A

k
L A

k
V

k
V

k
L V

= ( )
= ( )








→

→

,

,
	 (8)

Through a linear transformation layer, the audio and video features are dimensionally reduced 
to match the text feature dimensions, and then the three modal features are concatenated together as 
the final multimodal feature representation:

U Concat F U U
k k

L
k
A

k
V= ( ), , 	 (9)

Then connect text features H
L

, text voice interaction features H
A

, and text visual interaction 
features H

V
, and map them to a low dimensional space, as follows:

H H H H B
m l

mL
L L

A
L
V

l
m= 



 +{ }ReLU w

1 1
; ; 	 (10)

In eq(10), ω λ λ λ λ

l
mL R L A V m

1
∈ + +( )× , ReLU is the activation number, and H

m
 represents the local 

correlation features of the three modes.

Adaptive
A global multimodal feature interaction module was designed using an adaptive gating unit. In the 
feature integration part, the features of each mode are weighted and averaged by using the weight vector 
obtained by the adaptive gating mechanism. This preserves important information about each mode 
feature and weakens the impact of irrelevant or noisy information. The weighted average features are 
input to the next layer for subsequent processing and task learning. This module is guided by relevant 
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features mainly based on text modality, and it uses a gating mechanism to obtain unique features of 
three modalities, taking speech modality as an example. Its network structure is seen in Figure 3.

In the global multimodal feature interaction module, the output modal-related features H
m

 of 
the local modal interaction module and the output speech modal features H

A
 of the feature 

representation module are inputted into two independent linear layers, respectively. The outputs of 
the two linear layers are used as inputs to the gating unit, and the unique features of a single modality 
are filtered out using the features. The process is as follows:

t Sigmoid H H

H t H
A m m A A

A A A

= +( )
= −( )








w w
* *1

	 (11)

In the formula, t
A

 is the similarity weight between related features and speech features, w
m

 and 
w
A

 are parameter matrices, and H R
A

lA A* ∈ ×l  is the unique feature of speech modality. Repeating 
the above steps can obtain unique features of text modality and visual modality, represented as 
H R
L

lL L* ∈ ×l  and H R
V

lV V* ∈ ×l .
Then connect text-specific features H

L
* , speech-specific features H

A
* , and visual-specific 

features H
V

* , and map them to low dimensional space R ml . The process is as follows:

H H H H B
m l

mL
L A V l

m* * * *; ;= 



 +{ }ReLU w

2 1
	 (12)

Figure 3. Structure of feature interaction
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In eq(12), ω λ λ λ λ

l
mL R L A V m

2
∈ + +( )× , ReLU is the activation number, H

m
*  which is the globally 

unique features of the three modes.

MSA

Through the local cross-modal interaction module, local modal-related features H
m

 guided by text 
modality are obtained. Through the global interaction module, global modal unique features H

m
*  are 

obtained using relevant features mainly guided by text modality. To integrate multimodal features and 
modal importance information to better achieve MSA, a local-global feature fusion module was designed 
. Firstly, the modal-related features and modal-specific features are added to the matrix 
G H H R

m m
m= 


 ∈

×, * 2 l . Then, the matrix R is used as the input, each vector learns other cross-modal 
representations, integrating global and local features to achieve a comprehensive judgment of sentiment.

For the self-attention, define Q K V G R m= = = ∈ ×2 l , and the generates a new matrix 
G H H

m m
' ', ' *= 


 , with the calculation process as follows:

Atten Q K V Softmax
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L
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	 (13)
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G MultiHead G

Head Head Head
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o
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β

ω    
1 2

	 (15)

In eq(13), (14), and (15), ω λ λ
i
q k v R m m, , ∈ × , wo  is linear transformation weight, ⊕ represents 

stitching, β ω ω ω ωatten q k v o= 

, , , 。

Finally, send output vectors into the linear layer to obtain the result:

H H H
o m m
= 


'; ' * 	 (16)

Y H B
l
m

o l
m= +w

3 3
	 (17)

In eq(16) and (17), Y  is the final prediction result, with a sentiment score of [-3,+3], H
m

'  is a 
modal related feature, H

m
' *  is a modal specific feature, H R

o
m∈ ×2 l , ω λ

l
m R m

3

1∈ × , l
m

 is a low 
dimensional spatial dimension.

Using binary cross entropy loss as the loss function, the model is optimized by minimizing the 
cross entropy between the predicted output in the training sample and the actual sample true value, 
achieving the final MSA task. The function is represented as:

Loss Y Y Y Y
i i i i

n
= − ( )+ −( ) −( )








( ) ( ) ( ) ( )∑ log log1 1 	 (18)

EXPERIMENT

Experimental
This experiment was run on the server side of the system version Ubuntu 18.04 as shown in Table 1.
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Experimental
Two different datasets were used during the experiment, as follows:

(1) 	 CH-SIMS dataset (Xi et al., 2020). This dataset is a Chinese single modal and MSA dataset. For 
the multimodal dataset, the typical feature is that the characters in the video must have facial 
segments to obtain corresponding features while making sounds. Finally, 3210 pieces of data 
were collected.

(2) 	 CMU-MOSEI dataset (Zadeh et al., 2017). It includes 23453 video data and 250 audio data. In 
addition, the dataset has two labels: sentiments and emotions, with a total of 7 categories, and 
the values of the labels range from [-3 to 3]. The dataset provides raw data, and for text, audio, 
and video files, their images need to be captured spontaneously at a fixed frequency.

(3) 	 MELD dataset (Kamath et al., 2007) is a dataset for multimodal sentiment analysis developed at 
Stanford University. MELD dataset contains video, audio, and text data from movie conversations. 
The conversations in the dataset covered different emotional categories, including joy, sadness, 
anger, fear, disgust, and neutral. Each dialogue contains interactions between multiple characters, 
as well as their facial expressions, voice, and text messages. The experimental datasets are shown 
in Table 2.

Experimental
In the experiment, the following three evaluation indicators were used to test models:

(1)Accuracy (Acc).

Acc
TP TN

TP FN FP TN
=

+
+ + +

	 (19)

Table 1. Experimental

Parameters Configuration

O S L i n u x

C P U I n t e l ( R )  X e o n ( R )  G o l d  5 1 1 8  C P U

C P U  M e m o r y 1 6 G  @  2 . 3 0 G H z

G P U T e s l a  V 1 0 0

P r o g r a m m i n g  L a n g u a g e P y t h o n  3 . 8 . 1 3

P r o g r a m m i n g  e n v i r o n m e n t P y T o r c h  1 . 1 2 . 1

C U D A 1 1 . 4

Table 2. Experimental

Dataset CH-SIMS CMU-MOSEI MELD

T r a i n i n g  S e t 1 2 8 4 1 6 3 0 0 8 0 5 0

V e r i f i c a t i o n  S e t 2 3 0 1 9 0 0 1 0 0 0

T e s t  S e t 6 8 5 4 6 5 3 1 9 8 0

T o t a l  n u m b e r 2 1 9 9 2 2 8 5 6 1 0 4 0 7
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(2)F1-Score.

F Score
TP

TP FN FP
1

2

2
− =

+ +
	 (20)

The meanings of the symbols in the equation are depicted in Table 3.

(3)Mean Absolute Error (MAE).

MAE
M

Y Y
k k

k

M

= −
=
∑1

0
1

	 (21)

(4)Correlation coefficient between predicted value and true value (Corr)。

Corr Y Y Y Y
k k k k

= ( )⋅ ⋅cov ,
0 0

s s 	 (22)

In the equation, Y
k

 and Y
k 0

 are the predicted and true values, respectively. cov ,Y Y
k k 0( )  are the 

covariance of Y
k

 and Y
k 0

. sY
k

 and sY
k 0

 are the standard deviations of Y
k

 and Y
k 0

, respectively.
The parameters of the model during the experiment are depicted in Table 4.
During modal fusion, the weights between the modes are adjusted according to the quality 

and reliability of the data. For more noisy or incomplete modes, reduce their weight to reduce their 
shadow on the final result. Moreover, the models are stacked by ensemble learning, which reduces the 
impact of noise and incomplete data by integrating the predictions of multiple models and improves 
the robustness and accuracy of the models.

Table 3. Confusion matrix

Prediction

1 0

Actual 1 TP FN

0 FP TN

Table 4. Parameter

Parameters CH-SIMS CMU-MOSEI MELD

Optimizer Adam Adam Adam

Activation ReLU ReLU ReLU

Learning rate 0.002 0.001 0.001

Learning rate (BERT) 5×10-5 5×10-5 5×10-5

Batch size 32 32 32

Dropout 0.4 0.3 0.4

Epoch 30 25 25

λm 128 128 128
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Comparative
Comparative analysis will be conducted under the same experimental conditions based on the CH-
SIMS and CMU-MOSEI for the proposed model and various other different models.

Comparative With CMU-MOSEI
Firstly, based on the CMU-MOSEI dataset, a comparative analysis was conducted between the 
proposed model, the MAG-BERT model (Rahman et al., 2020), and the UniMSE model (Hu et al., 
2022). Under the same experimental conditions, different evaluation index values calculated by 
different models are shown in Figure 4 and Table 5.

In Figure 4 and Table 5, when using the CMU-MOSEI dataset, the proposed model has the 
largest Acc, F1 Score, and Corr, reaching 0.8627, 0.8610, and 0.7760, respectively, while the MAE 
is the smallest, at 0.5210. This means that the proposed model has better performance compared to 
MAG-BERT and UniMSE models, and it can obtain more accurate analysis results of multimodal 
sentiments. This is in the process of modal feature extraction to model single modal low-level features, 
which has a significant advantage in capturing contextual relationships, and thus, can obtain richer 
high-level feature information. In addition, a local-global feature fusion module was designed, which 
combines local modal related features and global modal unique features to achieve comprehensive 
judgment of sentiment.

Comparative on the MELD
In Figure 5 and Table 6, when the CMU-MOSEI dataset is used, Acc and F1 Score of the model 
reach 0.8727 and 0.8600, respectively. Corr is higher than TFN and slightly lower than UniMSE. 
The minimum MAE is only 0.5011. The data fully show that this model has better effect than 
TFN and UniMSE models on MELD dataset and can obtain more accurate multi-modal sentiment 
analysis results. This is because the model uses a hierarchical structure to process multimodal data, 
including audio, text, images, and so on. By feature extraction and emotion classification for each 
mode separately, the model can better learn the correlation and complementarity between different 

Figure 4. Results in the CMU-MOSEI
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modes. Secondly, the hierarchical adaptive feature fusion network model also introduces an adaptive 
mechanism, which can automatically select and weigh the importance of modes according to specific 
tasks and data, and further improve the interpretation ability of the model. Through adaptive feature 
fusion, the model can adjust the modal weights according to the characteristics of the data and the 
contribution degree of the modes, so as to better control the influence of different modes in the data. 
Additionally, it has a more effective feature extraction method, so that it has better performance in 
multi-modal sentiment analysis task.

Table 5. Results in the CMU-MOSEI

Model 
Indicator

Proposed 
Model

MAG-BERT (Rahman, 
W., et al., 2020)

UniMSE (Hu, 
G., et al., 2022)

TFEE(Le, H. D., 
et al., 2023).

MLCCT(Gong, 
P., et al,. 2023)

Acc 0.8627 0.8470 0.8586 0.6781 0.632

F1-Score 0.8610 0.8450 0.8579 0.4760 0.624

MAE 0.5210 0.5260 0.5230 - -

Corr 0.7760 0.7690 0.7730 - -

Figure 5. Results in the MELD

Table 6. Results in the MELD

Model Indicator Proposed Model TFN (Zadeh, A., et al., 2017) UniMSE (Hu, G., et al., 2022)

Acc 0.8727 0.7838 0.8586

F1-Score 0.8600 0.7862 0.8579

MAE 0.5011 0.5903 0.5230

Corr 0.6760 0.5518 0.7730
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Comparative on the CH-SIMS Dataset
The following is a comparative of the proposed model with TFN (Zadeh et al., 2017), MulT (Tsai 
et al., 2019), MISA (Hazarika et al., 2020), Self-MM (Yu et al., 2021), and ConFEDE (Yang et al., 
2023) based on the CH-SIMS dataset:

(1) 	 TFN (Zadeh et al., 2017): First, create multidimensional tensors to represent various modal 
features, and then dynamically exchange information between modalities through external product 
calculation.

(2) 	 MulT (Tsai et al., 2019): A cross-channel attention interaction module was designed using the 
structure, which focuses on multi-channel sequence interactions with different time steps.

(3) 	 MISA (Hazarika et al., 2020): Maps each modality to modal private space and cross-modal shared 
space to achieve the integration of interactive information within and between modalities.

(4) 	 Self-MM (Yu et al., 2021): Generate unimodal labels through a designed self-supervised learning 
strategy, and train both unimodal and jointly to learn consistency and differences between 
modalities.

(5) 	 ConFEDE (Yang et al., 2023): Interactions between modalities are achieved by modeling specific 
view interactions and cross-view interactions, and they are fused in the temporal dimension 
through multi-view gating mechanisms.

Under the same experimental conditions, different evaluation index values calculated by different 
models are shown in Figure 6 and Table 7.

In Figure 6 and Table 7, when using the CH-SIMS dataset, the proposed model has the largest Acc, 
F1 Score, and Corr, reaching 0.8234, 0.8218, and 0.6680, respectively, while the MAE is the smallest, 
at 0.3902. This means that the proposed model has better performance compared to TFN, MulT, MISA, 
Self MM, and ConFEDE models, and can obtain more accurate analysis results of sentiment. This is 
because the introduction of a local cross-modal interaction module effectively improves the problem 
of insufficient information fusion between modalities speech and visual modalities with relatively 
small contributions as auxiliary modalities and using cross-modal attention to achieve important 

Figure 6. Results in the CMU-MOSEI
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information representation between the two modalities. In addition, the introduction of the global 
multimodal feature interaction module can achieve hierarchical adaptive fusion based on important 
information through the adaptive gating mechanism, greatly improving the accuracy of the model.

Ablation
Modal
To further illustrate the importance and differences of each part, ablation experiments will be conducted 
on the proposed model. Taking the CH-SIMS dataset as an example, simulation analysis was conducted 
on models containing A+V, A+T, T+V, and A+V+T. The simulation results are shown in Table 8.

In Table 8, A+V represents the model that only includes audio and video modal extraction. A+L 
represents a model that only includes audio and text modal extraction. L+V represents a model that 
only includes text and video modal extraction. A+V+L represents a model that includes text, audio, 
and video modal extraction. According to the results of the ablation experiment, the “L+V” model 
are superior to the “A+V” and “L+A” models, while the “L+A” model are superior to the “A+V” 
model. This indicates that text information plays the greatest role in the multimodal feature extraction 
process, followed by video information, and finally, audio information. However, the “A+V+L” model 
can only exhibit the best MSA performance when the three are extracted and fused.

This is because the introduction of a local cross-modal interaction module effectively improves the 
problem of insufficient information fusion between modalities by using speech and visual modalities 
with relatively small contributions as auxiliary modalities and using cross-modal attention to achieve 
important information representation between the two modalities. In addition, the introduction of 
the global feature interaction module can achieve hierarchical adaptive fusion based on important 
information through the adaptive gating mechanism, greatly improving the accuracy of the model.

Modal
To verify the different importance of different modalities on the final MSA results, the model conducted 
MSA experiments using text mode, speech mode, and visual mode as guidance modes and compared 
the experimental results. The results in CH-SIMS are as follows.

Table 7. Results in the CMU-MOSEI

Indicator Model Acc F1-Score MAE Corr

Proposed model 0.8234 0.8218 0.3902 0.6680

TFN (Zadeh, A., et al., 2017) 0.7838 0.7862 0.5903 0.5518

MulT (Tsai, Y.H., et al., 2019) 0.7856 0.7966 0.4530 0.5594

MISA (Hazarika, D., et al., 2020) 0.7943 0.7970 0.4285 0.6123

Self-MM (Yu, W., et al., 2021) 0.8004 0.8044 0.4252 0.6118

ConFEDE (Yang, J., et al., 2023) 0.8223 0.8208 0.3920 0.6370

Table 8. Modal ablation experimental results

Indicator Model Acc F1-Score MAE Corr

L+V 0.7057 0.7043 0.4544 0.5725

A+V 0.6530 0.6517 0.5094 0.5297

L+A 0.6785 0.6772 0.4715 0.5504

A+V+L 0.8234 0.8218 0.3902 0.6680
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In Table 9, the proposed model exhibits the best performance when using text mode as the 
guidance mode, speech mode, and visual mode as auxiliary modes. This further indicates that text 
modality plays an important role in the emotional judgment of the final data. When using speech 
mode or visual mode as the guidance mode, the accuracy, F1 Score value, and Corr of MSA all 
showed a significant decrease, while MAE increased. This indicates that different modalities have 
different degrees of importance for the final MSA results in MSA tasks. The greatest contribution of 
text modality to MSA results reflects the importance of text modality.

Model
To further validate the effectiveness of each module, a model ablation experiment was designed to 
compare the impact of different modules. The design is as follows:

Model 1: w/o Multi-head self-attention (MHSA): Remove the high-level feature extraction module 
based on MHSA from the complete model, and directly concatenate and adaptively fuse the 
low-level features.

Model 2: w/o Cross attention: Based on the complete model, the improved cross-modal attention 
module is removed, and after self-attention, the single modal vectors are directly concatenated 
for splicing and adaptive fusion.

Model 3: w/o adaptive gating unit: Remove the fusion module based on the adaptive gating unit from 
the complete model, and directly stack and fully connect the fused high-level fusion features.

Model 4: w/o text gate, w/o speech gate, and w/o visual gate: In the fusion process based on the 
adaptive gating mechanism, the text gate, speech gate, and visual gate are sequentially removed.

Model 5: w/o related features: Remove modal-related features in the local global feature fusion module 
and only use modal-specific features.

Model 6: w/o unique features: Remove modal unique features in the local global feature fusion module 
and only use modal-related features.

The experiment was conducted using the CH-SIMS dataset, and the final model ablation 
experiment results are as follows.

In Table 10, the results on the CH-SIMS showed that removing any module from the model 
resulted in a decrease in Acc, F1 Score, and Corr of the model SA, as well as an increase in MAE. 
Therefore, removing modal-related or modal-specific features will affect the overall performance of 
the model. When the three features are fused simultaneously, the proposed model can learn more 
feature information, which is more conducive to SA. At the same time, this fully verifies the necessity 
of each module for the proposed model to achieve the best experimental results.

CONCLUSION

A hierarchical adaptive feature fusion network-based MSA method is proposed to address the issue 
of insufficient utilization of modal importance information caused by the current MSA method’s 
focus on multimodal feature fusion, resulting in the loss of important information in the modality. The 

Table 9. Modal importance ablation experimental results

Indicator Model Acc F1-Score MAE Corr

V+L+A (Visual attention) 0.8143 0.8128 0.4159 0.6607

A+V+L (Audio attention) 0.8086 0.8070 0.4232 0.6560

L+A+V (Text attention ) 0.8234 0.8218 0.3902 0.6680
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performance of this method was verified through experiments. The results indicate that extracting 
features from text, video, and audio modalities based on RoBERTa, ResViT, and LibROSA can 
improve the effectiveness of information feature extraction. By combining the multimodal feature 
extraction module and the cross-modal feature interaction module, the model can effectively learn 
information and achieve an interactive fusion of information between modalities. The introduction of 
an adaptive gate control mechanism can effectively improve the global multimodal feature interaction 
process and improve the accuracy of MSA.

However, this work also has some limitations, such as the lack of consideration for the dual 
recognition of sentiments and emotions, and the generalization ability of the proposed model needs 
to be verified. Future work will further explore the semantic interaction between textual and non-
textual modalities in MSA, as well as the dual recognition of sentiments. In addition, based on this, 
focus is on studying the impact of different sentiment information contained in different scenes on 
the emotional expression of characters, to further enhance the generalization of the MSA model.
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Table 10. Model

Indicator Model Acc F1-Score MAE Corr

Model 1 0.8110 0.8095 0.4043 0.6580

Model 2 0.8069 0.8054 0.4124 0.6546

Model 3 0.8135 0.8119 0.4055 0.6600

Model 4 0.8086 0.8070 0.4132 0.6560

Model 5 0.8053 0.8037 0.4116 0.6533

Model 6 0.8119 0.8103 0.4047 0.6586

Proposed model 0.8234 0.8218 0.3902 0.6680
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APPENDIX

Table 11. Appendix

F
kl
L

text feature

F
kl
A

speech feature

F
kl
V

video feature

H
k discourse amount contained in the k-th video

D
k
n

feature dimensions of each modality in the k-th video

F
k
L

k-th video into transformer

w
Q weight matrices for text features

w
K weight matrices for text features

w
V weight matrices for text features

l l l
k
L

k v
= = corresponding dimension size

l l
l

k
h

v
h k

L

h
= = dimensional size of each head.

H
L high-level text feature

l
L feature dimension

H
A high-level video feature representation

l
A the sequence lengths of audio

l
V the sequence lengths of video

l
A feature dimensions of audio

l
V feature dimensions of video

H
m local correlation features of the three modes

t
A similarity weight between multimodal related features and speech features

H
L

*
text specific features
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H
A

*
speech specific features

H
V

*
visual specific features

Y final prediction result

H
m

' modal related feature

H
m
' * modal specific feature
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